arXiv:2007.00258v1 [cs.RO] 1 Jul 2020

LIO-SAM: Tightly-coupled Lidar Inertial Odometry via
Smoothing and Mapping

Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and Daniela Rus

Abstract— We propose a framework for tightly-coupled lidar
inertial odometry via smoothing and mapping, LIO-SAM, that
achieves highly accurate, real-time mobile robot trajectory es-
timation and map-building. LIO-SAM formulates lidar-inertial
odometry atop a factor graph, allowing a multitude of relative
and absolute measurements, including loop closures, to be
incorporated from different sources as factors into the system.
To ensure high performance in real-time, we marginalize old
lidar scans for pose optimization, rather than matching lidar
scans to a global map. Scan-matching at a local scale instead of
a global scale significantly improves the real-time performance
of the system, as does the selective introduction of keyframes,
and an efficient sliding window approach that registers a new
keyframe to a fixed-size set of prior ‘sub-keyframes.”” The
proposed method is extensively evaluated on datasets gathered
from three platforms over various scales and environments.

I. INTRODUCTION

State estimation, localization and mapping are fundamen-
tal prerequisites for a successful intelligent mobile robot,
required for feedback control, obstacle avoidance, and plan-
ning, among many other capabilities. Using vision-based
and lidar-based sensing, great efforts have been devoted
to achieving high-performance real-time simultaneous lo-
calization and mapping (SLAM) that can support a mobile
robot’s six degree-of-freedom state estimation. Vision-based
methods typically use a monocular or stereo camera and
triangulate features across successive images to determine
the camera motion. Although vision-based methods are es-
pecially suitable for place recognition, their sensitivity to
initialization, illumination, and range make them unreliable
when they alone are used to support an autonomous navi-
gation system. On the other hand, lidar-based methods are
largely invariant to illumination change. Especially with the
recent availability of long-range, high-resolution 3D lidar,
such as the Velodyne VLS-128 and Ouster OS1-128, lidar
becomes more suitable to directly capture the fine details of
an environment in 3D space. Therefore, this paper focuses
on lidar-based state estimation and mapping methods.

Many lidar-based state estimation and mapping methods
have been proposed in the last two decades. Among them, the
lidar odometry and mapping (LOAM) method proposed in
[1] for low-drift and real-time state estimation and mapping
is among the most widely used. LOAM, which uses a lidar

T. Shan, D. Meyers, W. Wang, and C. Ratti are with the Department of
Urban Studies and Planning, Massachusetts Institute of Technology, USA,
{shant, drewm, wweiwang, ratti}@mit.edu.

B. Englot is with the Department of Mechanical Engineering, Stevens
Institute of Technology, USA, benglot@stevens.edu.

T. Shan, W. Wang, and D. Rus are with the Computer Science & Artifi-
cial Intelligence Laboratory, Massachusetts Institute of Technology, USA,
{shant, wweiwang, rus}@mit.edu.

(@ ()
Fig. 1: Representative results of our proposed framework. (a) An
operator carries the sensor suite and walks around the MIT campus.
(b) A point cloud map built using only lidar and IMU data. Changes
in color indicate elevation change.

and an inertial measurement unit (IMU), achieves state-of-
the-art performance and has been ranked as the top lidar-
based method since its release on the KITTI odometry
benchmark site [2]. Despite its success, LOAM presents
some limitations - by saving its data in a global voxel
map, it is often difficult to perform loop closure detection
and incorporate other absolute measurements, e.g., GPS, for
pose correction. Its online optimization process becomes less
efficient when this voxel map becomes dense in a feature-rich
environment. LOAM also suffers from drift in large-scale
tests, as it is a scan-matching based method at its core.

In this paper, we propose a framework for tightly-coupled
lidar inertial odometry via smoothing and mapping, LIO-
SAM, to address the aforementioned problems. By introduc-
ing a global factor graph for robot trajectory estimation, we
can efficiently perform sensor fusion using lidar and IMU
measurements, incorporate place recognition among robot
poses, and introduce absolute measurements, such as GPS
positioning and compass heading, when they are available.
This collection of factors from various sources is used for
joint optimization of the graph. Additionally, we marginalize
old lidar scans for pose optimization, rather than matching
scans to a global map like LOAM. Scan-matching at a local
scale instead of a global scale significantly improves the
real-time performance of the system, as does the selective
introduction of keyframes, and an efficient sliding window
approach that registers a new keyframe to a fixed-size set of
prior “sub-keyframes.” The main contributions of our work
can be summarized as follows:

o A tightly-coupled lidar inertial odometry framework
built atop a factor graph, that is suitable for multi-sensor

Q Lidar keyframe
Lidar odometry
factor

IMU measurements < Lidar frames

IMU preintegration
factor

.. Lidar sub-keyframes %) GPS measurement @ Robot state node

GPS factor Scan matching

/0\ Loop closure

factor

Fig. 2: The system structure of LIO-SAM. The system receives input from a 3D lidar, an IMU and optionally a GPS. Four types of factors
are introduced to construct the factor graph.: (a) IMU preintegration factor, (b) lidar odometry factor, (c) GPS factor, and (d) loop closure

factor. The generation of these factors is discussed in Section m

fusion and global optimization.

« An efficient, local sliding window-based scan-matching
approach that enables real-time performance by regis-
tering selectively chosen new keyframes to a fixed-size
set of prior sub-keyframes.

e The proposed framework is extensively validated with
tests across various scales, vehicles, and environments.

II. RELATED WORK

Lidar odometry is typically performed by finding the
relative transformation between two consecutive frames us-
ing scan-matching methods such as ICP [3] and GICP
[4]. Instead of matching a full point cloud, feature-based
matching methods have become a popular alternative due to
their computational efficiency. For example, in [5], a plane-
based registration approach is proposed for real-time lidar
odometry. Assuming operations in a structured environment,
it extracts planes from the point clouds and matches them by
solving a least-squares problem. A collar line-based method
is proposed in [6] for odometry estimation. In this method,
line segments are randomly generated from the original point
cloud and used later for registration. However, a scan’s point
cloud is often skewed because of the rotation mechanism of
modern 3D lidar, and sensor motion. Solely using lidar for
pose estimation is not ideal since registration using skewed
point clouds or features will eventually cause large drift.

Therefore, lidar is typically used in conjunction with other
sensors, such as IMU and GPS, for state estimation and
mapping. Such a design scheme, utilizing sensor fusion, can
typically be grouped into two categories: loosely-coupled
fusion and tightly-coupled fusion. In LOAM [1], IMU is
introduced to deskew the lidar scan and give a motion prior
for scan-matching. However, the IMU is not involved in
the optimization process of the algorithm. Thus LOAM can
be classified as a loosely-coupled method. A lightweight
and ground-optimized lidar odometry and mapping (LeGO-
LOAM) method is proposed in [7] for ground vehicles. Its
fusion of IMU measurements is the same as LOAM. A more
popular approach for loosely-coupled fusion is using ex-
tended Kalman filters (EKF). For example, [8]- [12] integrate

measurements from lidar, IMU, and optionally GPS using an
EKF in the optimization stage for robot state estimation.

Tightly-coupled systems usually offer improved accuracy
and are presently a major focus of ongoing research [13].
In [14], preintegrated IMU measurements are exploited for
deskewing point clouds. A robocentric lidar-inertial state
estimator, R-LINS, is presented in [15]. R-LINS uses an
error-state Kalman filter to correct a robot’s state estimate
recursively in a tightly-coupled manner. Due to the lack
of other available sensors for state estimation, it suffers
from drift during long-during navigation. A tightly-coupled
lidar inertial odometry and mapping framework, LIOM, is
introduced in [16]. LIOM, which is the abbreviation for
LIO-mapping, jointly optimizes measurements from lidar and
IMU and achieves similar or better accuracy when compared
with LOAM. Since LIOM is designed to process all the
sensor measurements, real-time performance is not achieved
- it runs at about 0.6x real-time in our tests.

III. LIDAR INERTIAL ODOMETRY VIA
SMOOTHING AND MAPPING

A. System Overview

We first define frames and notation that we use throughout
the paper. We denote the world frame as W and the robot
body frame as B. We also assume the IMU frame coincides
with the robot body frame for convenience. The robot state
X can be written as:

x=[RT, pT, vT, bT ", (1)

where R € SO(3) is the rotation matrix, p € R? is the
position vector, v is the speed, and b is the IMU bias. The
transformation T € SE(3) from B to W is represented as
T=[R|p).

An overview of the proposed system is shown in Figure
The system receives sensor data from a 3D lidar, an IMU and
optionally a GPS. We seek to estimate the state of the robot
and its trajectory using the observations of these sensors. This
state estimation problem can be formulated as a maximum a
posteriori (MAP) problem. We use a factor graph to model
this problem, as it is better suited to perform inference

when compared with Bayes nets. With the assumption of a
Gaussian noise model, the MAP inference for our problem is
equivalent to solving a nonlinear least-squares problem [17].
Note that without loss of generality, the proposed system can
also incorporate measurements from other sensors, such as
elevation from an altimeter or heading from a compass.

We introduce four types of factors along with one
variable type for factor graph construction. This variable,
representing the robot’s state at a specific time, is attributed
to the nodes of the graph. The four types of factors are:
(a) IMU preintegration factors, (b) lidar odometry factors,
(c) GPS factors, and (d) loop closure factors. A new robot
state node x is added to the graph when the change in robot
pose exceeds a user-defined threshold. The factor graph is
optimized upon the insertion of a new node using incremental
smoothing and mapping with the Bayes tree (iISAM2) [18].
The process for generating these factors is described in the
following sections.

B. IMU Preintegration Factor

The measurements of angular velocity and acceleration
from an IMU are defined using Egs. [2] and [3}

A BW a a
a; =Ry " (a; — g) +bi +nf, 3

where w; and a; are the raw IMU measurements in B at
time ¢. w; and &, are affected by a slowly varying bias by
and white noise n;. RBW is the rotation matrix from W to
B. g is the constant gravity vector in W.

We can now use the measurements from the IMU to infer
the motion of the robot. The velocity, position and rotation
of the robot at time ¢ + At can be computed as follows:

Vit At = Vi + gAt + Rt(ét — bta — n?)At (4)

1
Pirat = Pt + VAt + igAtQ
&)
1
+ §Rt(ét —b? —n?)At?
Rita: =Ry eXP((@’t - b?’ - n?))At)a (6)

where R; = RWVB = TRBW. Here we assume that the
angular velocity and the acceleration of B remain constant
during the above integration.

We then apply the IMU preintegration method proposed
in [19] to obtain the relative body motion between two
timestamps. The preintegrated measurements Av;;, Apjj,
and AR;; between time ¢ and j can be computed using:

Avij = TRi(v; — vi — gAti;) (7
1

Apij = "Ri(p;j — pi — Vildty; — §gAt?j) (®)

AR;; = 'R; R;. ©)

Due to space limitations, we refer the reader to the descrip-
tion from [19] for the detailed derivation of Eq.[7]-[0] Besides
its efficiency, applying IMU preintegration also naturally
gives us one type of constraint for the factor graph - IMU

preintegration factors. The IMU bias is jointly optimized
alongside the lidar odometry factors in the graph.

C. Lidar Odometry Factor

When a new lidar scan arrives, we first perform fea-
ture extraction. Edge and planar features are extracted by
evaluating the roughness of points over a local region.
Points with a large roughness value are classified as edge
features. Similarly, a planar feature is categorized by a small
roughness value. We denote the extracted edge and planar
features from a lidar scan at time 7 as F; and F! respectively.
All the features extracted at time ¢ compose a lidar frame F;,
where F; = {F{, F}. Note that a lidar frame F is represented
in B. A more detailed description of the feature extraction
process can be found in [1], or [7] if a range image is used.

Using every lidar frame for computing and adding factors
to the graph is computationally intractable, so we adopt the
concept of keyframe selection, which is widely used in the
visual SLAM field. Using a simple but effective heuristic
approach, we select a lidar frame [F, | ; as a keyframe when
the change in robot pose exceeds a user-defined threshold
when compared with the previous state x;. The newly saved
keyframe, F,, 1, is associated with a new robot state node,
X;+1, in the factor graph. The lidar frames between two
keyframes are discarded. Adding keyframes in this way not
only achieves a balance between map density and memory
consumption but also helps maintain a relatively sparse factor
graph, which is suitable for real-time nonlinear optimization.
In our work, the position and rotation change thresholds for
adding a new keyframe are chosen to be 1m and 10°.

Let us assume we wish to add a new state node x;;; to
the factor graph. The lidar keyframe that is associated with
this state is IF;; 1. The generation of a lidar odometry factor
is described in the following steps:

1) Sub-keyframes for voxel map: We implement a sliding
window approach to create a point cloud map containing
a fixed number of recent lidar scans. Instead of optimizing
the transformation between two consecutive lidar scans, we
extract the n most recent keyframes, which we call the
sub-keyframes, for estimation. The set of sub-keyframes
{F;—n,...,F;} is then transformed into frame W using the
transformations {T;_,, ..., T;} associated with them. The
transformed sub-keyframes are merged together into a voxel
map M;. Since we extract two types of features in the
previous feature extraction step, M, is composed of two sub-
voxel maps that are denoted MY, the edge feature voxel map,
and MY, the planar feature voxel map. The lidar frames and
voxel maps are related to each other as follows:

M; = {Mzev Mf}
where : M{ = 'F; U'F;_, U...U F;_,
M= "FPUF_,U.UF_.
'F; and 'F? are the transformed edge and planar features
in W. M¢ and MY are then downsampled to eliminate the

duplicated features that fall in the same voxel cell. In this
paper, n is chosen to be 25. The downsample resolutions for

M¢ and M? are 0.2m and 0.4m, respectively.

2) Scan-matching: We match a newly obtained lidar
frame F;,1, which is also {F§,;,F; ;}, to M; via scan-
matching. Various scan-matching methods, such as [3] and
[4], can be utilized for this purpose. Here we opt to use the
method proposed in [1] due to its computational efficiency
and robustness in various challenging environments.

We first transform {Ff, ,,F} ,} from B to W and obtain
{'F{;1,/F/,1}. This initial transformation is obtained by
using the predicted robot motion, Ti+1, from the IMU. For
each feature in 'Fj,; or 'F{,,, we then find its edge or
planar correspondence in M¢ or M. For the sake of brevity,
the detailed procedures for finding these correspondences are
omitted here, but are described thoroughly in [1].

3) Relative transformation: The distance between a fea-
ture and its edge or planar patch correspondence can be
computed using the following equations:

‘(Pfﬂ,k —P§) X (Pf-u,k - Pf,u)

d. = (10)
’piu - pg,v
’ (Pfﬂ,k — Pl
P 5P)% (pP — pP
d, - (Pl = i) X (P~ PLu)l (an

’(pf,u - pf,v) X (pf,u - pzy,w)

where k, u, v, and w are the feature indices in their
corresponding sets. For an edge feature p§,,, in 'Fi,
p;, and p;, are the points that form the corresponding
edge line in Ms. For a planar feature p},,, in 'F},,
P} > Pi,» and p}, form the corresponding planar patch
in M”. The geometric relationship between a feature and its
correspondence can be expressed as follows:

f(Tiy1) =d, whered = Be} .
P

The Levenberg-Marquardt method is then used to solve for
the optimal transformation. We let T, = ’i‘i+1 when the
optimization process converges. At last, we can obtain the
relative transformation AT; ;; between x; and x;,1, which

is the lidar odometry factor linking these two poses:

AT; 1= "T;Tip (12)

We note that an alternative approach to obtain AT; ;1
is to transform sub-keyframes into the frame of x;. In other
words, we match [F; ; to the voxel map that is represented in
the frame of x;. In this way, the real relative transformation
AT; ;11 can be directly obtained. Because the transformed
features 'F; and 'FY can be reused multiple times, we instead
opt to use the approach described in Sec. for its
computational efficiency.

D. GPS Factor

Though we can obtain reliable state estimation and map-
ping by utilizing only IMU preintegration and lidar odometry
factors, the system still suffers from drift during long-
duration navigation tasks. To solve this problem, we can

introduce sensors that offer absolute measurements for elim-
inating drift. Such sensors include an altimeter, compass, and
GPS. For the purposes of illustration here, we discuss GPS,
as it is widely used in real-world navigation systems.

When we receive GPS measurements, we first transform
them to the local Cartesian coordinate frame using the
method proposed in [20]. Upon the addition of a new node to
the factor graph, we then associate a new GPS factor with this
node. If the GPS signal is not hardware-synchronized with
the lidar frame, we interpolate among GPS measurements
linearly based on the timestamp of the lidar frame.

We note that adding GPS factors constantly when GPS
reception is available is not necessary because the drift of li-
dar inertial odometry grows very slowly. In practice, we only
add a GPS factor when the estimated position covariance is
larger than the received GPS position covariance.

E. Loop Closure Factor

Thanks to the utilization of a factor graph, loop closures
can also be seamlessly incorporated into the proposed sys-
tem, as opposed to LOAM and LIOM. For the purposes of
illustration, we describe and implement a naive but effective
Euclidean distance-based loop closure detection approach.
We also note that our proposed framework is compatible
with other methods for loop closure detection, for example,
[21] and [22], which generate a point cloud descriptor and
use it for place recognition.

When a new state x;4; is added to the factor graph,
we first search the graph and find the prior states that are
close to x;41 in Euclidean space. As is shown in Fig. 2] for
example, x3 is one of the returned candidates. We then try to
match F;; to the sub-keyframes {F5_,,,...,F3,...,F51m}
using the scan-matching method discussed in Section [T
Note that F;;; and the past sub-keyframes are first
transformed into W before scan-matching. We obtain the
relative transformation AT ;4; and add it as a loop closure
factor to the graph. Throughout this paper, we choose the
index m to be 12, and the search distance for loop closures
is set to be 15m from a new state x;1.

In practice, we find adding loop closure factors is espe-
cially useful for correcting the drift in a robot’s altitude, when
GPS is the only absolute sensor available. This is because the
elevation measurement from GPS is very inaccurate - giving
rise to altitude errors approaching 100m in our tests, in the
absence of loop closures.

IV. EXPERIMENTS

We now describe a series of experiments to qualitatively
and quantitatively analyze our proposed framework. The
sensor suite used in this paper includes a Velodyne VLP-
16 lidar, a MicroStrain 3DM-GX5-25 IMU, and a Reach M
GPS. For validation, we collected 5 different datasets across
various scales, platforms and environments. These datasets
are referred to as Roration, Walking, Campus, Park and
Amsterdam, respectively. The sensor mounting platforms are
shown in Fig. |3} The first three datasets were collected using
a custom-built handheld device on the MIT campus. The Park

(a) Handheld device (b) Clearpath Jackal (c) Dufty 21

Fig. 3: Datasets are collected on 3 platforms: (a) a custom-built
handheld device, (b) an unmanned ground vehicle - Clearpath
Jackal, (c) an electric boat - Dufty 21.

dataset was collected in a park covered by vegetation, using
an unmanned ground vehicle (UGV) - the Clearpath Jackal.
The last dataset, Amsterdam, was collected by mounting the
sensors on a boat and cruising in the canals of Amsterdam.
The details of these datasets are shown in Table [Il

TABLE I: Dataset details

Dataset Scans Environment Trajectory
elevation change (m) length (m)
Rotation 582 0 0
Walking 6502 0.3 801
Campus 9865 1.0 1437
Park 24691 19 2898
Amsterdam 107656 0 19065

We compare the proposed LIO-SAM framework with
LOAM and LIOM. In all the experiments, LOAM and LIO-
SAM are forced to run in real-time. LIOM, on the other hand,
is given infinite time to process every sensor measurement.
All the methods are implemented in C++ and executed on
a laptop equipped with an Intel i7-10710U CPU using the
robot operating system (ROS) [23] in Ubuntu Linux. We
note that only the CPU is used for computation, without
parallel computing enabled. Supplementary details of the
experiments performed, including complete visualizations of
all tests, can be found at the link belowﬂ

A. Rotation Dataset

In this test, we focus on evaluating the robustness of our
framework when only IMU preintegration and lidar odometry
factors are added to the factor graph. The Rotation dataset is
collected by a user holding the sensor suite and performing a
series of aggressive rotational maneuvers while standing still.
The test environment, which is populated with structures, is
shown in Fig.[#(a). The maps obtained from LOAM and LIO-
SAM are shown in Fig. Ekb) and (c) respectively. Because
LIOM uses the same initialization pipeline from [24], it
inherits the same initialization sensitivity of visual-inertial
SLAM and is not able to initialize properly using this dataset.
Due to its failure to produce meaningful results, the map of
LIOM is not shown. As is shown, the map of LIO-SAM
preserves more fine structural details of the environment

https://youtu.be/A0H8COORZJIU

Y A [

LT i
S

(b) LOAM

(c) LIO-SAM

Fig. 4: Mapping results of LOAM and LIO-SAM in the Rotation
test. LIOM fails to produce meaningful results.

compared with the map of LOAM. This is because LIO-
SAM is able to register each lidar frame precisely in SO(3),
even when the robot undergoes rapid rotation.

B. Walking Dataset

This test is designed to evaluate the performance of our
method when the system undergoes aggressive translations
and rotations in SE(3). During the data gathering, the user
holds the sensor suite shown in Fig. [3(a) and walks quickly
across the MIT campus (Fig. [5a)). In this test, the map of
LOAM, shown in Fig. B[b), diverges at multiple locations
when aggressive rotation is encountered. LIOM outperforms
LOAM in this test. However, its map, shown in Fig. Ekc),
still diverges slightly in various locations and consists of
numerous blurry structures. Because LIOM is designed to
process all sensor measurements, it only runs at 0.56x real-
time while other methods are running in real-time. Finally,
LIO-SAM outperforms both methods and produces a map
that is consistent with the available Google Earth imagery.

C. Campus Dataset

TABLE II: Relative translation error when returning to start (meters)

Dataset LOAM LIOM LIO-odom LIO-GPS LIO-SAM
Campus 192.43 Fail 9.44 6.87 0.12
Park 121.74 34.60 36.36 2.93 0.04
Amsterdam Fail Fail Fail 1.21 0.17

This test is designed to show the benefits of introducing
GPS and loop closure factors. In order to do this, we
purposely disable the insertion of GPS and loop closure
factors into the graph. When both GPS and loop closure

https://youtu.be/A0H8CoORZJU

(a) Google Earth

(b) LOAM

(c) LIOM

(d) LIO-SAM

Fig. 5: Mapping results of LOAM, LIOM, and LIO-SAM using the Walking dataset. The map of LOAM in (b) diverges multiple times
when aggressive rotation is encountered. LIOM outperforms LOAM. However, its map shows numerous blurry structures due to inaccurate
point cloud registration. LIO-SAM produces a map that is consistent with the Google Earth imagery, without using GPS.

factors are disabled, our method is referred to as LIO-odom,
which only utilizes IMU preintegration and lidar odometry
factors. When GPS factors are used, our method is referred to
as LIO-GPS, which uses IMU preintegration, lidar odometry,
and GPS factors for graph construction. LIO-SAM uses all
factors when they are available.

To gather this dataset, the user walks around the MIT
campus using the handheld device and returns to the same
position. Because of the numerous buildings and trees in the
mapping area, GPS reception is rarely available and inaccu-
rate most of the time. After filtering out the inconsistent GPS
measurements, the regions where GPS is available are shown
in Fig. [f[(a) as green segments. These regions correspond to
the few areas that are not surrounded by buildings or trees.

The estimated trajectories of LOAM, LIO-odom, LIO-
GPS, and LIO-SAM are shown in Fig. @a). The results of
LIOM are not shown due to its failure to initialize properly
and produce meaningful results. As is shown, the trajectory
of LOAM drifts significantly when compared with all other
methods. Without the correction of GPS data, the trajectory
of LIO-odom begins to visibly drift at the lower right corner
of the map. With the help of GPS data, LIO-GPS can correct
the drift when it is available. However, GPS data is not
available for the later part of the dataset. As a result, LIO-
GPS is unable to close the loop when the robot returns
to the start position due to drift. On the other hand, LIO-
SAM can eliminate the drift by adding loop closure factors
to the graph. The map of LIO-SAM is well-aligned with
Google Earth imagery and shown in Fig. [6(b). The relative
translational error of all methods when the robot returns to
the start is shown in Table

D. Park Dataset

In this test, we mount the sensors on a UGV and drive the
vehicle along a forested hiking trail in Pleasant Valley Park,
NJ. The robot returns to its initial position after 40 minutes of
driving. The UGV is driven on three road surfaces: asphalt,
ground covered by grass, and dirt-covered trails. Due to
its lack of suspension, the robot undergoes small but high
frequency vibrations when driven on non-asphalt roads.

To mimic a challenging mapping scenario, we only use
GPS measurements when the robot is in widely open areas,
which is indicated by the green segments in Fig. [7(a). Such a
mapping scenario is representative of a task in which a robot
must map multiple GPS-denied regions and periodically
returns to regions with GPS availability to correct the drift.

Similar to the results in the previous tests, LOAM, LIOM,
and LIO-odom suffer from significant drift, since no absolute
correction data is available. Additionally, LIOM only runs at
0.67x real-time, while the other methods run in real-time.
Though the trajectories of LIO-GPS and LIO-SAM coincide
in the horizontal plane, their relative translational errors are
different (Table [I). Because no reliable absolute elevation
measurements are available, LIO-GPS suffers from drift in
altitude and is unable to close the loop when returning to
the robot’s initial position. LIO-SAM has no such problem,
as it utilizes loop closure factors to eliminate the drift.

E. Amsterdam Dataset

Finally, we mounted the sensor suite on a boat and cruised
along the canals of Amsterdam for 3 hours. Although the
movement of the sensors is relatively smooth in this test,
mapping the canals is still challenging for several reasons.
Many bridges over the canals pose degenerate scenarios, as
there are few useful features when the boat is under them,
similar to moving through a long, featureless corridor. The
number of planar features is also significantly less, as the
ground is not present. We observe many false detections from
the lidar when direct sunlight is in the sensor field-of-view,
which occurs about 20% of the time during data gathering.
We also only obtain intermittent GPS reception due to the
presence of bridges and city buildings overhead.

Due to these challenges, LOAM, LIOM, and LIO-odom
all fail to produce meaningful results in this test. Similar
to the problems encountered in the Park dataset, LIO-GPS
is unable to close the loop when returning to the robot’s
initial position because of the drift in altitude, which further
motivates our usage of loop closure factors in LIO-SAM.

0
—100
—200
=20 -15 -=10 =5 0
—300
LOAM
LIO-odom
—400 —— LIO-GPS
—— LIO-SAM
—— GPS availability
_50—0200 —100 0 100 200 300 400

(a) Trajectory comparison

e

(b) LIO-SAM map aligned with Google Earth

Fig. 6: Results of various methods using the Campus dataset that
is gathered on the MIT campus. The red dot indicates the start and
end location. The trajectory direction is clock-wise. LIOM is not
shown because it fails to produce meaningful results.

TABLE III: RMSE translation error w.r.t GPS

LOAM LIOM LIO-odom LIO-GPS LIO-SAM
4731 28.96 23.96 1.09 0.96

Dataset
Park

FE. Benchmarking Results

Since full GPS coverage is only available in the Park
dataset, we show the root mean square error (RMSE) results
w.r.t to the GPS measurement history, which is treated as
ground truth. This RMSE error does not take the error along
the z axis into account. As is shown in Table [l LIO-GPS
and LIO-SAM achieve similar RMSE error with respect to
the GPS ground truth. Note that we could further reduce the
error of these two methods by at least an order of magni-
tude by giving them full access to all GPS measurements.
However, full GPS access is not always available in many
mapping settings. Our intention is to design a robust system
that can operate in a variety of challenging environments.

The average runtime for the three competing methods to
register one lidar frame across all five datasets is shown

200

100
LOAM
—— LIOM
LIO-odom
—— LIO-GPS
—— LIO-SAM
GPS availability

—100

—200

—300

=800 =700 —600 —500 —400 -300 —200 —100 0 100

(a) Trajectory comparison

(b) LIO-SAM map aligned with Google Earth

Fig. 7: Results of various methods using the Park dataset that is
gathered in Pleasant Valley Park, New Jersey. The red dot indicates
the start and end location. The trajectory direction is clock-wise.

TABLE IV: Runtime of mapping for processing one scan (ms)

Dataset LOAM LIOM LIO-SAM Stress test
Rotation 83.6 Fail 419 13x
Walking 253.6 339.8 58.4 13x
Campus 244.9 Fail 97.8 10x
Park 266.4 245.2 100.5 9x
Amsterdam Fail Fail 79.3 11x

in Table m Throughout all tests, LOAM and LIO-SAM
are forced to run in real-time. In other words, some lidar
frames are dropped if the runtime takes more than 100ms
when the lidar rotation rate is 10Hz. LIOM is given infinite
time to process every lidar frame. As is shown, LIO-SAM
uses significantly less runtime than the other two methods,
which makes it more suitable to be deployed on low-power
embedded systems.

We also perform stress tests on LIO-SAM by feeding it
the data faster than real-time. The maximum data playback
speed is recorded and shown in the last column of Table
[[V] when LIO-SAM achieves similar performance without
failure compared with the results when the data playback
speed is 1x real-time. As is shown, LIO-SAM is able to
process data faster than real-time up to 13x. A test of
processing the Campus dataset at 10x real-time is shown
in the supplementary video.

We note that the runtime of LIO-SAM is more signif-

Fig. 8: Map of LIO-SAM aligned with Google Earth.

icantly influenced by the density of the feature map, and
less affected by the number of nodes and factors in the
factor graph. For instance, the Park dataset is collected in
a feature-rich environment where the vegetation results in a
large quantity of features, whereas the Amsterdam dataset
yields a sparser feature map. While the factor graph of the
Park test consists of 4,573 nodes and 9,365 factors, the graph
in the Amsterdam test has 23,304 nodes and 49,617 factors.
Despite this, LIO-SAM uses less time in the Amsterdam test
as opposed to the runtime in the Park test.

V. CONCLUSIONS AND DISCUSSION

We have proposed LIO-SAM, a framework for tightly-
coupled lidar inertial odometry via smoothing and mapping,
for performing real-time state estimation and mapping in
complex environments. By formulating lidar-inertial odom-
etry atop a factor graph, LIO-SAM is especially suitable
for multi-sensor fusion. Additional sensor measurements can
easily be incorporated into the framework as new factors.
Sensors that provide absolute measurements, such as a GPS,
compass, or altimeter, can be used to eliminate the drift of
lidar inertial odometry that accumulates over long durations,
or in feature-poor environments. Place recognition can also
be easily incorporated into the system. To improve the
real-time performance of the system, we propose a sliding
window approach that marginalizes old lidar frames for scan-
matching. Keyframes are selectively added to the factor
graph, and new keyframes are registered only to a fixed-
size set of sub-keyframes when both lidar odometry and
loop closure factors are generated. This scan-matching at
a local scale rather than a global scale facilitates the real-
time performance of the LIO-SAM framework. The proposed
method is thoroughly evaluated on datasets gathered on three
platforms across a variety of environments. The results show

that LIO-SAM can achieve similar or better accuracy when
compared with LOAM and LIOM. Future work involves
testing the proposed system on unmanned aerial vehicles.

REFERENCES

[1] J. Zhang and S. Singh, “Low-drift and Real-time Lidar Odometry and
Mapping,” Autonomous Robots, vol. 41(2): 401-416, 2017.

[2] A. Geiger, P. Lenz, and R. Urtasun, “Are We Ready for Autonomous
Driving? The KITTI Vision Benchmark Suite”, IEEE International
Conference on Computer Vision and Pattern Recognition, pp. 3354-
3361, 2012.

[3]1 PJ. Besl and N.D. McKay, “A Method for Registration of 3D Shapes,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

14(2): 239-256, 1992.

A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” Proceedings

of Robotics: Science and Systems, 2009.

[5] W.S. Grant, R.C. Voorhies, and L. Itti, “Finding Planes in LiDAR

Point Clouds for Real-time Registration,” IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 4347-4354, 2013.

M. Velas, M. Spanel, and A. Herout, “Collar Line Segments for Fast

Odometry Estimation from Velodyne Point Clouds,” IEEE Interna-

tional Conference on Robotics and Automation, pp. 4486-4495, 2016.

T. Shan and B. Englot, “LeGO-LOAM: Lightweight and Ground-

optimized Lidar Odometry and Mapping on Variable Terrain,”

IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 4758-4765, 2018.

S. Lynen, M.W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A

Robust and Modular Multi-sensor Fusion Approach Applied to MAV

Navigation,” IEEE/RSJ international conference on intelligent robots

and systems, pp. 3923-3929, 2013.

[9] S. Yang, X. Zhu, X. Nian, L. Feng, X. Qu, and T. Mal, “A Robust
Pose Graph Approach for City Scale LiDAR Mapping,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1175-
1182, 2018.

[10] M. Demir and K. Fujimura, “Robust Localization with Low-Mounted
Multiple LiDARs in Urban Environments,” IEEE Intelligent Trans-
portation Systems Conference, pp. 3288-3293, 2019.

[11] Y. Gao, S. Liu, M. Atia, and A. Noureldin, “INS/GPS/LiDAR Inte-
grated Navigation System for Urban and Indoor Environments using
Hybrid Scan Matching Algorithm,” Sensors, vol. 15(9): 23286-23302,
2015.

[12] S. Hening, C.A. Ippolito, K.S. Krishnakumar, V. Stepanyan, and M.
Teodorescu, “3D LiDAR SLAM integration with GPS/INS for UAVs
in urban GPS-degraded environments,” In AIAA Information Systems-
AIAA Infotech @ Aerospace, pp. 448-457, 2017.

[13] C. Chen, H. Zhu, M. Li, and S. You, “A Review of Visual-Inertial
Simultaneous Localization and Mapping from Filtering-Based and
Optimization-Based Perspectives,” Robotics, vol. 7(3):45, 2018.

[14] C. Le Gentil,, T. Vidal-Calleja, and S. Huang, “IN2LAMA: Inertial
Lidar Localisation and MApping,” IEEE International Conference on
Robotics and Automation, pp. 6388-6394, 2019.

[15] C. QIn, H. Ye, C.E. Pranata, J. Han, S. Zhang, and Ming Liu, “R-
LINS: A Robocentric Lidar-Inertial State Estimator for Robust and
Efficient Navigation,” arXiv preprint arXiv:1907.02233, 2019.

[16] H. Ye, Y. Chen, and M. Liu, “Tightly Coupled 3D Lidar Inertial
Odometry and Mapping,” IEEE International Conference on Robotics
and Automation, pp. 3144-3150, 2019.

[17] F. Dellaert and M. Kaess, “Factor Graphs for Robot Perception,”
Foundations and Trends in Robotics, vol. 6(1-2): 1-139, 2017.

[18] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard, and F.
Dellaert, “iISAM2: Incremental Smoothing and Mapping Using the
Bayes Tree,” The International Journal of Robotics Research 31, vol.
31(2): 216-235, 2012.

[19] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold
Preintegration for Real-Time Visual-Inertial Odometry,” IEEE Trans-
actions on Robotics, vol. 33(1): 1-21, 2016.

[20] T. Moore and D. Stouch, “A Generalized Extended Kalman Filter
Implementation for The Robot Operating System,” In Intelligent
Autonomous Systems, vol. 13: 335-348, 2016.

[21] G. Kim and A. Kim, “Scan Context: Egocentric Spatial Descriptor for
Place Recognition within 3D Point Cloud Map,” IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 4802-4809,
2018.

[4

[lnar)

[6

=

[7

—

[8

=

http://arxiv.org/abs/1907.02233

[22]

[23]

[24]

J. Guo, P. VK Borges, C. Park, and A. Gawel, “Local Descriptor for
Robust Place Recognition using Lidar Intensity,” IEEE Robotics and
Automation Letters, vol. 4(2): 1470-1477, 2019.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A.Y. Ng, “ROS: An Open-source Robot Operating
System,” IEEE ICRA Workshop on Open Source Software, 2009.

T. Qin, P. Li, and S. Shen, “Vins-mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator,” IEEE Transactions on
Robotics, vol. 34(4): 1004-1020, 2018.

	I Introduction
	II Related Work
	III Lidar Inertial Odometry via Smoothing and Mapping
	III-A System Overview
	III-B IMU Preintegration Factor
	III-C Lidar Odometry Factor
	III-C.1 Sub-keyframes for voxel map
	III-C.2 Scan-matching
	III-C.3 Relative transformation

	III-D GPS Factor
	III-E Loop Closure Factor

	IV Experiments
	IV-A Rotation Dataset
	IV-B Walking Dataset
	IV-C Campus Dataset
	IV-D Park Dataset
	IV-E Amsterdam Dataset
	IV-F Benchmarking Results

	V Conclusions and Discussion
	References

