From 805fc0dc3ce9e5fc44a89306918678082c4e6d35 Mon Sep 17 00:00:00 2001 From: many <nyhuis@tfd.uni-hannover.de> Date: Fri, 20 Sep 2024 11:25:27 +0200 Subject: [PATCH] cleanup. remove unnecessary and complex code. remove unidentified bugs --- .../naca_airfoil_creator.py | 6 +- .../turbo/cascade_case/utils/domain_utils.py | 30 +-- ntrfc/turbo/profile_tele_extraction.py | 251 +----------------- .../cascadecase/domain/test_ntrfc_blade2d.py | 4 +- 4 files changed, 21 insertions(+), 270 deletions(-) diff --git a/ntrfc/turbo/airfoil_generators/naca_airfoil_creator.py b/ntrfc/turbo/airfoil_generators/naca_airfoil_creator.py index e807a4ec..12901d9b 100644 --- a/ntrfc/turbo/airfoil_generators/naca_airfoil_creator.py +++ b/ntrfc/turbo/airfoil_generators/naca_airfoil_creator.py @@ -291,6 +291,6 @@ def naca(number, n, finite_te=False, half_cosine_spacing=True): y = radius * np.sin(theta) """ points = np.stack([X, Y, np.zeros(len(X))]).T - poly = pv.PolyData(points) - poly = poly.clean(tolerance=1e-6) - return poly.points[::, 0], poly.points[::, 1] + uniquepts = np.unique(points, axis=0) + + return uniquepts[::, 0], uniquepts[::, 1] diff --git a/ntrfc/turbo/cascade_case/utils/domain_utils.py b/ntrfc/turbo/cascade_case/utils/domain_utils.py index 3f160a45..99addb8e 100644 --- a/ntrfc/turbo/cascade_case/utils/domain_utils.py +++ b/ntrfc/turbo/cascade_case/utils/domain_utils.py @@ -15,14 +15,11 @@ class Blade2D: def __init__(self, points: np.ndarray or pv.PolyData): self.origpoints_pv = None self.sortedpoints_pv = None - self.sortedpointsrolled_pv = None self.periodicsplinepoints = None self.skeletonline_pv = None self.ps_pv = None self.ss_pv = None self.hullalpha = None - self.ile_orig = None - self.ite_orig = None self.ile = None self.ite = None self.beta_le = None @@ -38,10 +35,11 @@ class Blade2D: print("working with np.ndarray pointcloud. No dataarrays cab be used for postprocessing") def compute_polygon(self, alpha=None): + unique_points = np.unique(self.origpoints_pv.points, axis=0) if alpha: - xs, ys = calc_concavehull(self.origpoints_pv.points[:, 0], self.origpoints_pv.points[:, 1], alpha) + xs, ys = calc_concavehull(unique_points[:, 0], unique_points[:, 1], alpha) else: - xs, ys, alpha = auto_concaveHull(self.origpoints_pv.points[:, 0], self.origpoints_pv.points[:, 1]) + xs, ys, alpha = auto_concaveHull(unique_points[:, 0], unique_points[:, 1]) line = polyline_from_points(np.stack((xs, ys, np.zeros(len(ys)))).T) orientation = is_counterclockwise(xs, ys) @@ -61,21 +59,10 @@ class Blade2D: self.sortedpoints_pv = self.sortedpoints_pv.merge(self.origpoints_pv.extract_points([i])) def compute_lete(self): - self.ile_orig, self.ite_orig = extract_vk_hk(self.sortedpoints_pv) - - def compute_rolledblade(self): - ids = np.roll(np.arange(self.sortedpoints_pv.number_of_points), -self.ile_orig) - - newSortedPoly = pv.PolyData() - for i in ids: - newSortedPoly = newSortedPoly.merge(self.sortedpoints_pv.extract_points(i)) - - self.ite = (self.ite_orig - self.ile_orig) % newSortedPoly.number_of_points - self.ile = 0 - self.sortedpointsrolled_pv = newSortedPoly + self.ile, self.ite = extract_vk_hk(self.sortedpoints_pv) def extract_sides(self): - self.ps_pv, self.ss_pv = extractSidePolys(self.ite,self.ile, self.sortedpointsrolled_pv) + self.ps_pv, self.ss_pv = extractSidePolys(self.ite,self.ile, self.sortedpoints_pv) def compute_skeleton(self): self.skeletonline_pv = midline_from_sides(self.ps_pv, self.ss_pv) @@ -83,7 +70,7 @@ class Blade2D: def compute_stats(self): vk_tangent = self.skeletonline_pv.points[0] - self.skeletonline_pv.points[1] hk_tangent = self.skeletonline_pv.points[-2] - self.skeletonline_pv.points[-1] - chord = -self.sortedpointsrolled_pv.points[self.ile] + self.sortedpointsrolled_pv.points[self.ite] + chord = -self.sortedpoints_pv.points[self.ile] + self.sortedpoints_pv.points[self.ite] self.beta_le = vecAngle(vk_tangent, -np.array([1, 0, 0])) / np.pi * 180 self.beta_te = vecAngle(hk_tangent, np.array([1, 0, 0])) / np.pi * 180 self.camber_phi = vecAngle(chord, np.array([1, 0, 0])) / np.pi * 180 @@ -92,7 +79,6 @@ class Blade2D: def compute_all_frompoints(self, alpha=None): self.compute_polygon(alpha) self.compute_lete() - self.compute_rolledblade() self.extract_sides() self.compute_skeleton() self.compute_stats() @@ -103,8 +89,8 @@ class Blade2D: p.add_mesh(self.ps_pv, color="red", label="pressure side", line_width=1) p.add_mesh(self.ss_pv, color="blue", label="suction side", line_width=1) p.add_mesh(self.skeletonline_pv, color="black", label="skeleton line", line_width=1) - p.add_mesh(pv.PolyData(self.sortedpointsrolled_pv.points[self.ile]), color="green", label="ile", point_size=16) - p.add_mesh(pv.PolyData(self.sortedpointsrolled_pv.points[self.ite]), color="yellow", label="ite", point_size=16) + p.add_mesh(pv.PolyData(self.sortedpoints_pv.points[self.ile]), color="green", label="ile", point_size=16) + p.add_mesh(pv.PolyData(self.sortedpoints_pv.points[self.ite]), color="yellow", label="ite", point_size=16) p.add_text( f"beta_le: {self.beta_le} \nbeta_te: {self.beta_te}\nphi_camber: {self.camber_phi}\nlength_camber: {self.camber_length}", font_size=int(sfactor)) diff --git a/ntrfc/turbo/profile_tele_extraction.py b/ntrfc/turbo/profile_tele_extraction.py index ddc22ebb..bf89557e 100644 --- a/ntrfc/turbo/profile_tele_extraction.py +++ b/ntrfc/turbo/profile_tele_extraction.py @@ -1,154 +1,13 @@ -import cv2 import numpy as np import pyvista as pv -import shapely from scipy.interpolate import splev from scipy.interpolate import splprep -from scipy.spatial import Voronoi -from scipy.spatial.distance import cdist from shapely.geometry import Polygon, LineString from skimage.morphology import skeletonize from ntrfc.geometry.line import lines_from_points from ntrfc.turbo.pointcloud_methods import extractSidePolys, midline_from_sides -from ntrfc.math.vectorcalc import findNearest, vecDir from ntrfc.geometry.alphashape import auto_concaveHull -def detect_inliers_tukey(data): - """ - Detect inliers using Tukey's method. - - Parameters: - - data: 1D array-like data - - Returns: - - Array of boolean values indicating whether each data point is an inlier - """ - Q1 = np.percentile(data, 25) - Q3 = np.percentile(data, 75) - IQR = Q3 - Q1 - lower_bound = Q1 - 1.5 * IQR - upper_bound = Q3 + 1.5 * IQR - return (data >= lower_bound) & (data <= upper_bound) - - -def detect_inliers_mad(data): - """ - Detect inliers using Median Absolute Deviation (MAD) method. - - Parameters: - - data: 1D array-like data - - Returns: - - Array of boolean values indicating whether each data point is an inlier - """ - median = np.median(data) - mad = np.median(np.abs(data - median)) - threshold = 3.5 * mad # Adjust multiplier as needed - - lower_bound = median - threshold - upper_bound = median + threshold - return (data >= lower_bound) & (data <= upper_bound) - - -def detect_inliers_zscore(data, threshold=2): - """ - Detect outliers using Z-Score method. - - Parameters: - - data: 1D array-like data - - threshold: Z-Score threshold for identifying outliers (default=3) - - Returns: - - Array of boolean values indicating whether each data point is an outlier - """ - z_scores = np.abs((data - np.mean(data)) / np.std(data)) - return z_scores < threshold - - -def clean_sites(voronoi_sites, skeletonize_sites): - # Compute pairwise distances - distances = cdist(skeletonize_sites, voronoi_sites) - - # Find minimal distance for each point in A - min_distances = np.min(distances, axis=1) - - inliers_turkey = detect_inliers_tukey(min_distances) - inliers_mad = detect_inliers_mad(min_distances) - inliers_zscore = detect_inliers_zscore(min_distances) - - inlier_indices = np.where(inliers_turkey * inliers_zscore * inliers_mad)[0] - - valid_midline = skeletonize_sites[inlier_indices] - return valid_midline - - - -def periodic_weights(length, ind_1, ind_2): - """ - Generate a periodic signal of given length with maxima at ind_1 and ind_2 - and minima in between, with all values between 0 and 1. - - Parameters: - - length: Total length of the signal. - - ind_1: Index of the first maximum (must be less than ind_2). - - ind_2: Index of the second maximum (must be greater than ind_1). - - Returns: - - A numpy array containing the periodic signal. - """ - - # Create an array of zeros - signal = np.zeros(length) - - # 1. Rise from 0 to maximum at ind_1 - slope_rise_1 = 1 / ind_1 - for i in range(ind_1): - signal[i] = slope_rise_1 * i # Linear rise from 0 to 1 - - # 2. Fall from maximum at ind_1 to minimum (0) at midpoint between ind_1 and ind_2 - mid_point = (ind_1 + ind_2) // 2 - slope_fall = -1 / (mid_point - ind_1) - for i in range(ind_1, mid_point): - signal[i] = 1 + slope_fall * (i - ind_1) # Linear fall from 1 to 0 - - # 3. Rise again from minimum (0) to maximum at ind_2 - slope_rise_2 = 1 / (ind_2 - mid_point) - for i in range(mid_point, ind_2): - signal[i] = slope_rise_2 * (i - mid_point) # Linear rise from 0 to 1 - - # 4. Fall to 0 by the end (to ensure periodicity) - slope_fall_2 = -1 / (length - ind_2) - for i in range(ind_2, length): - signal[i] = 1 + slope_fall_2 * (i - ind_2) # Linear fall from 1 to 0 - - return signal - - -import numpy as np -from scipy.interpolate import CubicSpline - - -def curvature_spline(points): - # Punkte auf x- und y-Koordinaten aufteilen - points = np.array(points) - x = points[:, 0] - y = points[:, 1] - - # Spline-Interpolation mit scipy - cs_x = CubicSpline(np.arange(len(x)), x) - cs_y = CubicSpline(np.arange(len(y)), y) - - # Erste und zweite Ableitung des Splines berechnen - t = np.linspace(0, len(x) - 1, len(points)) # Parameterwerte für den Spline (z.B. 1000 Schritte) - dx = cs_x(t, 1) - dy = cs_y(t, 1) - ddx = cs_x(t, 2) - ddy = cs_y(t, 2) - - # Krümmung für jeden Punkt berechnen - curvature = np.abs(dx * ddy - dy * ddx) / (dx ** 2 + dy ** 2) ** (3 / 2) - - return curvature @@ -178,7 +37,7 @@ def compute_midline_error(ind_1_start, ind_2_start, sortedPoly, shapelypoly): lengths_positive = np.array([line.length for line in intersections_positive]) lengths_negative = np.array([line.length for line in intersections_negative]) - thicknesses = np.min(np.stack([lengths_positive, lengths_negative]).T, axis=1) + thicknesses = (lengths_positive+lengths_negative)/2 reconstructed_pts_positive = centers + thicknesses[:, np.newaxis] * normals reconstructed_pts_negative = centers - thicknesses[:, np.newaxis] * normals reconstructed_pts = np.concatenate([reconstructed_pts_positive, reconstructed_pts_negative]) @@ -186,16 +45,18 @@ def compute_midline_error(ind_1_start, ind_2_start, sortedPoly, shapelypoly): rec_xx,rec_yy ,_= auto_concaveHull(reconstructed_pts[:,0],reconstructed_pts[:,1]) reconstructed_shapepoly = Polygon(np.stack((rec_xx,rec_yy)).T) + #compute difference of lengths + differences = np.abs(lengths_positive - lengths_negative) - #error_thickness = np.mean(differences/thicknesses) + error_thickness = np.mean(differences/thicknesses) error_area = reconstructed_shapepoly.symmetric_difference(shapelypoly).area/shapelypoly.area error_perimeter = abs(reconstructed_shapepoly.length-shapelypoly.length)/shapelypoly.length error_hausdorf = reconstructed_shapepoly.hausdorff_distance(shapelypoly) - return error_area * error_perimeter * error_hausdorf + return error_area + error_perimeter + error_hausdorf +error_thickness def extract_vk_hk(sortedPoly: pv.PolyData) -> (int, int): - voronoires = 64000 + voronoires = 32000 points_orig = sortedPoly.points points_2d_closed_refined_voronoi = pointcloud_to_profile(points_orig, voronoires) @@ -210,7 +71,7 @@ def extract_vk_hk(sortedPoly: pv.PolyData) -> (int, int): indices_front_all = np.where(sortedPoly.points[:, 0] < min_x + delta_x * (test_range))[0] indices_back_all = np.where(sortedPoly.points[:, 0] > max_x - delta_x * (test_range))[0] - stepsize = len(indices_back_all)*len(indices_front_all)//300 + stepsize = len(indices_back_all)*len(indices_front_all)//400 indices_front_coarse = indices_front_all[::stepsize] indices_back_coarse = indices_back_all[::stepsize] @@ -229,7 +90,7 @@ def extract_vk_hk(sortedPoly: pv.PolyData) -> (int, int): error_data=np.array(error_data) # get best 10% of combinations - percentile_value = np.percentile(error_data[:, 2], 10) + percentile_value = np.percentile(error_data[:, 2], 3) lowest10 = error_data[np.where(error_data[:, 2] < percentile_value)] front_unique = np.unique(lowest10[:, 0]) @@ -265,108 +126,12 @@ def extract_vk_hk(sortedPoly: pv.PolyData) -> (int, int): error_data_fine = np.array(error_data_fine) best_combination_fine = specific_combinations_fine[np.argmin(error_data_fine, axis=0)[2]] - - le_ind_best, te_ind_best = int(best_combination_fine[0]), int(best_combination_fine[1]) return le_ind_best, te_ind_best -def skeletonline_completion(diag_dist, points, points_2d_closed_refined, sites_raw_clean): - shapelypoly = Polygon(points_2d_closed_refined).convex_hull - shapelymidline = LineString(sites_raw_clean) - # i need to extend thhe shapelymidline to the boundary of the polygon - # Get the coordinates of the start and end points - start_coords = np.array(shapelymidline.coords[0]) - end_coords = np.array(shapelymidline.coords[-1]) - # Compute the direction vector - direction_start = diag_dist * vecDir(-(shapelymidline.coords[1] - start_coords)) - direction_end = diag_dist * vecDir(-(shapelymidline.coords[-2] - end_coords)) - # Extend the line by 1 unit in both directions - extended_start = LineString([start_coords, start_coords + direction_start]) - extended_end = LineString([end_coords, end_coords + direction_end]) - # Compute the intersection with the polygon - intersection_start = extended_start.intersection(shapelypoly) - intersection_end = extended_end.intersection(shapelypoly) - intersection_point_start = np.array(intersection_start.coords)[1] - intersection_point_end = np.array(intersection_end.coords)[1] - # find closest point index of points and intersections - le_ind = findNearest(points[:, :2], intersection_point_start) - te_ind = findNearest(points[:, :2], intersection_point_end) - - skeleton_points = np.concatenate([np.array([points[le_ind][:2]]), sites_raw_clean, np.array([points[te_ind][:2]])]) - zeros_column = np.zeros((skeleton_points.shape[0], 1)) - - skeletonline_complete = pv.PolyData(np.hstack((skeleton_points, zeros_column))) - - return le_ind, te_ind, skeletonline_complete - - -def voronoi_skeleton_sites(points_2d_closed_refined_voronoi): - vor = Voronoi(points_2d_closed_refined_voronoi) - polygon = shapely.geometry.Polygon(points_2d_closed_refined_voronoi).convex_hull - is_inside = [shapely.geometry.Point(i).within(polygon) for i in vor.vertices] - voronoi_sites_inside = vor.vertices[is_inside] - - sort_indices = np.argsort(voronoi_sites_inside[:, 0]) - sites_inside_sorted = voronoi_sites_inside[sort_indices] - - return sites_inside_sorted - - -def skeletonize_skeleton_sites(points_2d_closed_refined_skeletonize): - - res = len(points_2d_closed_refined_skeletonize) - dx = np.min(points_2d_closed_refined_skeletonize[:, 0]) - dy = np.min(points_2d_closed_refined_skeletonize[:, 1]) - - maxx = np.max(points_2d_closed_refined_skeletonize[:, 0]) - maxy = np.max(points_2d_closed_refined_skeletonize[:, 1]) - - scale = max(maxx - dx, maxy - dy) - factor = res - - px = (points_2d_closed_refined_skeletonize[:, 0] - dx) / scale * factor - py = (points_2d_closed_refined_skeletonize[:, 1] - dy) / scale * factor - - polygon = np.stack((px, py)).T - image_size = (res, res) # Image size - midline, img = compute_midline(polygon, image_size) - - # Find midline points - xx_idx, yy_idx = np.where(midline > 0) - midline_points = np.column_stack((xx_idx, yy_idx)) - - mxx = (midline_points[:, 0]) / factor * scale + dy - myy = (midline_points[:, 1]) / factor * scale + dx - - midline_skeletonize = np.stack([myy, mxx]).T - - return midline_skeletonize - - -def polygon_to_binary_image(polygon, image_size): - # Create a blank image - img = np.zeros(image_size, dtype=np.uint8) - - # Create an array of polygon vertices - vertices = np.array([polygon], dtype=np.int64) - - # Fill the polygon on the image - cv2.fillPoly(img, vertices, color=255) - - return img - - -def compute_midline(polygon, image_size): - # Convert polygon to binary image - binary_img = polygon_to_binary_image(polygon, image_size) - # crop all-zero rows of the binary_img - binary_img = binary_img[~np.all(binary_img == 0, axis=1)] - # Apply skeletonization - skeleton = skeletonize(binary_img, method='lee') - return skeleton, binary_img def pointcloud_to_profile(points, res): diff --git a/tests/turbo/cascadecase/domain/test_ntrfc_blade2d.py b/tests/turbo/cascadecase/domain/test_ntrfc_blade2d.py index de59ebcb..97290024 100644 --- a/tests/turbo/cascadecase/domain/test_ntrfc_blade2d.py +++ b/tests/turbo/cascadecase/domain/test_ntrfc_blade2d.py @@ -8,7 +8,7 @@ def test_symmetric_airfoil_nostagger(): points = pv.PolyData(np.stack([xs, ys, np.zeros(len(xs))]).T) blade = Blade2D(points) blade.compute_all_frompoints() - bladepts = blade.sortedpointsrolled_pv.points + bladepts = blade.sortedpoints_pv.points xs, ys = bladepts[:, 0], bladepts[:, 1] ite = blade.ite @@ -31,7 +31,7 @@ def test_symmetric_airfoil_stagger(): blade = Blade2D(points) blade.compute_all_frompoints() - bladepts = blade.sortedpointsrolled_pv.points + bladepts = blade.sortedpoints_pv.points xs, ys = bladepts[:, 0], bladepts[:, 1] ite = blade.ite -- GitLab