diff --git a/ntrfc/data/t106_cascadecase_how5/Readme.md b/ntrfc/data/t106_cascadecase_how5/Readme.md
new file mode 100644
index 0000000000000000000000000000000000000000..9288ee3802e1322f5971a06aa29b9ad82b1ef9e0
--- /dev/null
+++ b/ntrfc/data/t106_cascadecase_how5/Readme.md
@@ -0,0 +1,7 @@
+data is distributed by
+
+https://how5.cenaero.be/content/cs2-t106-lpt-cascades
+
+data description
+
+https://how5.cenaero.be/sites/how5.cenaero.be/files/CS2_DNSLEST106_0.pdf
diff --git a/ntrfc/data/t106_cascadecase_how5/profilepoints.txt b/ntrfc/data/t106_cascadecase_how5/profilepoints.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d3bd1e670d036b479f31c6ca5e97786031856f11
--- /dev/null
+++ b/ntrfc/data/t106_cascadecase_how5/profilepoints.txt
@@ -0,0 +1,462 @@
+1.125954811  -0.041859818
+1.126141463  -0.042323727
+1.126328914  -0.042787312
+1.126515998  -0.043251045
+1.126703660  -0.043714451
+1.126891014  -0.044177716
+1.127077620  -0.044641642
+1.127264242  -0.045105562
+1.127449161  -0.045570163
+1.127633154  -0.046034930
+1.127693024  -0.046523758
+1.127462842  -0.046960774
+1.127030384  -0.047185256
+1.126540082  -0.047124122
+1.126170497  -0.046796359
+1.125947192  -0.046349897
+1.125722566  -0.045903137
+1.125499312  -0.045456740
+1.125276941  -0.045008889
+1.125055538  -0.044560526
+1.124834664  -0.044111901
+1.124615680  -0.043662351
+1.124396894  -0.043212704
+1.124180517  -0.042761938
+1.123964860  -0.042310941
+1.123749680  -0.041859606
+1.123534760  -0.041408094
+1.123320477  -0.040956286
+1.123106508  -0.040504326
+1.122891687  -0.040052771
+1.122677251  -0.039601033
+1.122462453  -0.039149467
+1.122248132  -0.038697674
+1.122032954  -0.038246290
+1.121816908  -0.037795320
+1.121601281  -0.037344150
+1.121384247  -0.036893658
+1.121166476  -0.036443522
+1.120949337  -0.035993077
+1.120731546  -0.035542947
+1.120514453  -0.035092480
+1.120296416  -0.034642469
+1.120077637  -0.034192818
+1.119858612  -0.033743287
+1.119638990  -0.033294048
+1.119417893  -0.032845537
+1.119197381  -0.032396719
+1.118974723  -0.031949113
+1.118751592  -0.031501977
+1.118528969  -0.031054381
+1.118301778  -0.030608961
+1.118071650  -0.030165005
+1.117841333  -0.029721163
+1.117611401  -0.029277116
+1.117380493  -0.028833570
+1.117147097  -0.028391332
+1.116910720  -0.027950680
+1.116673638  -0.027510407
+1.116436536  -0.027070145
+1.116197742  -0.026630793
+1.115955477  -0.026193354
+1.115710478  -0.025757434
+1.115466091  -0.025321171
+1.115220576  -0.024885547
+1.114971473  -0.024451958
+1.114719323  -0.024020136
+1.114465793  -0.023589123
+1.114212199  -0.023158148
+1.113956715  -0.022728290
+1.113697695  -0.022300550
+1.113434958  -0.021875089
+1.113170949  -0.021450412
+1.112907627  -0.021025310
+1.112642170  -0.020601538
+1.112372431  -0.020180473
+1.112098383  -0.019762209
+1.111823336  -0.019344595
+1.111549649  -0.018926086
+1.111272978  -0.018509558
+1.110990876  -0.018096671
+1.110704740  -0.017686574
+1.110417787  -0.017277053
+1.110132245  -0.016866540
+1.109844015  -0.016457927
+1.109550410  -0.016053141
+1.109253013  -0.015651130
+1.108954013  -0.015250322
+1.108655141  -0.014849421
+1.108354989  -0.014449462
+1.108051137  -0.014052302
+1.107741260  -0.013659863
+1.107427312  -0.013270640
+1.107114523  -0.012880483
+1.106801203  -0.012490788
+1.106483499  -0.012104679
+1.106160903  -0.011722601
+1.105835630  -0.011343557
+1.105511743  -0.010965484
+1.105183576  -0.010588809
+1.104850891  -0.010215500
+1.104517586  -0.009842718
+1.104180331  -0.009473528
+1.103841528  -0.009105746
+1.103500078  -0.008740426
+1.103154361  -0.008379138
+1.102807906  -0.008018557
+1.102456841  -0.007662468
+1.102103720  -0.007308410
+1.101747342  -0.006957642
+1.101387906  -0.006609998
+1.101027367  -0.006263499
+1.100662840  -0.005921204
+1.100297171  -0.005580134
+1.099929486  -0.005241230
+1.099557891  -0.004906615
+1.099184830  -0.004573642
+1.098805579  -0.004247735
+1.098425123  -0.003923234
+1.098038985  -0.003605516
+1.097650310  -0.003290902
+1.097258918  -0.002979680
+1.096863698  -0.002673343
+1.096467897  -0.002367746
+1.096067987  -0.002067558
+1.095667295  -0.001768400
+1.095261763  -0.001475844
+1.094854461  -0.001185756
+1.094443260  -0.000901230
+1.094028952  -0.000621232
+1.093611865  -0.000345406
+1.093190838  -0.000075625
+1.092768121  0.000191487
+1.092340659  0.000450962
+1.091911565  0.000707710
+1.091477666  0.000956262
+1.091042023  0.001201725
+1.090602032  0.001439336
+1.090160159  0.001673416
+1.089714662  0.001900530
+1.089267976  0.002125272
+1.088816594  0.002340448
+1.088363286  0.002551513
+1.087905818  0.002750742
+1.087447479  0.002950093
+1.086986145  0.003142920
+1.086521245  0.003326972
+1.086055366  0.003508695
+1.085589692  0.003690880
+1.085120945  0.003865016
+1.084648856  0.004029856
+1.084176147  0.004192973
+1.083702885  0.004354396
+1.083226482  0.004506342
+1.082748402  0.004652945
+1.082270372  0.004799695
+1.081791740  0.004944474
+1.081310767  0.005081267
+1.080827662  0.005210291
+1.080344857  0.005340468
+1.079860351  0.005464009
+1.079372492  0.005573784
+1.078883417  0.005677959
+1.078394212  0.005781520
+1.077902835  0.005874257
+1.077409216  0.005953860
+1.076915545  0.006032452
+1.076419795  0.006097610
+1.075923005  0.006154618
+1.075425333  0.006203270
+1.074927283  0.006247801
+1.074428709  0.006286218
+1.073929796  0.006319703
+1.073430555  0.006347745
+1.072931108  0.006372236
+1.072431275  0.006386398
+1.071931252  0.006390625
+1.071431208  0.006394192
+1.070931170  0.006395999
+1.070431206  0.006387533
+1.069931498  0.006369111
+1.069431806  0.006350592
+1.068932418  0.006325335
+1.068433312  0.006294590
+1.067934620  0.006257945
+1.067436267  0.006216775
+1.066938793  0.006166208
+1.066441675  0.006112144
+1.065945704  0.006048535
+1.065450275  0.005980717
+1.064956328  0.005902941
+1.064463189  0.005820091
+1.063971711  0.005727967
+1.063481413  0.005629707
+1.062992813  0.005523383
+1.062505822  0.005409833
+1.062020836  0.005288118
+1.061537967  0.005158176
+1.061056335  0.005023763
+1.060578274  0.004877121
+1.060101080  0.004727699
+1.059627847  0.004566176
+1.059155509  0.004402032
+1.058686681  0.004228176
+1.058220361  0.004047625
+1.057755964  0.003862226
+1.057295809  0.003666530
+1.056836207  0.003469520
+1.056381068  0.003262437
+1.055927127  0.003052705
+1.055475799  0.002837431
+1.055029386  0.002612144
+1.054582971  0.002386859
+1.054140589  0.002153731
+1.053699952  0.001917315
+1.053260689  0.001678427
+1.052825059  0.001433165
+1.052392433  0.001184333
+1.051962253  0.000929357
+1.051534232  0.000670809
+1.051107269  0.000410517
+1.050678929  0.000152500
+1.050248650  -0.000102231
+1.049811658  -0.000345102
+1.049356150  -0.000547946
+1.048872191  -0.000670975
+1.048375617  -0.000658540
+1.047966875  -0.000390627
+1.047805900  0.000076595
+1.047835580  0.000574422
+1.047962637  0.001057481
+1.048148864  0.001521215
+1.048371656  0.001968681
+1.048627168  0.002398475
+1.048910744  0.002810241
+1.049203395  0.003215700
+1.049502721  0.003616245
+1.049808748  0.004010518
+1.050120029  0.004401809
+1.050435649  0.004789706
+1.050758753  0.005169697
+1.051083307  0.005549594
+1.051415365  0.005923397
+1.051753905  0.006291425
+1.052091927  0.006659922
+1.052436625  0.007022178
+1.052787308  0.007378643
+1.053138571  0.007734533
+1.053496709  0.008083513
+1.053859096  0.008428078
+1.054222557  0.008771513
+1.054591955  0.009108536
+1.054965118  0.009441407
+1.055340598  0.009771628
+1.055723452  0.010093309
+1.056107638  0.010413386
+1.056494917  0.010729710
+1.056889175  0.011037288
+1.057283735  0.011344491
+1.057683810  0.011644453
+1.058089780  0.011936410
+1.058495528  0.012228668
+1.058907918  0.012511477
+1.059323867  0.012789030
+1.059741620  0.013063842
+1.060165967  0.013328370
+1.060592244  0.013589790
+1.061021759  0.013845829
+1.061457632  0.014090898
+1.061894084  0.014334945
+1.062335505  0.014569856
+1.062781633  0.014795736
+1.063228270  0.015020571
+1.063681202  0.015232459
+1.064136253  0.015439774
+1.064593664  0.015641798
+1.065056345  0.015831448
+1.065519866  0.016019060
+1.065987502  0.016196119
+1.066458571  0.016363887
+1.066930559  0.016528993
+1.067407114  0.016680441
+1.067885002  0.016827661
+1.068365034  0.016967676
+1.068848976  0.017093537
+1.069333051  0.017218914
+1.069820235  0.017331487
+1.070309486  0.017434879
+1.070799590  0.017533996
+1.071292454  0.017618410
+1.071785781  0.017700137
+1.072280691  0.017771475
+1.072777202  0.017830875
+1.073273971  0.017887919
+1.073772252  0.017929749
+1.074270949  0.017966555
+1.074770161  0.017995096
+1.075269978  0.018010247
+1.075769835  0.018023778
+1.076269861  0.018022126
+1.076769833  0.018013198
+1.077269642  0.017998197
+1.077768714  0.017967185
+1.078267775  0.017935807
+1.078765652  0.017889529
+1.079262768  0.017835422
+1.079759314  0.017776566
+1.080253749  0.017701904
+1.080747953  0.017625666
+1.081240011  0.017536775
+1.081730213  0.017438010
+1.082219720  0.017335938
+1.082705746  0.017218426
+1.083191002  0.017097686
+1.083673869  0.016967824
+1.084153681  0.016826992
+1.084632864  0.016684125
+1.085107612  0.016527097
+1.085581250  0.016366730
+1.086051925  0.016197915
+1.086518814  0.016018847
+1.086984633  0.015837034
+1.087445141  0.015642192
+1.087904164  0.015443821
+1.088359812  0.015237866
+1.088810512  0.015021258
+1.089260632  0.014803473
+1.089704597  0.014573390
+1.090146218  0.014338824
+1.090584876  0.014098778
+1.091017442  0.013847916
+1.091449234  0.013595729
+1.091874567  0.013332788
+1.092296998  0.013065204
+1.092716573  0.012793173
+1.093128742  0.012510052
+1.093540104  0.012225744
+1.093946539  0.011934454
+1.094347022  0.011635012
+1.094745970  0.011333536
+1.095137919  0.011023030
+1.095527197  0.010709162
+1.095913188  0.010391266
+1.096291259  0.010063993
+1.096669353  0.009736740
+1.097041325  0.009402557
+1.097407773  0.009062312
+1.097773510  0.008721300
+1.098132458  0.008373172
+1.098488672  0.008022224
+1.098841783  0.007668164
+1.099187934  0.007307294
+1.099534169  0.006946502
+1.099874107  0.006579773
+1.100210148  0.006209469
+1.100545655  0.005838678
+1.100874787  0.005462227
+1.101201820  0.005083939
+1.101526292  0.004703467
+1.101845365  0.004318441
+1.102163813  0.003932902
+1.102478174  0.003544025
+1.102787582  0.003151194
+1.103097631  0.002758868
+1.103402699  0.002362660
+1.103704225  0.001963745
+1.104005239  0.001564445
+1.104301825  0.001161849
+1.104596586  0.000757908
+1.104888786  0.000352120
+1.105177197  -0.000056385
+1.105465782  -0.000464727
+1.105751032  -0.000875218
+1.106030768  -0.001287343
+1.106311190  -0.001700356
+1.106590797  -0.002114867
+1.106867184  -0.002531562
+1.107139565  -0.002950883
+1.107409286  -0.003371954
+1.107679613  -0.003792646
+1.107949772  -0.004213433
+1.108216387  -0.004636473
+1.108479007  -0.005062018
+1.108738753  -0.005489315
+1.108997715  -0.005917086
+1.109257138  -0.006344578
+1.109515317  -0.006772825
+1.109770590  -0.007202814
+1.110022232  -0.007634929
+1.110271603  -0.008068363
+1.110521772  -0.008501338
+1.110772077  -0.008934231
+1.111019794  -0.009368613
+1.111264316  -0.009804803
+1.111506312  -0.010242395
+1.111748016  -0.010680151
+1.111990232  -0.011117625
+1.112230361  -0.011556242
+1.112467279  -0.011996608
+1.112702019  -0.012438138
+1.112936192  -0.012879966
+1.113171195  -0.013321355
+1.113405418  -0.013763156
+1.113636854  -0.014206427
+1.113865563  -0.014651111
+1.114092806  -0.015096543
+1.114320900  -0.015541543
+1.114548825  -0.015986627
+1.114773342  -0.016433434
+1.114995387  -0.016881487
+1.115217057  -0.017329720
+1.115438688  -0.017777969
+1.115660067  -0.018226345
+1.115880637  -0.018675121
+1.116099547  -0.019124708
+1.116316235  -0.019575368
+1.116532319  -0.020026320
+1.116748720  -0.020477119
+1.116963808  -0.020928546
+1.117176769  -0.021380982
+1.117387959  -0.021834245
+1.117599141  -0.022287513
+1.117810810  -0.022740554
+1.118020449  -0.023194534
+1.118228213  -0.023649381
+1.118435822  -0.024104297
+1.118643037  -0.024559388
+1.118850089  -0.025014557
+1.119057769  -0.025469450
+1.119262713  -0.025925558
+1.119463338  -0.026383584
+1.119664059  -0.026841568
+1.119865362  -0.027299296
+1.120065473  -0.027757557
+1.120264535  -0.028216280
+1.120463070  -0.028675228
+1.120661321  -0.029134299
+1.120859505  -0.029593400
+1.121057710  -0.030052492
+1.121255037  -0.030511960
+1.121450873  -0.030972067
+1.121646869  -0.031432106
+1.121843613  -0.031891825
+1.122039549  -0.032351889
+1.122234360  -0.032812431
+1.122428716  -0.033273166
+1.122623108  -0.033733884
+1.122817601  -0.034194559
+1.123011407  -0.034655527
+1.123204156  -0.035116933
+1.123396148  -0.035578625
+1.123588178  -0.036040268
+1.123780670  -0.036501706
+1.123971698  -0.036963795
+1.124161049  -0.037426614
+1.124350017  -0.037889583
+1.124539152  -0.038352484
+1.124727672  -0.038815637
+1.124915118  -0.039279225
+1.125102114  -0.039742995
+1.125289238  -0.040206713
+1.125476276  -0.040670466
+1.125662851  -0.041134405
diff --git a/ntrfc/turbo/profile_tele_extraction.py b/ntrfc/turbo/profile_tele_extraction.py
index 27b5ccb4d255064994152c89adbc0ab806fe6f78..10f894450e352691adad1b8638e0e45bea3c54f5 100644
--- a/ntrfc/turbo/profile_tele_extraction.py
+++ b/ntrfc/turbo/profile_tele_extraction.py
@@ -5,7 +5,7 @@ from scipy.interpolate import splprep, splev
 from scipy.spatial import KDTree
 from ntrfc.geometry.line import lines_from_points, polyline_from_points
 from ntrfc.geometry.plane import inside_poly
-from ntrfc.math.vectorcalc import findNearest, vecDir, compute_minmax_distance_in_pointcloud
+from ntrfc.math.vectorcalc import findNearest, vecDir, compute_minmax_distance_in_pointcloud, randomUnitVec
 
 
 def clean_sites(sites, boundary, tolerance_factor =3e-2):
@@ -39,8 +39,6 @@ def clean_sites(sites, boundary, tolerance_factor =3e-2):
                 radii.append(r)
     print(f"ratio of cleaned sites: {len(cleaned)/len(sites)}")
 
-    cleaned = np.array(cleaned)
-
     return np.array(cleaned), np.array(radii)
 
 
@@ -50,14 +48,18 @@ def extract_vk_hk(sortedPoly, verbose=False):
 
     points_2d_closed_refined = pointcloud_to_profile(points)
 
-    x_center, y_center = voronoi_skeleton(points_2d_closed_refined)
+    sites_raw_clean, radii= voronoi_skeleton_sites(points_2d_closed_refined)
 
+    tck, u = splprep(sites_raw_clean.T, u=None, s=0.000005, per=0, k=3)
+    res = 10000
+    u_new = np.linspace(u.min(), u.max(), res)
+    x_center, y_center = splev(u_new, tck, der=0)
     le_ind, te_ind = skeletonline_completion(x_center, y_center, points)
 
     return le_ind, te_ind
 
 
-def voronoi_skeleton(points_2d_closed_refined):
+def voronoi_skeleton_sites(points_2d_closed_refined):
     vor = Voronoi(points_2d_closed_refined)
     voronoi_sites_inside = vor.vertices[inside_poly(points_2d_closed_refined, vor.vertices)]
 
@@ -65,12 +67,8 @@ def voronoi_skeleton(points_2d_closed_refined):
     sites_inside_sorted = voronoi_sites_inside[sort_indices]
 
     clean_sites_inside, radii = clean_sites(sites_inside_sorted, points_2d_closed_refined)
-    tck, u = splprep(clean_sites_inside.T, u=None, s=0.000005, per=0, k=3)
-    res = 10000
-    u_new = np.linspace(u.min(), u.max(), res)
-    x_center, y_center = splev(u_new, tck, der=0)
+    return clean_sites_inside, radii
 
-    return x_center, y_center
 
 
 def skeletonline_completion(x_center, y_center, points):
@@ -104,7 +102,7 @@ def skeletonline_completion(x_center, y_center, points):
 def pointcloud_to_profile(points):
     points_2d_closed = np.vstack((points[:, :2], points[:, :2][0]))
     tck, u = splprep(points_2d_closed.T, u=None, s=0.0, per=1, k=3)
-    res = 10000
+    res = 30000
     u_new = np.linspace(u.min(), u.max(), res)
     x_new, y_new = splev(u_new, tck, der=0)
     points_2d_closed_refined = np.stack([x_new, y_new]).T