diff --git a/ntrfc/postprocessing/timeseries/stationary_signal_check.py b/ntrfc/postprocessing/timeseries/stationary_signal_check.py
index 3a6c7f9c30322db7beab213f0deb34be6d001faa..e9db44f0ff986cf1299244fa816e2222fa87a844 100644
--- a/ntrfc/postprocessing/timeseries/stationary_signal_check.py
+++ b/ntrfc/postprocessing/timeseries/stationary_signal_check.py
@@ -20,14 +20,10 @@ def parsed_timeseries_analysis(timesteps, signal, resolvechunks=20, verbose=True
     signal_type, stationarity, stationarity_timestep, timescale, lengthscale = check_signal_stationarity(resolvechunks, signal, timesteps)
     scales = (timescale,lengthscale)
     if stationarity==True:
-        plt.figure()
-        plt.plot(timesteps, signal,color="black")
-        plt.vlines(stationarity_timestep, ymin=-10, ymax=10, linewidth=4, color="k", linestyles="dashed")
-        plt.axvspan(stationarity_timestep, max(timesteps), facecolor='grey', alpha=0.5)
-
-        plt.xlim(0, timesteps[-1])
-        plt.ylim(-10, 10)
-        plt.show()  #
+        csig=signal
+        ctime=timesteps
+        plot_stationarity_analisys(csig, ctime, signal, stationarity_timestep, timesteps)
+
         return stationarity, timescale, stationarity_timestep
 
     for i in range(min_chunk, resolvechunks + 1):
@@ -47,25 +43,35 @@ def parsed_timeseries_analysis(timesteps, signal, resolvechunks=20, verbose=True
             # when no further stationarity found, return status
             # when done, return last status
 
-            plt.figure()
-            plt.plot(timesteps, signal)
-            plt.plot(ctime, csig, color="black", linewidth=0.1)
-            plt.vlines(stationarity_timestep, ymin=-10, ymax=10, linewidth=4, color="k", linestyles="dashed")
-            plt.axvspan(stationarity_timestep, max(timesteps), facecolor='grey', alpha=0.5)
+            plot_stationarity_analisys(csig, ctime, signal, stationarity_timestep, timesteps)
 
-            plt.xlim(0, timesteps[-1])
-            plt.ylim(-10, 10)
-            plt.show()  #
             return stationarity, scales, stationarity_timestep
 
+    plot_stationarity_analisys(csig, ctime, signal, stationarity_timestep, timesteps)
+    return stationarity, scales, stationarity_timestep
+
+
+def plot_stationarity_analisys(csig, ctime, signal, stationarity_timestep, timesteps):
     plt.figure()
     plt.plot(timesteps, signal)
     plt.plot(ctime, csig, color="black", linewidth=4)
-    plt.vlines(stationarity_timestep, ymin=0, ymax=2, linewidth=4, color="k", linestyles="dashed")
     plt.xlim(0, timesteps[-1])
-    plt.ylim(-10, 10)
+    sts = stationarity_timestep if stationarity_timestep>=0 else None
+    ymin,ymax = min(signal),max(signal)
+    if ymax-ymin<0.01:
+        ymax=0.5+np.mean(signal)
+        ymin =-0.5+np.mean(signal)
+    if sts==0.0 or sts:
+        plt.vlines(sts, ymin=ymin, ymax=ymax,
+                   linewidth=4, color="k", linestyles="dashed")
+        plt.axvspan(sts, timesteps[-1],
+                    facecolor='green', alpha=0.5)
+    else:
+        plt.axvspan(0, timesteps[-1],
+                    facecolor='red', alpha=0.5)
+
+    plt.ylim(ymin, ymax)
     plt.show()  #
-    return stationarity, scales, stationarity_timestep
 
 
 def check_signal_stationarity(resolvechunks, signal, timesteps, verbose = True):
@@ -79,17 +85,17 @@ def check_signal_stationarity(resolvechunks, signal, timesteps, verbose = True):
     # a correlating signal has a time and length scale, a mean, a constant variation and autocorrelation
 
     mean = np.mean(signal)
-    means = np.mean(checksigchunks, axis=1)
+    means = np.array([np.mean(i) for i in checksigchunks]) #np.mean(checksigchunks, axis=1)
 
     var = np.std(signal)
-    vars = np.std(checksigchunks, axis=1)
+    vars = np.array([np.std(i) for i in checksigchunks])#np.std(checksigchunks, axis=1)
 
     # todo: now it is only mean, val and var that is being investigated.
     # it makes sense to also investigate the behaviour of the autocorrelation
     # but as the signal is divided into chunks, one has to
-    const_mean = np.allclose(mean, means,rtol=0.06)
-    const_val = np.allclose(mean, signal,rtol=0.06)
-    const_var = np.allclose(var,vars,rtol=2)
+    const_mean = np.allclose(mean, means,rtol=0.05)
+    const_val = np.allclose(mean, signal,rtol=0.05)
+    const_var = np.allclose(var,vars,rtol=0.4)
     #
     if const_mean and const_var:
         timescale, lengthscale = integralscales(signal, timesteps)
diff --git a/tests/test_ntrfc_postprocessing.py b/tests/test_ntrfc_postprocessing.py
index 3355a89b3173b5ec12a279cc51ad5bccf3412514..9c4fe5779c0a7d7de0eff6f32f20be2ff116b677 100644
--- a/tests/test_ntrfc_postprocessing.py
+++ b/tests/test_ntrfc_postprocessing.py
@@ -62,7 +62,7 @@ def tanh_signal(numtimesteps, time):
 
 def tanh_sin_signal(numtimesteps, time):
     timesteps = np.linspace(0, time, numtimesteps)
-    stationary = time/3
+    stationary = time/4
     tanhsignal = np.tanh(timesteps * stationary ** -1)
 
     timesteps = np.linspace(0, 1, numtimesteps) * time
@@ -102,9 +102,9 @@ def tanh_sin_noise_signal(numtimesteps, time):
 
 def sine_abate_signal(numtimesteps, time):
     timesteps = np.linspace(0, time, numtimesteps)
-    stationary = time/4
+    stationary = time/24
     abate = np.e ** (-timesteps * stationary ** -1)
-    omega = 1000
+    omega = 50
     sinesignal = abate / max(abate) * np.sin(timesteps * omega)*0.4+1
     return timesteps, sinesignal
 
@@ -156,7 +156,7 @@ def test_analize_stationarity(verbose=True):
                "tanh":tanh_signal(10000,20),
                "tanh_sin":tanh_sin_signal(10000,10),
                "tanh_sin_noise": tanh_sin_noise_signal(10000, 2.8),
-               "sine_abate":sine_abate_signal(40000, 100),
+               "sine_abate":sine_abate_signal(20000, 4),
                "complex":complex_signal(40000,60)
                }
 
@@ -165,11 +165,11 @@ def test_analize_stationarity(verbose=True):
                   "rampconst": (True, (0, 0), [0.45,0.55]),
                   "sine": (True, (0.0005, 0.0005), [0,0]),
                   "noise": (True, (0.0005, 0.0005), [0,0]),
-                  "convergentsine_signal": (True, (0.0005, 0.0005), [1.2,1.8]),
+                  "convergentsine_signal": (True, (0.0005, 0.0005), [5,5.5]),
                   "tanh":(True,(0,0),[3.5,4.5]),
-                  "tanh_sin":(True,(0.0005,0.0005),[4.5,5.5]),
+                  "tanh_sin":(True,(0.0005,0.0005),[4,4.75]),
                   "tanh_sin_noise":(True,(0.0005,0.0005),[0.8,1.2]),
-                  "sine_abate":(True,(0.00025,0.00025),[40,60]),
+                  "sine_abate":(True,(0.00025,0.00025),[0.35,1]),
                   "complex":(True,(0.00025,0.0025),[20,26])
                   }