diff --git a/ntrfc/turbo/profile_tele_extraction.py b/ntrfc/turbo/profile_tele_extraction.py index 9d825771344522888b5d04e84e92ce7527612041..869a73a5bd04a839e46eb849bf6a62900e8be3dd 100644 --- a/ntrfc/turbo/profile_tele_extraction.py +++ b/ntrfc/turbo/profile_tele_extraction.py @@ -111,46 +111,6 @@ def voronoi_skeleton_sites(points_2d_closed_refined_voronoi): return sites_inside_sorted -def skeletonize_skeleton_sites(points_2d_closed_refined_skeletonize): - res = len(points_2d_closed_refined_skeletonize) - dx = np.min(points_2d_closed_refined_skeletonize[:, 0]) - dy = np.min(points_2d_closed_refined_skeletonize[:, 1]) - - maxx = np.max(points_2d_closed_refined_skeletonize[:, 0]) - maxy = np.max(points_2d_closed_refined_skeletonize[:, 1]) - - scale = max(maxx - dx, maxy - dy) - factor = res - - px = (points_2d_closed_refined_skeletonize[:, 0] - dx) / scale * factor - py = (points_2d_closed_refined_skeletonize[:, 1] - dy) / scale * factor - - polygon = np.stack((px, py)).T - image_size = (res, res) # Image size - midline, img = compute_midline(polygon, image_size) - - # Find midline points - xx_idx, yy_idx = np.where(midline > 0) - midline_points = np.column_stack((xx_idx, yy_idx)) - - mxx = (midline_points[:, 0]) / factor * scale + dy - myy = (midline_points[:, 1]) / factor * scale + dx - - midline_skeletonize = np.stack([myy, mxx]).T - - return midline_skeletonize - - - -def compute_midline(polygon, image_size): - # Convert polygon to binary image - binary_img = polygon_to_binary_image(polygon, image_size) - - # Apply skeletonization - skeleton = skeletonize(binary_img, method='zhang') - - return skeleton, binary_img - def pointcloud_to_profile(points, res): tck, u = splprep(points.T, u=None, s=0.0, per=1, k=3)