diff --git a/ntrfc/timeseries/stationarity.py b/ntrfc/timeseries/stationarity.py index 2a79a03ec9852c4183846f3675069524d4170cfe..b81fbc2b75d61653f370581632fe02572f66958f 100644 --- a/ntrfc/timeseries/stationarity.py +++ b/ntrfc/timeseries/stationarity.py @@ -145,7 +145,7 @@ def optimal_window_size(time_series, min_interval=0.05, max_interval=0.25, verbo else: return 0 - #scores = [] + scores = [] mean_scores = [] var_scores = [] for window_size in allowed_window_sizes: @@ -154,7 +154,7 @@ def optimal_window_size(time_series, min_interval=0.05, max_interval=0.25, verbo mean_scores.append(rdiff(window_1.mean(), window_2.mean())) var_scores.append(rdiff(window_1.var(), window_2.var())) # Compute the correlation coefficient - #scores.append(calculate_stationarity_score(window_1, window_2)) + scores.append(calculate_stationarity_score(window_1, window_2)) mean_scores = np.array(mean_scores) var_scores = np.array(var_scores) @@ -168,7 +168,7 @@ def optimal_window_size(time_series, min_interval=0.05, max_interval=0.25, verbo assert len(opt_window) == opt_window_size - if cumulated_scores[optimal_window_size_index] > 0.1: + if scores[optimal_window_size_index] > 0.1: return False, False, False # Compute the period of the time series