From 41ffcc44f3062aeba96b717d3b1977fc864cd347 Mon Sep 17 00:00:00 2001 From: Hussain Kanafani <hussainkanafani@gmail.com> Date: Tue, 25 Aug 2020 23:12:10 +0200 Subject: [PATCH] README updated --- README.md | 33 ++++++++++++++++++++++++++++++++- 1 file changed, 32 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index d0d8848..f099551 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -**Evaluating and Extending Unsupervised VideoSummarization Methods** +## Evaluating and Extending Unsupervised VideoSummarization Methods 1. Evaluation unsupervised methods with different metric under same configuration. 2. Investigating effect of extracted features in unsupervised methods and extend it to perform better than baseline work. @@ -23,3 +23,34 @@ Eventually, it aims to find an unsupervised video summarization method, in order * [Reproduce (Zhou et al. 2018)](https://gitlab.uni-hannover.de/hussainkanafani/unsupervised-video-summarization/-/wikis/Reproduce-(Zhou-et-al.-2018)%E2%80%8B) * [Conda cheat sheet](https://gitlab.uni-hannover.de/hussainkanafani/unsupervised-video-summarization/-/wikis/Conda-cheat-sheet) + + +### SUM-Ind +Make splits +```bash +python create_split.py -d datasets/eccv16_dataset_summe_google_pool5.h5 --save-dir datasets --save-name summe_splits --num-splits 5 +``` +As a result, the dataset is randomly split for 5 times, which are saved as json file. + +Train and test codes are written in `main.py`. To see the detailed arguments, please do `python main.py -h`. + +#### How to train +```bash +python main.py -d datasets/eccv16_dataset_summe_google_pool5.h5 -s datasets/summe_splits.json -m summe --gpu 0 --save-dir log/summe-split0 --split-id 0 --verbose +``` + +#### How to test +```bash +python main.py -d datasets/eccv16_dataset_summe_google_pool5.h5 -s datasets/summe_splits.json -m summe --gpu 0 --save-dir log/summe-split0 --split-id 0 --evaluate --resume path_to_your_model.pth.tar --verbose --save-results +``` + + +### Citation +``` +@article{zhou2017reinforcevsumm, + title={Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity-Representativeness Reward}, + author={Zhou, Kaiyang and Qiao, Yu and Xiang, Tao}, + journal={arXiv:1801.00054}, + year={2017} +} +``` \ No newline at end of file -- GitLab