diff --git a/examples/create_cascade_mesh.ipynb b/examples/create_cascade_mesh.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..375cb5ad6d54f0b03bbc381f192de1b7aa1fc448
--- /dev/null
+++ b/examples/create_cascade_mesh.ipynb
@@ -0,0 +1,326 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "source": [
+    "lets generate a mesh from a set of points. note that we can rotate the pv.PolyData object using rotate_z"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "pycharm": {
+     "name": "#%% md\n"
+    }
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "outputs": [],
+   "source": [
+    "import tempfile\n",
+    "import pyvista as pv\n",
+    "import numpy as np\n",
+    "import os\n",
+    "from IPython.display import Image\n",
+    "import importlib\n",
+    "\n",
+    "from ntrfc.gmsh.turbo_cascade import generate_turbocascade , MeshConfig\n",
+    "from ntrfc.cascade_case.utils.domain_utils import DomainParameters\n",
+    "from ntrfc.cascade_case.domain import CascadeDomain2D\n",
+    "from ntrfc.filehandling.mesh import load_mesh\n",
+    "\n",
+    "# we need a display some situations like a cicd run\n",
+    "if os.getenv('DISPLAY') is None:\n",
+    "    pv.start_xvfb()  # Start X virtual framebuffer (Xvfb)\n"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "pycharm": {
+     "name": "#%%\n"
+    }
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "outputs": [],
+   "source": [
+    "profilepoints_file = importlib.resources.files(\"ntrfc\") / \"data/turbine_cascade_2/profilepoints.txt\"\n",
+    "\n",
+    "\n",
+    "points = np.loadtxt(profilepoints_file)\n",
+    "pts = pv.PolyData(points)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "pycharm": {
+     "name": "#%%\n"
+    }
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/many/miniconda3/envs/NTRfC/lib/python3.10/site-packages/pyvista/core/filters/poly_data.py:2848: PyVistaFutureWarning: The default value of the ``capping`` keyword argument will change in a future version to ``True`` to match the behavior of VTK. We recommend passing the keyword explicitly to prevent future surprises.\n",
+      "  warnings.warn(\n"
+     ]
+    }
+   ],
+   "source": [
+    "domainparams = DomainParameters()\n",
+    "domainparams.generate_params_by_pointcloud(pts)\n",
+    "domainparams.pitch = .3\n",
+    "domainparams.blade_yshift = 0.0\n",
+    "domain2d = CascadeDomain2D()\n",
+    "domain2d.generate_from_cascade_parameters(domainparams)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "pycharm": {
+     "name": "#%%\n"
+    }
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "collapsed": true,
+    "pycharm": {
+     "name": "#%%\n"
+    }
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Info    : Meshing 1D...\n",
+      "Info    : [  0%] Meshing curve 1 (BSpline)\n",
+      "Info    : [ 10%] Meshing curve 2 (BSpline)\n",
+      "Info    : [ 10%] Meshing curve 3 (BSpline)\n",
+      "Info    : [ 20%] Meshing curve 4 (BSpline)\n",
+      "Info    : [ 20%] Meshing curve 5 (BSpline)\n",
+      "Info    : [ 30%] Meshing curve 6 (BSpline)\n",
+      "Info    : [ 30%] Meshing curve 7 (BSpline)\n",
+      "Info    : [ 30%] Meshing curve 8 (BSpline)\n",
+      "Info    : [ 40%] Meshing curve 9 (Extruded)\n",
+      "Info    : [ 40%] Meshing curve 10 (Extruded)\n",
+      "Info    : [ 50%] Meshing curve 11 (Extruded)\n",
+      "Info    : [ 50%] Meshing curve 12 (Extruded)\n",
+      "Info    : [ 50%] Meshing curve 13 (Extruded)\n",
+      "Info    : [ 60%] Meshing curve 14 (Extruded)\n",
+      "Info    : [ 60%] Meshing curve 15 (Extruded)\n",
+      "Info    : [ 70%] Meshing curve 16 (Extruded)\n",
+      "Info    : [ 70%] Meshing curve 17 (Extruded)\n",
+      "Info    : [ 80%] Meshing curve 18 (Extruded)\n",
+      "Info    : [ 80%] Meshing curve 19 (Extruded)\n",
+      "Info    : [ 80%] Meshing curve 20 (Extruded)\n",
+      "Info    : [ 90%] Meshing curve 21 (Extruded)\n",
+      "Info    : [ 90%] Meshing curve 22 (Extruded)\n",
+      "Info    : [100%] Meshing curve 23 (Extruded)\n",
+      "Info    : [100%] Meshing curve 24 (Extruded)\n",
+      "Info    : Done meshing 1D (Wall 0.0105521s, CPU 0.010845s)\n",
+      "Info    : Meshing 2D...\n",
+      "Info    : [  0%] Meshing surface 1 (Plane, Frontal-Delaunay)\n",
+      "Info    : [ 10%] Meshing surface 2 (Extruded)\n",
+      "Info    : [ 20%] Meshing surface 3 (Extruded)\n",
+      "Info    : [ 30%] Meshing surface 4 (Extruded)\n",
+      "Info    : [ 40%] Meshing surface 5 (Extruded)\n",
+      "Info    : [ 50%] Meshing surface 6 (Extruded)\n",
+      "Info    : [ 60%] Meshing surface 7 (Extruded)\n",
+      "Info    : [ 70%] Meshing surface 8 (Extruded)\n",
+      "Info    : [ 80%] Meshing surface 9 (Extruded)\n",
+      "Info    : [ 90%] Meshing surface 10 (Extruded)\n",
+      "Info    : Done meshing 2D (Wall 3.63551s, CPU 3.64346s)\n",
+      "Info    : Meshing 3D...\n",
+      "Info    : Meshing volume 1 (Extruded)\n",
+      "Info    : Done meshing 3D (Wall 0.214051s, CPU 0.206215s)\n",
+      "Info    : Optimizing mesh...\n",
+      "Info    : Done optimizing mesh (Wall 0.00289508s, CPU 0.002153s)\n",
+      "Info    : 78207 nodes 116826 elements\n",
+      "Info    : Writing '/tmp/tmp5gvm4n6mtest.cgns'...\n",
+      "Info    : 0 periodic/interface nodes\n",
+      "Info    : Done writing '/tmp/tmp5gvm4n6mtest.cgns'\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": "0"
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "meshconfig = MeshConfig()\n",
+    "meshconfig.max_lc = 0.01\n",
+    "meshconfig.min_lc =0.005\n",
+    "meshconfig.bl_thickness = 0.005\n",
+    "meshconfig.bl_growratio = 1.2\n",
+    "meshconfig.bl_size = 1.7e-5\n",
+    "meshconfig.wake_length = domain2d.chordlength*.6\n",
+    "meshconfig.wake_width = domain2d.chordlength*.1\n",
+    "meshconfig.wake_lc = 0.01\n",
+    "meshconfig.fake_yShiftCylinder = 0\n",
+    "meshconfig.bladeres = 200\n",
+    "meshconfig.progression_le_halfss = 1.05\n",
+    "meshconfig.progression_halfss_te = 0.95\n",
+    "meshconfig.progression_te_halfps = 1.05\n",
+    "meshconfig.progression_halfps_le = 0.95\n",
+    "\n",
+    "meshpath =  tempfile.mkdtemp() + \"test.cgns\"\n",
+    "\n",
+    "generate_turbocascade(domain2d,meshconfig, meshpath, verbose=False)\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "source": [
+    "lets plot the outcome of the mesh generation algorithm.\n",
+    "as you can see, this method is still experimental although it is implemented in the main branch.\n",
+    "i made the decision because the method is worhtwhile developing further and maintainence as well as advertising it is easier if it is in the main branch."
+   ],
+   "metadata": {
+    "collapsed": false,
+    "pycharm": {
+     "name": "#%% md\n"
+    }
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "outputs": [
+    {
+     "data": {
+      "text/plain": "pyvista_ndarray([[[76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  ...,\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76]],\n\n                 [[76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  ...,\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76]],\n\n                 [[76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  ...,\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76]],\n\n                 ...,\n\n                 [[76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  ...,\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76]],\n\n                 [[76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  ...,\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76]],\n\n                 [[76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  ...,\n                  [76, 76, 76],\n                  [76, 76, 76],\n                  [76, 76, 76]]], dtype=uint8)"
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "zslice = tempfile.mkdtemp() + \"/zslice.jpg\"\n",
+    "xyplane = tempfile.mkdtemp() + \"/xyplane.jpg\"\n",
+    "\n",
+    "mesh = load_mesh(meshpath)\n",
+    "\n",
+    "slice = mesh.slice(normal=\"z\", origin=(0, 0, 0.02))\n",
+    "edges = slice.extract_all_edges()\n",
+    "\n",
+    "p = pv.Plotter()\n",
+    "p.add_mesh(edges)\n",
+    "p.show_grid()\n",
+    "p.view_yx(negative=True)\n",
+    "p.camera.roll = 0\n",
+    "p.camera.zoom(1)\n",
+    "p.add_axes()\n",
+    "p.screenshot(zslice)\n",
+    "\n",
+    "\n",
+    "p = pv.Plotter()\n",
+    "p.add_mesh(mesh.extract_surface(),opacity=0.2)\n",
+    "p.add_mesh(mesh.extract_surface().extract_all_edges())\n",
+    "p.show_grid()\n",
+    "p.view_xz(negative=True)\n",
+    "p.camera.roll = 0\n",
+    "p.camera.zoom(1)\n",
+    "p.add_axes()\n",
+    "p.screenshot(xyplane)\n"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "pycharm": {
+     "name": "#%%\n"
+    }
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "outputs": [
+    {
+     "data": {
+      "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAMABAADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDi6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooq3pumX2r3i2mn2slxO3REGcDpknoBz1PFAFSiunufh54rtbd55NGlKJ1EciSN+CqxJ/AVzFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFdJ4P1C0srnUYLy4uLSK8s2g+126FmgO5TuIHO3jBxz9Otc3XWeAtObVNQ1W2/tJtPjbTJfMmwu3ZuUENu/h5ycYPHUUAaGjJ4V8O6rBq0fi+5u2tzv+z29hJE0vH3dzHGD3z1HpXB11On+Eoz4gn0DWrmXT9QYqlqwj3xyMT39jxg//AKq5agAoorR03W73Sdpsxaq6yCRZJLSKR1YYwQzqSMYHQ0AZ1FdPr+tXFl4j1S0t7XS0ggu5Y41/su2O1VcgDJjz0FZ3/CR33/PDS/8AwVW3/wAboAyaK1v+Ejvv+eGl/wDgqtv/AI3R/wAJHff88NL/APBVbf8AxugDJorp9A1q4vfEel2lxa6W8E93FHIv9l2w3KzgEZEeehrO/wCEjvv+eGl/+Cq2/wDjdAGTRWt/wkd9/wA8NL/8FVt/8bo/4SO+/wCeGl/+Cq2/+N0AZNFa3/CR33/PDS//AAVW3/xutTQNVutR1Q20ttpLBra4Zd+nWqKHWF2UligAAYA8nHHPFAHK0V6Sgjb7JY6f/YN7qF3Gg866soIYfn/jhXyl3bWIXlixZXHlccVtZGpSreX+n6HZ2EcDM7WFxpdsJhBnCzBGQvtAwGPIByQSMhADz+itb/hI77/nhpf/AIKrb/43R/wkd9/zw0v/AMFVt/8AG6AMmiun03Wri4sNXkltdLZ7e0WSI/2XbDaxniTP+r5+VmHPrWd/wkd9/wA8NL/8FVt/8boAyaK1v+Ejvv8Anhpf/gqtv/jdH/CR33/PDS//AAVW3/xugDJorW/4SO+/54aX/wCCq2/+N1ow61cP4cvbtrXSzPFd28aN/ZdtwrJMWGPLxyUX8qAOYorW/wCEjvv+eGl/+Cq2/wDjdH/CR33/ADw0v/wVW3/xugDJorW/4SO+/wCeGl/+Cq2/+N02XX7yaF4mh04K6lSU023VsH0IQEH3HNAGXRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVoaVrFxo/277OkTfbLR7STzAThHxkjBHPFZ9FAHT2Hj3WdP0+C1QWkslsCtrdzwB5rdSMFUY9BjjkHjjpiuYoooAKKKKANbxT/AMjfrX/X/P8A+jGrJrW8U/8AI361/wBf8/8A6MasmgAooooA1vC3/I36L/1/wf8Aoxaya1vC3/I36L/1/wAH/oxayaACiiprW1mvLhIIE3SNnAyAAAMkkngAAEkngAEnigB1hYXWp30NlZQNPczNtSNepP8AQdyTwBzXoPh2xGlRapp/9mZuzA3mS3okgMsRguNxwSm2Desa5bHJBO07QmdZ2A0jUbCz0zULC7uJfIkntt8kT3yuFfydzoEEZVsbS3zdwTtRei0LRtV0HWm8LWmrRRxz/aPtE6XMe/LQnyisO/epXAYkYJzjlVDEAw5r/R7vQ7eGy0yX7RHIdNa5093yqybnUJHJuZg7GYY3KxCYJQPtqxqBsUu7N9M1NXur25FzcNNbO8N1MF8t4T5Rclizykoo2ss/UjZmGLU7qx0zUbC+s4Ly7kshdl3g8szHcFJSSPa8o8t5i0m4hhuwSoZnbBJpFr4fkXyLq11GHZfAxOJhYpMFBkjB25J/cgKzsUDowbcrYAOV8QaXHpGtXFtbzrcWe4tbXCPvWWMk4IYAAkYKnHG5WHasuuk1yygTw7pstvLPN9nZo2a4iWJ44pP3kIKK7cEidgTzgjPylCeboA1tI/5Bmv8A/Xgv/pTBWTWtpH/IM1//AK8F/wDSmCsmgAooooAK1rf/AJFDUv8Ar/tP/RdxWTWtb/8AIoal/wBf9p/6LuKAMmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKANbxT/yN+tf9f8//AKMasmtbxT/yN+tf9f8AP/6MasmgAooooA1vC3/I36L/ANf8H/oxaya1vC3/ACN+i/8AX/B/6MWs+1tZry4SCBN0jZwMgAADJJJ4AABJJ4ABJ4oALW1mvLhIIE3SNnAyAAAMkkngAAEkngAEniun02Syj0bUbLT9Oi1S6EkHmPJ5qmdCxVtoRlOwSNCAp5YncRwAl5LT/hEG066tdcs4g6x3MksaTtJcjCv5WAgAXDL+7LqW3KzEAqF3Bdz6brGowwbvENtaQ3Ymu9SLXBtmSKQiPaQPLDYCMclZAOCMEAAqWkCeItfitdHgWGO3aC01Q2rSlbqFVVG2zAkLFtV8KSu4Kpy7EBWeEbl7bxTHf+IL6wd4vtFzHJFcrNIMo7S4EIYbOWba23k5T+INDaWWp6wsmr3VzfxxR2Fw5g1FpCqJLEUMkDMSZI13KzcZC7QPMJGbfhdNNuINZuDdy3+pSWEtlMLaFlF4zo0i7GYbvM2wuCzIMnHBOS4BR8P6hp3hma9W4sp7u1tVHmm8WIrL5u1SIV5Cs0ZLZEjCRIzxggpNpT21vrTJqukWYm1RRFaPDLM5uWlKlJWEzOpiyQcuhO7GFJRgtSLV4F0TS9Mt7JYGvGYW5niW8cIrsIiylCrAyyXK/KgcDafmxh9PU38Q6BYaXqeoz3V59kg3GKaGSZDL58hjkdpF2x/KU5yJRwuEzkAGDFHZX2k6k6LeQ3N9C80SXtyJ/OMRMrzZCKVIVJEDEHcZGAIw9cfXoySaS/i+S61GyWy055vIguYbhkE0MqAKrK+4bfJdCdpj8tT2Oxa88likgmeGaNo5Y2KujjDKRwQQehoA09I/5Bmv/wDXgv8A6UwVk1raR/yDNf8A+vBf/SmCsmgAooooAK1rf/kUNS/6/wC0/wDRdxWTWtb/APIoal/1/wBp/wCi7igDJooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDW8U/wDI361/1/z/APoxqya1vFP/ACN+tf8AX/P/AOjGrJoAKKKfFFJPMkMMbSSyMFREGWYngAAdTQBp+Fv+Rv0X/r/g/wDRi1rtBo1l4XjhMt0biWd4tQurNklRCArxpt43ofm6OoLIzAuEXHQ+BdEk0XxdpiMbCWaSNpJpBdwuyK0JZVjQMW7qS4HPQfLkvFp0uix+H7pkTztVuJ0+zGwzAk00YO4w7w22QLMf4FGSojXcAaAC40eWw1Ww8+eW6s9SjtLI20KukEzpGsJSZ2X5CGViAFZxtPEbYNPsdTl1DVtU8QeHLOCC3hWaSZZII2njmkDKkhkfOFJbe2GVVVHBHQu7RClrqegHSba6mnggT7XGZ23wWzyNcZKRgeZ8rjBBIPCtGGZVqJo9TGjX+qTaj/Z0n7u2exvPMdLGN23MoiVWKRuY4wodQCpZSGG1mAKyafAmk3+qC+azv5plaYW1yt5IyKTK7QsGAJDiJiCxdFj3FiGGb1rdaLLYW/2bT4kmXTL6+xPIUS43JJFIRGhG1z5KHYp2hWkxyqms+9h0u307TH0e1v7qZJDeLarJ5MltLIUVCVXc5jYpHtAYMAVy5MiGt7S7+W68WXer6Xptn9i05riORlhjWKVY42WJkuGBCDaIlKggAYYAhm2gFS8XVde1IaPhtFtlb7Gb6MtHDduDtmRmZszEyGUpyWOW3D5mZYpRaW813Pe3s8FzYrG+m3C+ZFbRwnKJCk6jzZUZeeFXPlyFW+ZnMOh6ZHq95eXms6zBFqNtp0/nvC/2syweSYvMYoSoZQw4DFmAGVByzP0bT7+40u+0zT9Oiis4cXonzHqYkZflePvF5pV8qFCNhVByDuABW1q8vr/+zJPEsME0Ist93cmJFkXM8wQxOmNzMi/IuSh+8RgFhzHisRnxPe3ELs0V2y3ib12sBMolCkAnkb8de1dnKPEeraE7ahp7QW2nTEs2r2rzMbd15JcoZcgx/M0eD+9yNioMcr4qms7waVeafbeTbtaeSeScvHI64JJYg7PLO0sdqsgyRg0AU9I/5Bmv/wDXgv8A6UwVk1raR/yDNf8A+vBf/SmCsmgAooooAK1rf/kUNS/6/wC0/wDRdxWTWtb/APIoal/1/wBp/wCi7igDJooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDW8U/wDI361/1/z/APoxqya1vFP/ACN+tf8AX/P/AOjGrMiiknmSGGNpJZGCoiDLMTwAAOpoAIopJ5khhjaSWRgqIgyzE8AADqa6eG10rTdCZ3vZzdyzPb3N1ZxLMsA2g+UuWXh9zguDz5Tqu5SzHR0fRdQ0HU44P7MaWa4V7WW+eAS28MkqmNYwxBXAkZRI3JyCgGAd77G/s7LStUiu9Mij1GGOO8kNi5heGQSCIZ3b0WTE7nCoAnGMNxGAblhpVpaNot8t5K9xNPa2dyPJTzk8qVdqSRiQiMf8e6sc7lKICCZGAo+baarfaHaWVgq6izRT3EdzNI8kZk2YuEaNoy7lFjkfnjggAiQh3h3SbS0Tw5PHqcok/tN5oIW2W8ro6wK2/LkLxg7F3GRHXGASV0XttYuvE2oGzji0z7PHdQCKKFIpWhWJ0hlTYvnPGCIxj5huClc/dQAqJcazd/2nqIll8PNBaMF01i8aKnyxrN5ca7yFjJG8rwyIQdoKpl3B0220nTpoXa6vEWa+kisCIYpVc+U7IJIzlQIDvj2YIdiMIpAETR49FiEBnm1W8uVuFWwm+ypI8IYK0G6MsCTK2BtALxuqYwqtuLaag+v6aLPQoLGSzUeZFLaALPIqtOyQSS5VR5pkT5DkAhwXUfIARA3EXiDUNR0Wys7K101Z7GS5n27o5I4jFB+9mJXBOz7u084cEbWY02KeOO51iTWW+2TWU4nRblrma2hWOQ/uWyQ6GTawbcu0ps3sxaqMk/2jSJdUutclk1SaTy5vsafavkhUtMgDsqmM+ajMilk+UsMpkJbs201PE0S6Zof2o6faTw3NhJK0jW7CKRmiQAfOjSO6F235Y4AUFNwBDaLpFithdWtvLNKk6ajfggQImyJpoiIlLDLRLMyqjhQzYbAwixXFtqNjoLXTxxaZp0t2oS3vYWhW3XypUeN1Ch5C6yhRIgZmVcsUK8WJbrU9LsZtVkvtOspb6ZCZJbdFnjQ+Z5kMxgTeGZ14YYP7psmNvlqvc2Gkabq9laGa6vLSC0ngngjwECxNJLPG0hH7xwwbChI/vRMGUgMQDO1e00jw9Z2UcF5fyhJ2ldbYCJvtACnYZThgYldcZizuZ/uliqQ+K2t7jSBHFFLFdabd+XemWQStLPKrbssFUEqLdQWC/MxJyfvP0WnPI1xdaidEtZo9UnRba7iSfYZ5ASsznzGEZR3VDtwwLuEYlCDzsjWTeHtW0ptKtbbUvLS78q2eUmJo3AKsHdsuI5JWZR9wA5yQQgBh6R/yDNf/AOvBf/SmCsmtbSP+QZr/AP14L/6UwVk0AFFFFABWtb/8ihqX/X/af+i7ismta3/5FDUv+v8AtP8A0XcUAZNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAbPiSKSfxrq8MMbSSyajMqIgyzEyEAADqa1LDTdOi0uWOG+updTaTyLn7BarcGNGwoVD5i5DMxRnXOThQQrAybjSw6D418RJJY2t1qdx9rnT7SheO3iCvLtK5G4yJwcEbQw5OWUM0iXUNV0vVLrSrhrW1eFIRaPAFiWXzosk+XEsUpKHGNu9g2zawxkAh1Cyj08Wd/putWbaxLbC2RxPsSIInl/LIMxiXytm4GT5SSV3FkK6klxe2HimGfUIbW5bWt32FXtopUzMmAJJwpZ41aQR4VslRnhdqvnLdaaNIktVsZU1K0v0iW7tLZleO4lVg5jgZ8E5gAH+rK7gVRCuDburTWtGsNM1Cx1KWa7lgeNIjdiKSWUTyuTJGWzJIvmgeWN3z7gcgYcAm8JW2l3G29vWlt7641OzuFtZpfM3SnzSr7iVIDBpGVWYt8inMm8K1GxTT9T0ezsLTTmk1O9WN4vtl0WElsspiCO0ao7BWBfaOixqSxCBBvwWN1/wkEUlzoODf6nFfrOLSceUinMfm7G2rJiR1PHDR5cMH3itcaje3VzrU82u3lreJM1pDZ2kplZC7MUUoGEXmiNJFwrnJI6SD5wAvv7Q1S0sGtoW0JyxshdeaIbjzyxZVlX5pSshZW27sqWZ23gKxo6g2kXQ1u8u7iW6a+kSK3mQiBHilkaaNTKwbO3yNmWQbDlCdqgpesVt21Ozu9EsGu5tO06N7iJ0ZVcMpuQViQbQzSMoUb22tyIyEDURWl/Y+HUMNutjpl3choo7cus9hIPk2CRElcyu7FCWBwqFSELhFAH21tfT6po6ron2S8ttlzLLdRZ+15xIyIzgKbnYE3PtDMyv8yKnzTaXONQULdeIJbtNRgaadMyG2hjWKeJ2fe0bCN3yxCqApVV4yjVWubC11Y6zLZwT61JKy2lvcx8RSLvDrFIy5YhDAqmViGYSjJVSsg1IrySPUdcvp5rCEWsE1s8cBhLscPIZIzGwlUlo3YwswIyzb8jgA52wsdI1HUYrq007WZ9DWCG1Z4pBIGUgbo2hSIkEMGdvmGD86nc0e646a1bNrmpW2mxaaG/eyJdRiDFy0qgkTu/zAxvKodHUckhULKW0Io1urp7cy6pqFrYz/Zra5urtR5V8krBN+QckbyQ/wB0qUTYzgA408Nt5Nrb2djePrUtywurcX0YluHTMe4loSsijzJEcgKGIkJ8wKzgAZqFs8VlpOv2etfa9XijeKI3F4qCFS74LzMwWQq3moOQsgXIUqjhi+N/HrxXUpPOOvRvHp+UjlEPnx4A8/BPlo0m3ahGRlsAEB7Lw2N5BealYaI02jzwpDDO4dxHLC4ijfa5CbFiTzCzjGS6M4BIqpqv9peFzZ66J21O4ktopJ/mMkTkOwhluArEZCeWEwSC6swY7fnAOJ0j/kGa/wD9eC/+lMFZNdPPaw2d54vgtk22qwf6OMkgxG6hKEE9QVKkHuCDXMUAFFFFABWtb/8AIoal/wBf9p/6LuKya1rf/kUNS/6/7T/0XcUAZNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeovd3WifESOxvvPuDd6r5tvbTHdbwRyTnEiqwOXOWIKFdp6liWQZ2mfZfEa3U+qztpSXVlJEoVvNjMcZ80eTEW3xopiP95Dh1UocCrmp23ibQtd1WXT7XW5Zbi9muIktRJ9mj3MdrOFGJWIwcZwMKG3fMglmNrP47nGvW6xy6hM9rbSW0n+lMkymNDLGWKxqI3X7yq+dvDYegCK2v8AWF8O31ggVdJhWIl7q/8AtEPk8o8bTxEYb54iI025VMbSWIe3Npltb6Zk6LqMenLDClt/aEkaCCQNLiSRHVVyCZm2tIVYyxrgBgEo6Q+qWujajqugPYLp/wAlsqxt9lVNzBmMryMHLgAL99seedjjFPg0TT/7M02zhvp7rQ7pnuJzDbmQQlm2F5GYp5SoIxtkK8lZSRtJQgGtZW0UXja3fWr2DUZrKG2EQVZJJBL+7t2O91CsglZmPzEq65GDvBy4bN7vS7LS7fTPs9+8m+K61FluYlj4jh8xlQIwbEqRlw5GAF4dWXU0a7Zr0X9tpsAsNW1WOSC4nmG9laQtL9/5VcSLENiqGYJ8pcoJBYgWGRbUzNa6p/ZUk81sgYwKgiiidZRIyqFQuVwgJjCzrglYxgAindtU1e6H9pS3N9dzyWtnFHIywS2+5JWALoVUhBGWO1kkjwAHZiwsQGxsmtbyC3gsLaBhLbJJI/nWcajY6PuZoo2lYSRnc0fPJLOCFqRxmOz0+1n1iztNKWykeJ7ZnVIXaZkR/lDRuUaSHOZCyuobf1Z9bT4WmmUWbNI6LBaSPboN5jf5phJOUV0mDiRnzt4ZflWRwQAVGjYWlvLfW+rNZ2qreSSX90IXt7kt+7ZPOypIDDCmZlABDqX+9e0a2h066sYLy0sIbnSfM+03MNyXSNXiJX7291GyNAWkMeNgVSVO0vi0KW5YXV3o04ubm9imuBPNHNiPEgZCUdMqu91535R1BDfcS9Fp9x5E6XhlDxxu0txaxmJoHlRmlFuUXdKNxQgMp+bks7rhQDGWK4s7u3uZWbULqOGW9ulvbpbfeiqxibymYlVEkasN/wAsZmYhQciOjK4iQwpqkUD2lp9ktLi1tZEuJS6ybYdjAE7Qrqi+bkSRjduc7V6E6b/Zkr3M9nax42yObVMoI4FB3AysI4NxjhG0ZI2A7jjfHFdJNaXsSx/agI55L28t9MtwGZyglUMwKGQMUkjDbCHztbDqGoAwNQ02Sa7up30jW7mIq76ipPlrczFSVTyyjl0ziNSjt5e0sMcSPXm+22umHXYNHutPFnO08e+GRriMPGBIigjy0RRGqh2QoI2XADoVa3daRBaadP5ltE81tuOqxTapEBclzsj804TJKqHVm2FS+8CR9wNHUvD0FqupodQawis7mKWC381VaNYiyxLHIPlUOZwxdsNGWVnDb95AOd1W8k1ddW1uZVSXUtHimeNB8qFLqKE4z2PlbvbdjnGTxVeh6nNqN74U1C51K28u4jgeMMC0n7kz2pj/AHjFmdGYTFWLEHDbTgYHnlABRRRQAVrW/wDyKGpf9f8Aaf8Aou4rJrWt/wDkUNS/6/7T/wBF3FAGTRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHpmow2TeM9Si1+VZrmCa4vLaOK2EjoiBpVWdjtEiNGFwmWOMLujwQbdvewCbQNRvLy81ZQoaeO6jVHtRHukWdjudkJiQMETBlEe4k8g1jdw2HxDk06/ml1BbnU2RLNoysduk0h53uu4Z3ZZEAVwRl2GVMWm6rfXl1rGsaJpVrPHNA0ktolr5zPJJKgeObOXIKszAKVRtmcAh1AACbTI0up4luobE/Z1so2uoxE29ZCg3GPagCieN1YSKzyNvPDPWyLbUxrd3c6Zp62N1Y23lBZ7NC9w6osPnQv5e4ogOSqKAQqALmUgCGSA6PZ3moLZWMs0s8E0KfZ5kjD5ktmECAKFC5lJKAM2cnyjnJP2e+trmC8jnvdWvLkLFc3Fuyi5Cr5jI62zOzRKGR1ZT8xaPHyR8AGzoIs77WdIgE91fmWRr+5SSYn7PKFGyQhwXaM+UnlklWVWG4kShS6CER6fDam7YJZ2RliOmskaWZlkIVndXcITDKMsyvhVd1diGJ1LSXUoNRjmvLuKK7H2KC9Fu6sFaQJuM0YYgyM6CIMFXCSA5YLhaiixv7Vrb7VLqllNdlJrxuLYQwxKr/aHVj8+0syyEKWdUPCKlAFiGzkuJ7myN8ul3UjQwzwafa4bESIrbJEAZVzPCy7i21QN3BdF0ZY49UmeCeJpWZjHPaTSedND5vDbljcJCohVgrZJO8/xFhJU0qe+voFEUyzXKLJctFBbJEIJ3eSLIeRFKrnzWwY2cFWyz5Cvp27wXT27yPutEkRopJGlaJkVikI3OwDyM53hgrZwvU+W5AL1tpiPA8ksaxSzzJOVEEYMYD+YqHG4EhixLZJ3M7KRkYvR2sMPlCJPLSGPy440JVFXjjaOONoxxxzjGTRayTS26STweRI2SYt4YqM8AkcZxjOMgHIBI5M1ADDGpmWXLblUqAHO3Bx1HQngcnkc46mmXVrDeW729wm+F8b0yQGGc4OOoPQg8EZByCRXkfxI8eahHrUuj6PfNb28ChZ5ICAzSZyQHByAOBxg53A5qL4ffEHUl1q20jV7trq1uW8qOWYlpI5CTt+bBLAkheemRyACCAd6dOuNMkOoSyQQiKZbiT9yrRL5kj+aPMwZMIsjsG+QAyMSdhKJgSSL9nWF5tLud/l2a2yWSgzxEwqtwgaPGWMYVc/uM+UNx2fN311areO8bJLEwjCi5jKq21my6K33lzsXJGOoIORkeeave3llPpUr61LFcS5tZNPlnuAUIfLR/ulYvJskRBIeSAHG4srKAYF5q0k/g7X9Ptp4LzSkhheOe3TylSQToGDR7F2F924AAL8pwXbe1ec16/a2mpGLWNDm1L+245tMkZHe7W4aWZ2XyGVNzNGgVkO4gAMSSxUIR5BQAUUUUAFa1v/yKGpf9f9p/6LuKya1rf/kUNS/6/wC0/wDRdxQBk0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB6jLJFpXj2SLVhPfIL2W+t4XSSOOzjEjSNMrNhmICuSiKUfg7mIAqjokc2pw6rBoqWEunvaDFmYgjZE0RfzI9zyvhd5DBnI3YQqx2i3LLaaP4y1i2u0l1BLn7fdGL5EhVfLlLBJCGfLBdjFNmGQg79tVNPfW7vQdW1PTr3/iVvGkEcEssUEVvIZEZlZDtixtBBIGH80ZHzOFANeGCW00641CPwzdLavALNrW8LxIm0qpKLn9yjRSTMZWZtrM4LckyE3LaFoWq6nazaVdbFezs4vKMkjSl0IMS+WPleIsu8jBLDJKMcV4NJ0vQI5be+ZoLxvtN7b2ts08TRBjGinzHjfYHEuCOVLLltwRjtW8wsNc1U6PpMup2llAtrcQGSRpJ2i223lui/JjaS43I+QHwQchADQ0SbfFp+o2c0osbvU2kkvrmLzZQzMoWP8A1QCBjJOp2/KrO2JDkq1uyWTUNOjmP9qalJJHJGX2QzQNIxw7IrSsgfywwBDGJcsoG4tGW6QsVnrWnPfyWYnZTexzrLJPJIsxWBUwzybT/qCZA+P4Vyu9qrSweTby3E1lfvFBBFO0uoz+Qq3LkbZBvIJdEmZQfOyPJVSQQj0AbkTiGwtXnTzkt41CGS2htGSGBFd5Fjk5AaVEUg7AvyEbdodrMMyxwsRDBcX8KuqTbjcTPMuAduVQMqvNIpIZVTOPkBYJlzI3lGGPylvjuJksrdrnynVhLPKglO3AnkTKoGY7MDLACLZeGc6pcW/nzr5kKt5VvcNI8Z89isoLYVBhslTuDBSoBWMhgDZguFuPNAG14pDG6FlJUjkZwTjKlWAPOGGQOlTVnQpNp9vZWifvWX74itwiBMgYXBCoF3KQCSSqEDccmrwljMzQiRTKqhmQH5gDkAkeh2n8j6UAcxqHw58L6jNdTzaey3Nyzu8yTyBg7ZJYAnbnJz0x7V5B418FXXhO+3KWn02ZsQXBHIPXY/o36EcjuB9E1jeKtBj8SeHbrTmCiVl3QO38Eg5U5wcDscDOCR3oAh8F643iHwrZX8rq1ztMc+1gT5inBJAAwTw2McBhWH4ggdm1GwSHTpEMI2TXVzI8mVEKLEdrmXcVll4UYbzk6mRg2D8HdRmt7zVdBuVlR1/0hY2QDy2UhJA3fPKcf7J6d+31GC4vbhVgl+z7rtQyXrE/Mg+9CvKsSmZBncoaNSUDbyoBxFoynVLpPCKyvqKaZZyrFdKqySqv2YqPMDAbPLGHXK5LH7wxs8z1qzj07XdQsYWZora5khQucsQrEDOO/FenJNeXehap4gj1uz3sqeXZoZUtEmM6FJ1EgXaS6kZIKlwxZsblHBeLbG4s9QsWuFVTPp1syhZFfhYxFnKkqQTGSME8EdDkAAwKKKKACta3/wCRQ1L/AK/7T/0XcVk1rW//ACKGpf8AX/af+i7igDJooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD1GS4k0LxnfWv2dr0alc3ZgFx81m8zhgqIuMF9xSN3yMBnQjA3VXt4JL/RJr1LjVEmee3aK0EcN1LHHsnARYw6ZjZXZtvlqNhOFZcsJTI3h/4hyYglnjv9TaWaeR2+yCMSFmIUYDvEDkuxwjBvlyoaptDnuvElhqGqLaWBgSdbu7jnsoEjZo0kZ4/MZcHeXXDsSyDfuPQyAE2lhr3xDpkmg6REkunQQSzOxbeIpU85ghysWW8yRNpVcbgVwM+XTkvkl8OSz3N99oWSfMmk2TNLBshQmSNN5ARMSx5Me/Zs3pkL8kS3Kavp17e674himvkjFmogkbb5kh3bQxURxFlieMuhKFWyehL61lE63mjRy6PLp80Un2+5v9T2uM5BkQsyKvmGKJH3qN4KnOD5jAAvaKs6a7cwabpUFzptvNDYi4mDPKssLRK+4Ftqny4t4ZVAJWLJLALViWyhg1HOo6b+5udTjt4725uSxkVQyIrIAjvuDtGN2/ILM5ZFXdk6Pdyz6pYbtSv7jVLm/EV0qTPCjG3wzBd67ggWZmaJlUEhgpXCq2ta6l9pv7a/RotMEl+0Qiz5kyBnj3o6KXUeY3l7s+UY3bksW+YAfEH+w28k1wrXLw+bGj3MUCyXE29FkjSNyd7p5hwsiozHIwxZk2Zrq3lsmSdvsVncRzN5S24Dvlyh3RyLuYuZUYKI/vcEsGAbP0/Ubm+s0m0xbq9t/Mdo1REtUnKB5PMMi5B8x3iVl+U7lclQA6UaZcLC8AI3b/s0TSW7KkB3s0qtJIC7+ZkkFfMdXMqHP70kAGzFI+nzTW6iDzmUvHAEkZ5h8kcbPLyWIwN7bSVDJk4G570rTR7baG4ia4l8x1M5GVXnkIoG8KzIuMjg8tnrjQ3kVvAqaVDALlYXWdY4pJ5DIrsgUk7SwMzSHe7Lna57s66FpM0ZubqS4UWKtK0kk8wZgyuVPIOxEVU6dTn5trBtwBoxO0kKO0bRMygmNyNyn0OCRkexIp9VIHt7VJA975jrIkcryygnzCqgAjgKWyp2gAEtkD5uXx3Ek8PmQ27AFk2+f+73IdpLYwWBAJG1gDlcHA5oA8ruo18L/G+2lUsltqTBtkLkljLlDuz280bscgDGOmK9G1S3+1XiwCK1lmeB/JEw4VSQsu8BsyIQ6nZjblBlgSpHJfFq3mh0vS9btTKLrTrsFGVQyoG53MCD/EiAZ45xzkV1+txQS2wW6ubOO2ZXDxXsSyQyEKXBIJHK7N3XGA3sygHIS2Kapeavql3Y2s81xYOVtYFYTq8RjYRsrhS2SImBaE53gH5dofzzxXpr22jaXcyXn293kmH2jersI2bcocozrkyfaSDuJPPPykL6jFNe3S6tLLpmrS6dNp0rR213KQ1wSWdo9gTdGwMjRj5uVC7QwGR55qWgXq+Fdav7i4bas1tP5Vzbm3uF2lolUw/dVMSHaVYjEe0DqFAOEooooAK1rf8A5FDUv+v+0/8ARdxWTWtb/wDIoal/1/2n/ou4oAyaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACinyRSQsFljZGKqwDDBIYAg/Qggj2NMoAKKKKAPUZC2heLNbuLe3nu4blr15nlkBtCyxzOInSNiGYY6OwO1j8inDVUsLG61W2v8AU2u57G4kso/JtpOHjUTxOn2Vd25kJUhBhQGZEDNywsSy/wBieMtYvdLXzJJPt5e+8/PlyCOWQJ5QI24ZSP3gYP5e5QAKo2dnp0ltrc+sq2m30tsDc2jzy7ipniIkJMcjxncBw29m35wq4JALKTRXmkR29vYSw37Xc6XV7eWqT7miWMGS4jYbYx+9yX+Zkw3LF3JvX0BttWu31Mz6rNbWwgt2jhdxKCEtZB5m5S7EyF2iXoxwJAS+c68nurrwtp9rrX2ODSkuZQqpe/KiqkQjMLjzXkAZpFOBIBuIO3aCuovmzaz4rs9B+yuJvM+1wybzM7eeofevdNrThfJ+baRn5ytAF3Rkca1oWl6rIsYKl1tLUSRjzoizxmTgBlEKwfK5MgKx5ABbLbMxWx08Qta2V9LaXN7BqF1dJM0jvG6hmXYpUFIo5DKUH3SrfMzZvaTFPZatusQunrLDYwywzW7JLKcRYAUvI2BEs6k4UAhss2xnXOjeGYahPpFvPfi306F2GpTw4h81Iy7Dem1WeNpGZtxBYPvUjbkAtzIr6er3UN5uS2Rf+Jqh84yPIX8u23FtztGZFKFmziFHzhxWpcXMq3Vz5skRYXc/l3F9M/kiSOMyQq0QYCMKCx3EYIgD8l0YZdlqETtpiQaxq2oTRwm7uorcyNI6oC8QIZkIBVdhOzEm9WYKXRqmiYRRolsWe9eyEcL24RmmzL5giedVyJpI2DMyuQN0kmAAGYA07S43m2txLdW8cclmIre5PkyKDGThYoVUsCBghiUBWQ4CxYabSbe2MVpbMbWZ5o5SjRq8UkSI0itsbGU2+cqCP5TGGcbmxVFPs1rqbIk62bW81wTZlpgpSJUaPfOrERxAOG248sCbbs3DNaNi66ZbG4mVktraEPcXMdkYd67ZZDv8xmkYDcpOMtvY5Jy4UAtxzT26meXT2adWZ8YZ2t4XJZgX+be3yfcjzglF+6A9W7YSW6vPM84jmZNluy72hLHkEgsSdzHJB2qoGAApJy4jDZl7O5v4ra3EfzQW85JjIjZpjJIRvHLq5lLKSWTgE5kvWOmCzvnI3GONSIPkQKiNtHlr3UL5Y4UKpBGQzAtQBX8Y6b/a3g/VbMLK7tAzxpEMszp86gDBzllAx71X8Mpa6z4G0ULIzQrbRo4A+Vyq7HRlYYZThlIII7jkAjetpPNiZvOimxI67ohgDDEbep5GMH3B4HQcr4BdrPwxeaasbTtpF7c2gKEBpyrFsgEgKTuxgnHHWgCvqg02C31TUGglka3jtgZrm5ZR5DGItC5dSw/1e5oyGYiTjmUiuKj0myubw2Ok3jLZx6cypa3yiMzyXMJkiG4HY8pcp12ECJMbtmR6Nr9jfPa38dvdXVwjxhjahMGV3lXaBIVZAgVChTZjDEyH5t1cPdxzXvinT/t9na6Q1h5MkcisERHRELlrctukjDJsEibQFTJZlTgA8roq9rVnHp2u6hYwszRW1zJChc5YhWIGcd+Ko0AFa1v/AMihqX/X/af+i7ismta3/wCRQ1L/AK/7T/0XcUAZNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFaOjaNda7fG1tTEm2NpZZZm2xxIvV2PYCs6uj8G3V3Z32oSwacuoW39nzC+gM3lZt+N5DdQenTJ9KANO68GXeqXKNF4g8NXFyIY4Y4Le+y0nlxqigAj7xCjvjJ7VxckbwyvFKjJIjFWVhgqR1BFddbeJfC1hdQ3dp4SdbmFxJEz6k5CuDkHGOcEDiuVurmW9vJ7qdt008jSSNjGWY5J/M0AQ0UVo2sOjPbo13f38U5zuSKySRRzxhjKpPGOwoA72WWbQvGWsXukpKfO+3+bqBwyeYscsnlBcYQq6DIbJbYrDCthqPh/RYNUs9RkvbdtMlurJWK7lVbgedEytHEBvQMVCgqrqWc7QMBDub7DRfE+q3mnXk4uJWvjcXUdskuxgsknl4MvyBSgIDIC5jOG2HjMk0XTJLXVrua6urCe9jS2lguo41fzWlEu4iS4LJlYSf3rDdklSchaAH28dxL4WguYtYs306C9mjNrAyxwPlIykW26CrgbXO4hyGbdhiWIvTi3FxFa6uv2WxfSRIlrY3oZLhFtcs4jw4Z0KkK7uudiY3beZZLPRr5tPsL1NZspru0jguDPAkSSO8u3fIuS3nyPCGBBOdqltyqwp+n3Xh+ddQvtJF5eQyQ+ZKJ7aKQWO4pG0cYcqsQEbEHcChWMckRspADSfs881pKugz3cVxqsTQX8AZolSLlH2IF2IPMKqrMxQblbPlBCaxO39oap/aU873puUt7HatxHGA8pkjzgFs5tQuYUGePmJJZGLFa2E/hdJdTiv4ZrtXVYdPgZIpGdQoDRyAQjMZ4TIZkkJ3jK1E09nY+D55mu9Uh0vUZDLLEbMi4lXhXZnaXJLiSJvMX93lACPn2MAaF4NZgllgGhy2t5PaQRwDS0eKIuFjYieVM4AZDGmCMKXBKqwerctgt3cXdhqWm/ZIXv4YFFtCsNvLbgSLGJJCp3HaAAFOAxhClGziI6TobzwzGW/jSO/TToXu44mQKrmNrdM4do2EYUkbvvkk8zCodD0/TriwheAS3d1L9oIvZbZVW+lVFMbqRICJQD8p3BvlnztYswALcF+bp1V73Ma/ar+W1jijT7OAxCtulEWSsqSHLxsAzDfyFetErH50jbog7xtb7i01wyyRQkExS7Q7OpaRSitlsOwKuJAcxr+wk0+4tPt0+pQ21lFJCsSpb+SDIskblFkjOFV4CWwqqI2+ZSzCtyOSxmnKzXralctC0kRgLoDI6EkRPv8tWMe3YoIdVLMWO9mIBLlZLQWUWprBJCywLDZ2xjMe1ogSI8lgATkH7gWRSwdeTNBqFrdwm3trZkhkWN5vLbawE+47kMWSx3HlwQvLEOSrYLO8s7hpYDumU6i8QWaeKQJIg8z5cMTgFSwU/Op7KoG2V7zSnXdGsFws00Ts0YUqXJiCMzH5d2GiK5O4gDaDgUAXNPna6021uGZWaWFHLJjaSQDxhmGPozD3PWsjSkuoPF/iGKWRWtpltrqFFHKlkaNs8dT5I45GMeprfrOawx4jj1FDKN1o8EuG+RsOrJkbuozJjCn7zZI4BAItWtLzUxNYKPLtJI4yJ0cJIjiTJKEhuQoyDtXBC4OTlPOdcs4Ls/ari1aMatNLE8kl8ouGTfE6RbFjZiVkJQoEZ1KBd+wc+rXMPnxKmIjiRH/AHse8fKwbpkc8cHscHnGK8/1bT9G06PUnnmg062LR2rRSwSTsY441QMTFMXUbXVQfk+WUq4bepoA808Z2kNrrMJtryK8tXtIUinjBAcRL5BP/fUTdCRjHJrna7jX9N8PR6XZbb7VEFtJJA0bWscstsDh1ilxIqg7jKw78spwYyBzv2fw9/0FNU/8Fsf/AMfoAya1rf8A5FDUv+v+0/8ARdxR9n8Pf9BTVP8AwWx//H61IINC/wCEWvwNS1ExfbbbcxsE3A7J8ADzuR15zxgcHPABytFa32fw9/0FNU/8Fsf/AMfo+z+Hv+gpqn/gtj/+P0AZNFa32fw9/wBBTVP/AAWx/wDx+j7P4e/6Cmqf+C2P/wCP0AZNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWjo2k/2xePb/wBoWFjtjL+ZfTeUh5AwDg885x7Gs6igDsrbwJbm6iF14s8OC33DzDFfguF74BAGa49wFdgDkAkA+tNooAKKKKAPUWlutK8X65e6LbKF23z3F8kvnsjBJGCsuAIl8xVwGXJKnDsprJsoNPOn6lHrMEFtMsKXEltbsSnmLIqI8yqSYjmV1aNcHaWwiFV3aMyyW/j2f+yIla3udRe3vryP95NbvLIYzhiimEjeSpHBORukxgUdMuIbG11T+2dGtf7Ta03fZYozDM6rLG2XTmNcBQ4XyzuWMsw2nLgG5plrefbvDkklva3NjH5apa2iBtjGZnWVf44kWN4HZjhmzGHzuJFEGW30W+kgu20qEsgOmRCOd1jUMZU8sbVlYfui+/EioGD8Y3w/YILHRTNd3Woi9Wa4nheW1X7WkhEJllMZl4KooIJbf+8LgAIHILldQg0W20eyW41p1kvre4u2IkmlDshkG1giuBbq+H3A85JbJkAOh8MG3k8aW39iWTW0dtbJHqET7m+zK0W7ykbO3AlA3AqJN+45ILbc/Q5NIefR7m2ulN5/aNzcTT3E8wg4SJ5yj4V87NuPN4/1gYt8pN7T5rbUfGN1cXN9FZT284+y28O98I1zENxTpDI5/duMgnzCWRcHfhnWbi60u10s6dKL65nuER7uI3d0Nvl/NKpX96m5ZEOUOBEpALRDIBraXdQvq+lR77qfXru7M10k4McNwqMI2cqck7PLkZFYptZXIVfkQxQXRXRIbh72wgbzLljp4aOW3VCkSyeV5Syr8qlmA25AlctuUOZHSTTnVhpmta2unPa6crJb25ZghW1DMxjjHlgo4aRTkMCgwCChWv8AZTPpFix0WUXUd3NINVvWm8skLF/pDtAQEDgAiQFxmPJZtzOADcu7x5v7R8zU7rUWh8qxbYqpbo45d7iNXO2LfC4Ziq/JI4BddpXT0gtb+J54VlggWaYrHHZ2YMcsUKum0yBQVK74QckgMpVW5ZEw7i7t4NY19dSvoNPCMY/sVurCKcvKrxNMDiMu6rhvn+ZGYHYEY1e0e8v3NqYLK/u7mLzrq4juII7VVmMbKq7SriN2IDEB1P8ApG/DKxCgFzS57cWVpYs8QdvLtZbX7KJCke+dPIdicyIoR0BXkFDI2ULVs6dnUZnnnmWcKsZhkjieJk6eYueCoMkfzREsRt+YkMFXkre4ZtPtRDql5JZ2+nOENniCKEmR4RvcSPhUBHzEOMQF1dsOG30ngvtRvI/Kie98yBH+zrLI0WQ6OVmOwKABMoKkbWDHl3KUAdDa262lnBbIcpDGsanaq8AY6KAB9AAPQCq+pJahrK6upGjFtcqY9oyDI4MKg8Hg+b+eO2afpt39ushcZyGkkA+TYQA7AAjJIIAwQcHOchTlRboAZLFHPC8M0ayRSKVdHGVYHggg9RXJJBffabO4t768thKzwXHlWyTRGRmLNhI3ZY2Du4LsGwYRuYjPmdakscjSKkis0bbXCnJU4BwfQ4IP0IrhL+aF7+JnFrBLHP5yGWxMlwbtnIWAmTKZI8jlZFO2PK7YyrKAcFqcOkS+Er0WrSxX58m/ljNqIVeNW8tWKCRghY3BYAYG1RhFBBbh69A05tK1GyuHeee5vbpXsbZ5bJYGuZnjYqHKyssgD7GLFdwdoiWxXn9ABWtb/wDIoal/1/2n/ou4rJrWt/8AkUNS/wCv+0/9F3FAGTRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHpzFrHx7e3OiWsU0/n3jvOu6eTz1SR/I2lVCBiuPlUsRvCyHnD4pNWSDUdfuoLPTJdoEi3NisM1vI7jMm5EEpidfMQMDvBYjnaZKPKkn8b6rD4fjgkaRr5blCMzNIUkAEof5DF5nTb8v3PM+bbWZby2LWdpDpmn+fqdpdnfb291/o2+cLGB8wYyRfIqPl1BMmAxVwQAEkGlx6dpq6YktzdiSTULaJLr7Ou4lYyI9w3yDzLc7VDJJtdQMncV3pF1C88TxLdhtJNk0bu0hEUOomBQxLu7eY6hozh8SYVlJVTktUs2k8T+Ijd6NYQR2UFzsfZYY8+OP7nlTFf3L+UqrtLRgEKQQWO3O046ZdzajfavqFmNSjtpXmns0fY3mYhcS4QruPmgK8QIzlm38bgC9oF3Zi8ijvjdXmox6taW017KhR2YmQiNgSGdFeMEFirfcyuIwhmuk1K+bR/Dvia4+yRPHHBJDDOsDeYZW2BY40ZXTZ5eDt2BkxvU7gZtCvL5P7HtG0qWJBfopmFxueOBdiwMZn3AxtumUBNiv8wTGWDVvLtdC8QwrfFdUNtbCWKKB/3MNxa2y7j5o5D5hAMe3GGRmyQFoAIbxpP7XxYT63a3StLBIjhlkladZNkMeH8o8tI0T7iwjUsoAIqzHF5Go+F5NQ1G11C3MkccCxJ5hilNxIUYeW4SIbfkwGZcx4CuIwVy7T7RL4R1O40mPTl0VrmBJvPt1iVYwHMiyZZpCdzRkbXZvmGwg5UaOkyWSXOlL4V8/wC2PpVysH26ULLjdOU2gERsfNB3BgeNhA4YgAZYr5Hg+aextIjoiTxNDfTy7LiFP3m5t7oQro7LjykbBkcIWclq1orSz1DUrw3CS6zPZ6S0SXYUmRCIgjRNGsu4u5eU7ZAjg7gCcZXnpHtm0y2v4rr7Vq0l3LusxdvKt1KscY8suyfvEVWZRHubcsjBZGJwektG8zXfFAmkgsZDbXa/ZFgg2yKG4nkBI5wRxNwd7MrbWIUAfJJdLcSxTR+dLPaW8SQWyTukspERdZ1kdN0m0ZALBvKDGTIAFWD9gv5I7hYGCyzXN1BCypbpc5iR0ljVFaV3wVIkX51Pmfd4jOTaO0evSPpccGgXCacI5ftpB3EWisih5CWBiJj3KqAYTc5OVWnx3sNlYW0V7aX8T3EEwhguoDJJJI88m/Yksu0yFC+AVYgOql5NwVwDr9NuL2MRLMbx7ZWiC/uCWXehyju+HkVSyfMEUjjcTiQgvtSEccVo8zR/LOrS3dylqbgRxkMQQN4G453Kq4CFgdu0PhyfZrbUojMqujarHGPMSN7xWjIjQvmM5T94uGZg4VlbexkCiobq4t9Lup4StnMbaSa4mFwpaZhM5kBiQxYlMUMnPlq/UFkMZyAb+kz+Xbi1uoovKtvs0bxTL5chlyiK4jbEcaBkOBGXViCUORhuNmt7uPQyrzRJaWU7ImlLc2iIinAkSUszxuI2aLDupcsxyoLKw0LHUtOiuHvrTT4pYLDSbYOk0ywKJWELwkCRiq5AUFyzsPJUdl30ZJIGh8nUrRdZWDSnS5NvEsKQxruuYg0kTYUMqwqAAUznY5w4YAzNW1Ke01ex1/WdDtYQscc8CSxywzCUMS8aIHA5lDyFmDYWQE5JVDwmtWcena7qFjCzNFbXMkKFzliFYgZx34r0C4tbz/hHEkvNT8+1tp5XubC6tQbhI2RNii23YjwI5WG11KxkspHIHG+KZIbrUbbULWD7PaXdpE0EBcsYljHklST1+aJsHuME4JIABh1rW/8AyKGpf9f9p/6LuKya1rf/AJFDUv8Ar/tP/RdxQBk0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB6ZOslx45u7LSLlfsV1ezW+oWyybZ28xmSR2U48wLudk27giqGYAlt1bw7ruuWepS2FxfX+oajPaXAa0kuJXEJWJnVeG3eaWVR8pBUZH3iQluVZl8Yavc6FbxN5El1JJJGBJeCcbgvyZLBPNKjMa7SjASE/MAMfFb6deavcy39uJoPI+z6jIUhWfMYdmSU+X5boZCNwChiUAyE3AFRdNuL+K9vtRvLq2vpoBaLbXbmWeF2bf5cQLF/njSYKr7M7wuX3FqibVtIbw5GZU86e6u3A1C7tR80kSKUaSJGwebhssxlJwcq+Qqn9l6XL4c/dGJ7i4u8yafYXHEjxJgLFJLnkefyq+bvJGw4zixLrF7qsGnWdqG0m8e2N3NcWCEFC7lS1w5beqMiwu0hY8YYh8qVANEQajaa54X03Xl06BLdonSNfKjbz2mLDy1iUsBjarblCEq3Odr1UtL9Y73Wtc0nRWvba7Vpf9JJnSSWWQRrGEVVCOPObKtvJXIU7X3NY03T7ZfiNDo95f8Am+ROhtbeOB90XkRjYzO4XaWSNM7A6v7YRhl6S2pJZ6xN4f0uBrWSy2wva2RmMjNNEGR/M8xg2wtmMsVwNwBBDEAuJpt9daVc3Ta632kXNuTBfTpPdIAk4NuE3Hex8wqEbYXIcFV7y6tLocfh21tFhgOoljAzXAa1ikK4laF1RjsO+4GV3IodOSAiqa+j2OmW2kXc6y/Z9QF3by29tazR3oE6rKUKEMAc5k2xs5bMa5L7grUTqGm3HhbT4VtlkuEuZ4rS61JgV3IkONwXCgEFQPMMirsCklOVANkPqWqjS7Jrf+wrh+ZLyCBUeO4eQqUZ5XD+Y0axOdr72BOVcMNt6zuoJbzWXa1a6vrtpFS8hVZgY3huHEcYBK3CKYio3Y3HapVfLUCpbWGo6p470y01OCCAae0K28h8qCTMCgvsj+VpIXZX2kDC5BGAGUnhAzW9tq+l2l5ZjRhZTTpIJreWSZ9u3zJI3b5VIYHY20LsRWP3ywBLJbRw6sGv1g1XOnLDG9km+O13WoXaNjqcSNkJGQoPmAowYsKmtTqthd+GbTUNQWxs3Zdhtka2Es/nsTH5ARSVZSgJZFUHB3ckPRuJp4vD8+qxHRrK3m2abJG8kU6pEA2U82ENK+Y1hX7xbmRsKArK/TEi07WNBtNGkbVNqwLdQYkKQRPK0ySsuF8wgTDDkAIVyVDMoUAsaHMIpdIlF1FCr6m4jv3jhke9BWFNwVvnBkJKlo+UxiQM25w+xs5b200iGz01lu1vVkF/GsckPkq2DIvlg26OMyFUO7bhzku4Lw6BdNcNEItOnkvrS9S6vbTiWC2RgqkhdmVeNYgEjUl13Yy2HQUVe3n0trxr3ydYWQw29vZSiV+drtFbzDCoMKAqqX2CRlO9pAoAL0d7Jd+HNa1G+1BjfzLkw2f+nLbpHJG02zc2zYyyRb03lcA54BRG2yw3+sJJpNvFo7yWEcCTzgsrSPaKIUjuGJKyL5iDaigsqsxJ4UMsbgXls1p4b01bbXF05LpYCiOql54pN+5mEW5k8t8CMbcKAw2hRDJJb6n45+36xdQQNZ3L3FtKs7PKYIWaUpJCA2wqi4wfKYEsSHbIoAqTQPb6aotdAU3lvcpL9oVpIbe7yCWuU2su1Iyq7XDBAJidqbwBjeL7+21fS9KvYYYlmjkntJJot4WbZ5b7gHJb70r/ADN8zZ3NgnA39J03UrW+1Tw94dv4HRIZVuGtZDFciaPJRyzhTgyAJhCyqrEE5O9sXV53l0PUtHktIobqwkhvJpRZLamUcxkbFVTjMyFdwyRuYkZCAA42ta3/AORQ1L/r/tP/AEXcVk1rW/8AyKGpf9f9p/6LuKAMmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPTLuJtZ8Va3pOnXMDRztdpLp/lCCSWVQ7q24k+YBKqEEvkZbCKmarW9nrtlo2o6VaaddQ2FvHHcrJdWhEc8+5EkZ/NXaY8MzAMBtESMcEMTelnupvE+vS6PeLZxwNdxzWqt5DvKVkAkMpwrgHMo3uCgWTaMLk5xt9P0/QDqltqipNdMpujp9oWwqs6nEUmzMDllDZ+QOoUAggIANvLPSv7G0220yx/tO8bzb1bZJpPKbe3lt5a7VlcL5Gdu4Muc5kUMRrTf2p4j8UWVprPm/ZLS7hjE9x8lpcyxkJMgU4VyziXZtG7kqRj/V517DbX+o6dZeH7GwS5MEAjt7zfM9ssoEjFA2UkjHmkncrOMuQAqgrZWMax4svb/VIl026K3Mls7yItzxG/liSEuPLZECurnYPkGSSwYAEvhG5j0/xIYLu6vNUurZkdGmO2KJ5pkiaSJsszq4nL5+UMACQSQVzIW1Kbw5emxW1l0tru32JtWC28vZNuWXLAK4PlglmL5EZDn5GOh4SvYNJvv7Oa2lmiSe2t0ublYt5eSZHRYwA+2MqJH+8wbaGUoWGa95DraeFtPurrUF/siW5lYm+LRwyQukXlIYFywGVfCoDtxuUgYegCpe6PpVv4dthbm8uhukvbi0s3V2CD92C820AqjRynesbKN5GQGDtrWV1caxrWj6XZRtBcRLDdXRiRd0schVnfzwokWUxGMO2VDncBj5Q+ZqltYWA0r+yoZdVvLKCPYI55F8rzZDLHlFRHf/AFygOrL823KqSFbQX7Z4q8RanHpHzWtpHdW4tYMLbkGGWGCRSMLkjavJzjBUlchACi6DULS/ttSuJ59duL2GwuZ4IE3KXZ3EXLhZAHiVc/JtxgMyAA6McenXmsWg069WY3ttd3UyXFvKpvpTFLCXAjyduUkbZwVEjbcltq5lvqsunadquh3FtLeXFtaK3+n71dtpUbYgNsqRiKSY4Lcrk4QF1LI763hlXSY9Oghuo9OvWuHBZ/J3Wzt5Ee8lkCkZYE5DtIBgEhgCHUZ9B0m9S1tdVa9sLZZIjbwRFlugZCzCVjtVSR5aiRN5/dKwwVUVe0y6m1HxDFqmh6TFJbJm5mXyBcTI0aF1gJYERDK7I2QL8pX7zIQPPK0dC1FdK1yzvZV3wRyYnTYr74m+WRcNwcqWHPrQB3ES6vdW95req6hdWWoWkDII5JS8sLuRveKHO5C0KynawUDhlIX/AFdG5fSZtJsYLWwW7vZ2lu4IZ1aGKYMRG21I3BWUtBkIGKkE45ZY1seXLYRW1ndafatqN/Os9jcWqvBBPJEzxx5KFR8wclTGEAzEzEh2K6lvqEt5rFhP+4082sNvJG4ijJumaJJ2iEjEz7maQq2zzCwlGVySXANCOTUrnXNa/tET2ZtV/wBEaVCkN9JFNGYZWQcu5KIpMancHVRsO0Ny1pJpEml3dxf3n2vUJv8AQorqBRaLKW+d/wB665Y4UKzsgP74hyVYMsum6Rbapour3cmqRXF1JAsDvZROz3J86Jt22URhpAQoO0kt5i5G4/vIr7U7G50rS0t4LWC+mjku0n1M+f5jtIYmBO0R7yIU+Z0wcliysNzAFuNvOv8AR3msJdOuLPyLm7AbZbxPG7RwpP5nzR5jRMMWbhjtQlzmFrKbSEvPDhEuo2Msc9utzLgrHOqs8cMIR2CO0iIShO5vlBQY+Y16y1fWJrSz1TT5bW1htLcQ38sZggtXMMZZWziMJvyDgBgcAZ2hDNq0N74L8X6hraWst7vu2mleCSRIYYnkDiOR1x+8OV+VsqAVOH3DaAebVrW//Ioal/1/2n/ou4qpqtj/AGZq97YeZ5n2WeSHftxu2sRnHbOKt2//ACKGpf8AX/af+i7igDJooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD0nxBNZP4rafT7C/kNrfyFTDexxpDcKxZ3dWiYLkoX3MxBVeoCFUhuJtCPiPSpNJsLqWw+aK1Y3oSBY1djKsoMTME+Z3YMxPlyAnAO0akM0t94z1218PwQRzFb1Lu2kt42aVsOofzZM7laTy8p8qjcPlYbmrO0rWrLS11eC4tIL/UorZ9wgtRaqMHYyrGUw7KkkhLNECoVwdyngALLU21fxU2p+HbNY4lmlvJ7dYA10zKGk+/8zBZdoQ7CFUvtKnIMlfTLbTZrXVJtX1G1i1JbT9/PbTNIdpljBLFI2Xe4bYzozcOdyMd+XaTNrlxaanqGj6tPNZW9sVjijZbRIZHYIS8KNtQBWkkDj5cqGLZDAP0TTtOvxeR6pcWsdxPGltOmmMv70tIrRRrtTyRIzIvKuRtVsqDvdQC9oeoSaOuj6dcaSyWt3qsSWYuJvPZQpy0qMw8vBaVdrRoNy7+c4eqNxo+r6H4fh1HUGlkt0u7iW5kMJc3AkEAVWSZOMujfNIuAVDAMdga34PupJtXhsYPEFhFaefFN5OnpPCF2NgI26NQwfcEJdtzHy8sxAVqNrYazfzSadpAYRWysdLmtLuORrYjcSJJI3YRmVWfPIDOEAwq4ABNZavJJqdrrei6bBawrbMpVY/PlEkSrFHDufLEEvACYwpImwSSpYPnOq2P2TWbe6tTcNJtis7u/jjXTivltLEqM42Zb5NgOVj+VuW+WjZ+K79NL1u0XUJ9RhjsgZZLuR3WcmaJGChjlE2u6jGGO4scHaEztR1O10vTbWztLFrbVIppZ3zN5i2jSCMEKCAVceWMAlimeSX+4ATahqd74Rub7SdO1i8YxzSwxItyTHbR7iOgO0ykcnAwmf7/+rxfDn/ITm/68Lz/0mlrJrW8Of8hOb/rwvP8A0mloAyaKKKAO40Y6ncaHDqmmS38s9rizuLOwkk8ycjc0TylCGEYVinriMKCN2UsanqGq6pe2F/qdkrlLZGmuZFa3fTykjxsfMjxhi8TOoZWwx2qpPDYPhmyXWbfUtJkuYrdWjW8V3ZVJaIkEDcQD+7klOCRyoJYAE1vPLqt3o4sNQ0pYobGZFt7fU4m3JbNFKzM0mBJhfs+792Vz8ygEbUABe1a40KOw1STTbHfDHYJM1pcSiNP388MwPlR7T0dF3K/HlKrDG0s2a41DxJ4qbTdOK6fqcbJ9pltoATGcL9oKSfejKyNJkBgrgnnc37yxol5YXM9zqlppsRtP7MP2gyNJuKWzwrJEF34wYRG21t2WfaXYbhWdp39u+JLWfVH+1LAlpcmSF8xWsrtE8RmjJxGpy5ZwSOd7DOSqgA722pT6prF3qVhb6xbebPHiR5xEkjqibpI0IJj3/IyFjlkztEe2oho16lvpfiCxeW+nWDyIxp5kEly0ZKBwAFdYlTZGxwGJXHG8SVY0WLRryx1BtQuVvryZUt2msopMXDHMyhw5Qu7G2C/IFLF/vFmLLUg0211nQrqe71hblY7lZrZUj+zsAVCyRszhYohgQDILqmFVc7lDAGB4rE0msrdzxeXJdQRSSfuxGTKFCTErgYPmpIDwOQT0INQ2/wDyKGpf9f8Aaf8Aou4rR8ULfS6XpN3qNv8AZ5l82zhRB+7NvHsaMocneP3rAMCQQq8k5Jzrf/kUNS/6/wC0/wDRdxQBk0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB6ZcStrXja/sba5aBFubi2mtZMLGTLug88bEVSw8zo+GOFUOxYAU9JurfStRk0vWI59VuILK4+WZGgECLbudiu6+aVKZXaQiqWJAbg1emL6t40vpLWS6ij0i/ku5bZkVbaR4i7BmkUKqO+3bukBwASXYgLWZpcsfh+ee0vVa8awtpnlMtr5Yt1dCqqhkXewd5kG1k2Aux2NneAC3ottresWep3+jXs4g+zeVAsStEbNjNCzqFjUKSVVifKBLAAlQzBTnSnSL3R7RLfT7yb7TezlzDNHZq7JFES7KVdVUB3P3tq5cjarbVm0zS73xJbazLY37aghskhAkiMb2w8+NwvlrkBcJIVWMtwuMAkLUo1W9ltNT8PmynvLvbHPINQtyt1fYYYjZUbzMKHDr85IER52ttUAuJc6JceIdFltJbxBf6jDdTSqizLcXKSFCpJKeWBkvwuSJwSqgKtQ3sQ0nxSNW0u8067uZ7n7bO5vEhVUZ9xiikkwrqSGVpFyTgqQnzB7HhzUNNR7G1gsIkvLXU4Nz6fO21BMwWTBcyFkBjiVmUqDv2g7Tl+b1a6stIgsLezeeXVLSFovNmiERtAXZwNoZv3wLtzu+QEDAcZUAsarrWqeHry9sX1mXUNRSSSFLmRvMNqmSpKMSSkjjrtPyg4OW/wBXxtFFABWt4c/5Cc3/AF4Xn/pNLWTWt4c/5Cc3/Xhef+k0tAGTRRRQBreGfn8Q2tt0+2b7Pd/c85DFux3xvzjvjGR1rrdJj1i0s77SNBF0LWWCSRrm0vEuHEyAOrEQsRFvEZQLnJ3n5n2gDzyvTIIEXxzaX2lSQBr69hup5Z7uOOZI5mWXykiYgg7XAYqX3dARl0oAp6Z4kew0vWbQx2c7pbJNPJaQRQBXE0aARvGoyy+YxEh3AMAVGFy7Tpl0uh3evPq8tpNfSQmOe/8APM6wrhjkqhyN/wBn2yrwcDlS2yrFlqWpad/a+m38U+o6tFbJ5jzAtPGzTwqscMhBbI37g3K79pUEDc9fUNO/srSLC8udYlRvtdxO5e38y5bzVRCske4oCWilDK7jIDA5IZQAF02l2+jWMtjFLcX/AM2pSC2k+yxyMrNHvVAu5kUxO2AUZRIxUKCwjvS22m6pquu2ty7aQiQyWIkjjD27GB1lkMUQwyDETOVBYZk5IJAenqQt49SsY/DunrPe2iwwhJ3ZWspmIZdib+B5shDeY0m1/lO0bd1yNV8UeKptSkka1tXa4hhubiUiKe0IkEjJ5r7lZULn5AyglcqgBJAMO8tb4+FdSgW2WLT7aaC4iMMyTwgAtGwaRCVMzGVGOcHC9FUItYtv/wAihqX/AF/2n/ou4rpbXRtRinvtFt7dWsvs1ws8ENxFLPLKiMyPKsbMykSIgA6LnbklmL81b/8AIoal/wBf9p/6LuKAMmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPTpU/4SDxlrC/bPsn2P7fB5c522i7o5U3K2fldvvsuOdkj5/hFGwvG8OadqenzwtqEUVksqtdxAxbTcRqTbBtylGLFw5BDFUJX5TuvErr/xDkjeWW1Wy1NomSSRfskitIVZACRseRVbKjf5jFiQozVHTLy/8L2l/p1jufzLZ5YbpZ3MN06MjTeUVbYFESuNw/ecdVYhAAWZvtlhYWrvrEVz9pnkieyvJhbsIFRRJbAAmO3yHO5CwxtiwAy7RLYWeu+F7yz0mG9urmNpx9sgtpzK9tasVJHkoxaNzlizqDjKbXyTnP8AM0u08Ob5o5dM1Gzu+VtU+0C2eZOwd1KyAW/dm2Fj0biPL1b+z7C00y4My3t+LYLFE8RGE3ExyThv4gjBRH8y4RTuZMKwBs6Rf3uj69p9hf2dhHqlzfxW8kaWkUZghEqHJEYCsXZQQTyoTcv3w1eeVs+G5ZJ/GukTTSNJLJqMLO7nLMTICSSeprGoAKKKKACtbw5/yE5v+vC8/wDSaWsmtbw5/wAhOb/rwvP/AEmloAyaKKKACuwuIWutJ0+5tJ7OLUryyVJvOuBEwhjLQDYXwgDLGN3zlmyQAF3A8fXW6RBb3XhBZVltWvrK/fy7e6YJGTLGm1izfIcCCQ7WIBIGc8I4B2Rj1SwstdkuxLs1SAzx2l1eeQlvHM8ZlVd7bN+ZpF3EZUxqSP3oBxn0zTbDxDo2mvfT3lpIsdgI4oQqyq8m6RJmY5R1kkLbNu5QI+Vb5hoxabdapd6jb+IZWt7UaPbSSXExzcoqLbvKApO8qWR8kqQHDY5LBsi01CwsNd1q+uba8u2VWvrhGZIELOwEZjUeYchpVZZVkBCsSM/xAE2k6je3/iSTWtB0uAb1uLmYwW5mlWby3cRyFyxUM3ygx7N4Y4ww2pDHpd7fw6rrepzrY6qbYwyi6cs4d8Av5ShnUGFZsqVwB8y/L/q22b6x/Y2pXOkJE9jJ5VvF9mtkijVC28mc852LHsYSluJSSxVsuy40q107wzHfpqK2Ky3scs8ds3nyQyKriLyGDBWUkyncX427clkbcAWLSaztrrRL2wuvN164kDSSSxlBfBZSuI3GdhkYFCzqpYIS2zcwk568sf7M0jX7DzPM+y6tBDv243bVuRnHbOK6HX00uPS7JYb77FemOSykmez2IuMTSIVRmMRP2gqwVW5BQBF3A0fE9nJa6RdyuyyLdNplws6nifNvMGk5wcs4cncASeT1oA4qiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPTtkviH4jZiS6i/svVssqq8lsFE3JUIp8p22biW+VjuYlcYNHQodb8GalDH9nvLSKeaOLUb6WFhBErHbhSw2EqWz5hyNwAGVyZLmrg3muaxqM16tg1g1yLWKfeYVPnLF58aoCynLEkgD96oYE4YJh6ncxaJqdrrNtqCz6rLbRuggEiiOTbtM0hZVZi4G8Aj5jIS2Vx5gAyTVG0eyukv8AR7CPVbqMRlDA0bIodXDSRAiMcouE2Ddjc3B/ecrLLJPM800jSSyMWd3OWYnkkk9TRLLJPM800jSSyMWd3OWYnkkk9TTKANbwt/yN+i/9f8H/AKMWsmtbwt/yN+i/9f8AB/6MWsmgAooooAK1vDn/ACE5v+vC8/8ASaWsmtbw5/yE5v8ArwvP/SaWgDJooooAK6TwzNZDTNXivkby4VivUkWMShXRvKAMZKhx+/zgsBlRkMMqebrc8JND/bwhuV8y3ngmjeHaW84+WxRNoZdxLhNoBB3BcEHBoA7LSbT7XoOp37az9ovLi0e3WRY993PA8ka4aOQqGIIZAVZ8l9qsSig5Ol61pln4bvgllLJHHJFZx3M4jlkVZC8jHy2UoU3QqwjOcFnw+TmjSdGl1uHXbiDVrW4Sa0SMyPG8ZiJmiMcZQL1KxlVSPeAVCj+HN5tTuLrSrPT4obxr9725iF5c26z3aSxpF8+AhdRg84LOm1cMwQKQCG8h1YaFp8GrzwS2Us0s58+4WKJrZli8t4QeQVw5VUUsoOCmH2towRW+h6nEdLjbVE0vTpRLcSBljgdVecLLEMEN5uCCxAH3cb4ywo32k3E2qWXh7WdQtYw0cUcYmmMtwtxL+8kcbA2D5kpBD7Q6heSQHUtNRx4wh1PR9P8ALh1W7eNNSk/fNFLPuG3BARCpYNsxuO0/OUYEgEUMehWvh+6+1wyw3kE8cxtEIu/sjsGViY3CBUzsBUyP8wjWTJBUs1q2f/hWsF7LereySaisQnRZAsiqJ5NxMiqWbfLICRxwB1Bo0W5sltL5tTsYF1K5si8UdvCF3RqyymSSLiPKrGHVAFDhG3Z3qWrT2EuoeC9a1ePU5b6Nbu1eSW6R1mO0SR4JO5Sf3icB2wuM4OBQBxtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAegeJ9YXT9Y1172xgl1O5maCLdk/uVlDI8qE7SQI4wi4G4ZZwwK7uCllknmeaaRpJZGLO7nLMTySSeprT8U/wDI361/1/z/APoxqyaACiiigDW8Lf8AI36L/wBf8H/oxaya1vC3/I36L/1/wf8AoxayaACiiigArW8Of8hOb/rwvP8A0mlrJrW8Of8AITm/68Lz/wBJpaAMmiiigAq3pV9/Zmr2V/5fmfZZ45tm7G7awOM9s4qpRQB6poWnQvr2t6Jpd35kcdpPpwtnjMbx7pY0knzkq+B8xJZWbaFCqoXFRdMv754PCN5rEUVpHiBp/wC1I3PnKx48jzMlOERUIBBVWwpLqdHw49pqOo2vktFbzTWlncySyxJ/pLpcQiRzKfnDmRGTZjDMN2ctmsPSdNtdQWW6Gt2Et/BaNZrsSdUnDxNCindGMSBc4VQxk2YwCGYgEsE1m3ii6l1W6/062nuL+3gtozI1nJGXmeKRm2BkyD8qkgsCQyZJappF5beH7+6u7PSonhtrQ3ST3Fw85my6pGV2+WhQSmMkMu5SrchlAD9OfQp9AvzLc3l1IVhsEklRLQkM3mIrSbpBgeRtDEDAIBO3BSW11C/stHTTLfTGtmvL1xHHpYd5YGjiVjNExZi5dZU6MFKIQCN5YABHc6dFr51LU7KCLSrtmP8AaCtKZ7lZVIcYDFC2HIl2KAnzBcNszctI4LzSvEdkha0KMls+mTupCsiXHlQwuvMjGYK2MAkg5LkktW1trqwh0q38Sar56C0LTWVws8zykzS7JACU2nbt5Lo4AKkdVPRXS6dJf+fHLdQ2kHiJC+I1cefG88krv8y7RtYZbBxGiZJO5UAPGqKt6rY/2Zq97YeZ5n2WeSHftxu2sRnHbOKqUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFamg6RFrV89tLqdnp6rGZPNu5AiEggbQfXnP4GgDLor0iDwjpehaWdXMDeKmR8bLCRTbxEYP7wqSx456Y7HqDXnt1P8Aarye48qKHzZGfy4V2omTnCjsB0AoAhooooAKKKKACiiigDW8U/8AI361/wBf8/8A6MasmtbxT/yN+tf9f8//AKMasmgAooooA1vC3/I36L/1/wAH/oxaya1vC3/I36L/ANf8H/oxayaACiiigArW8Of8hOb/AK8Lz/0mlrJrW8Of8hOb/rwvP/SaWgDJooooAKKKKAPQNFuI7z4fT2U1vOxkVrYG15dwlxAyfIQdzB7p8AFcjg8kMp4isdO+wtM99Ptu2S+u3toYp2d/mi3sFl2qvmCU5RiAZdrBcJuzPCmqW9n4Z8UWs6XTedBA5+zyiIlBKEYbiDjPmjjacjcOK07bRGTQtPvrC/vJZraaQxRWoEd/5ciqUTZuJRTtnYFS/wAr79pBbAA28vrDUNG02GPSIp9Qn827RL2aR2uct5ZO+MxjzSYfulTuwDuLsQ0t+Nav9OttBvIpbO0igX7RcLGLW1gncmUCUAKmNrxBgQGDDK5OQ9fU9QSZrWw0yxs4r6O2jdFmto5hcrKPOCKHUqjqZW4UAOScBcIladxptzq3jcJrYijhsLs/Z5L6ZFMlnE5Yq6Od0ibAxEmDk7gxIOUAIjbabaeLhpusXP2q3tPLJto7Zj5Yt4VDSt5m3aGSMEqgkDLxyQjVDGWuPD+qPY2MU2nXl3AJrmS5ZHnjxKxM0sjFY5VcITwBuZeGVlDRaVd2dg+pLq11LqclpBN5++1IMRkby2KuzJK/zTENG2wZZ2B3AFoY5b5dEvLW1sbD7PJd23lxQJiC4hKXBYtIx3smUJJdsxlT9wr8oBh+K1hbWVurVvMtbqCKSOXcSZSFCO5JVSSZEkySoJOTjmsOun8TpYto2jTWi7JIvPtJkSXzIlZWWUiNupAM5GcnpwWA3NzFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABShWYMVUkKMsQOgzjn8SKStTQNfv/DupfbNPMfmMnlukiBlkQkEqR6EgdMGgCvpuq3+j3i3enXUttOON0ZxkZBwR0IyBweOKhvLqW+vZ7y4YNNPI0shAxlmOTx9TXsuv+CdBvb6/N1pq6FbRBfK1SO4jSGRio4aMkbcE44Azg8ivGrqOGG8njt5/PgSRljm2FfMUHhsHkZHOKAIaKK6fwJJYReIXkvJLSKZbaQ2Ul4cQpcY+QuemBz174xzigDI1iKxinthYOGRrSFpcNnEpQFx/wB9Z4rPr2Cyu/GIvYv7e13RH0guBdLPJBskjPDDhc5I6e+M15TqRtDql2bAEWfnP5AOciPcdvXnpjrQBVooooA1vFP/ACN+tf8AX/P/AOjGrJrW8U/8jfrX/X/P/wCjGrJoAKKKKANbwt/yN+i/9f8AB/6MWsmtbwt/yN+i/wDX/B/6MWsmgAooooAK1vDn/ITm/wCvC8/9Jpaya1vDn/ITm/68Lz/0mloAyaKKKACiiigDsPh86x3utOY1lkXSpDDGxPzS+ZH5YGCDuL7cbSDnGOcVetbLTbnQ9RuL03Vm8kkOoeVqcjSfaFG5PMLxoH2M1wv8HzYOG5Ypi+DryPTrq/vplZoraGCZwgyxC3duTjPfit+wtoZPEF1Dr9pFHNcyT2by2lyVe+mYspPlPuDZkGVbEcasvJyAAAaNtf8AiPUrNtYk16J20+N1cwahHFFNvB+zuU3KFIc/MJAuVVRtY7gcnTNNiube/u7+8iXWPIMCtZOly05kO0nhhGZWTzV27975Lbdy7nZpy6m1tqs1lc6cbVLIJA1tIkVumZ4cq4k2kFlUr+9GZAuMuBRLp+kr4WeVdryS3Jeew06VmUmBOdkkgOAomJbHmhuqkKGKgBBe6T/wjKxeQtzPcTfZobvUC0QmWJVby5PLdfLUeYgUl3BKjdsVV2acOoPF4D1vTDBaie0kgmktI4FCOHGWgYY3sY0jJZ8iQFW+b5Nxo3usNdrpmm6fG2n61NCsizo4LSSSHKBn25WWSMxlpVI3FtrgAfJ08lzreh6rfXV9LO8D65BtkukZ4bS2d5QWR2O1SVIUkcKHAzuJCgHC6jDZnwvc20dr9n1O3njubm1SQvHbRkGM7d2WVyzRb13Mc7em0qnJV2tssQttRsNR0qCy1G7spmZYBJHKojXz90isxRAzRLhFVTgkjaNu7iqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuo8CXb2ms3PkanaabdS2jx29xdx7kD5U4yeFJAPJz6YJIrl66fwKJf7bne3XS/tKW5eGTUn2xxOHT5hwcsBnHTrntggFnxJoGvxWk+qeKdRVLnO22t5pxJJMdwzsUHCoASfwAxyK4+vTNWs/EdzolxZ6rrugahHPcR7He4DSwO0gGUIUbV557Bc4xXnN5bNZ3s9q0kcjQyNGXjbKsQcZB7jigCGtnwxZXOoanLb20Nk+62l8yS9H7qBNvMhP8JHY9jisatTQNbk0HUWuFhS4gliaC5t34E0TfeXPUdufUd+lACWuh3N/rTaZYvFcOZXiilDbY5SoJGGPHzAcZ9RWfLFJBM8MyNHLGxV0YYKkcEEdjXaL8Q0sLeG00fw3pltZQyCdI7ndcMs3P7wMSDnGAD1GOuOK425uZry7murh980ztJI2MbmJyTx7mgCKtG11/WbK3S3tNXv4IEztjiuXRVycnABx1JNZ1FAHVeJPEmuweKdXhh1rUY4o72ZURLpwqgOQAADwKy/+Ep8Q/8AQe1T/wADJP8AGjxT/wAjfrX/AF/z/wDoxqyaANb/AISnxD/0HtU/8DJP8aP+Ep8Q/wDQe1T/AMDJP8ayaKAOq8N+JNdn8U6RDNrWoyRSXsKuj3TlWBcAggnkVl/8JT4h/wCg9qn/AIGSf40eFv8Akb9F/wCv+D/0YtZNAGt/wlPiH/oPap/4GSf40f8ACU+If+g9qn/gZJ/jWTRQBrf8JT4h/wCg9qn/AIGSf41qaB4k12bUZVl1rUXUWV2wDXTkZFvIQevUEAj3FcrWt4c/5Cc3/Xhef+k0tAB/wlPiH/oPap/4GSf40f8ACU+If+g9qn/gZJ/jWTRQBrf8JT4h/wCg9qn/AIGSf40f8JT4h/6D2qf+Bkn+NZNFAHVaV4k12TTtbZ9a1FmjslZC105Kn7RCMjng4JH0Jrp28Y38WoWWpatPOdMENtIs1vK6PPII0LxxorCNwJN4fcvAJXIOwVwmkf8AIM1//rwX/wBKYK2rVri68MaZIbbTmsbdprWc3saqo2sJQ3mjEmT5xxGhyfLYgNkigDpLq81mEa1JpniOV002eK0Y3Uzj7NGsjFpZN2RI5eMAbSxZXZdgyqLX1rXXt9Psbu11LVrmSO2DT28eoSRLETIxWRwcyPE+4BclWCCPLZdaZcajpF/q+lXJtLq3smtGlnnSQBDGzNFO8sZBO99rJuErOcpgs2FL2W30fxvbzWlqt1DaTLBNftcNuhjgTa37uNlKsI45Mh9wk2EquDtoAsahq2u+JfFclha6nf26adO0d7BZOYyYlYLJNHtGT0/1bb2BYbd2SFfH4h1KfQL+4m1mBNYiuY/Ijhvz5Cs7TOFdifLwFZyB5hU+XGrDK7Wy9JOtazZ32s6VLLDBawSeXarILe2tZ2ARinKoAI5JHBBDKR82eGkihn0eTw5eyT3sU+oi7t995JA/2V5NkxR3XBdzt35JQBmCbgw3swBrXHi3V9C1mGXXp7o2LeTcJYZMcu91V5MEFW8tGZ1CuWBwEwdpZOK1DXfE2naldWM3iDUWltpnhcpeSFSVJBxk9OK39SvNTs7DSJtTu4nsVtG3QjybiKWTz5cLEpDRghdoLAYjXA7qjc74ukhuvEMuoW0HkwX8cd2qhy43OgMmG74k3g+hBHGMAAh/4SnxD/0HtU/8DJP8aP8AhKfEP/Qe1T/wMk/xrJooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArp/Av9l/23cDU/sG42cgtP7Q/wBR5/G3f2xjd1/DnFcxRQB6BrsnheDw1faTaJp8lxYxWyw3kS/vbmdmJlYMCdyBc9eATj+7Xn9FFABRRRQAUUUUAFFFFAGt4p/5G/Wv+v8An/8ARjVk1reKf+Rv1r/r/n/9GNWTQAUUUUAa3hb/AJG/Rf8Ar/g/9GLWTWt4W/5G/Rf+v+D/ANGLWTQAUUUUAFa3hz/kJzf9eF5/6TS1k1reHP8AkJzf9eF5/wCk0tAGTRRRQAUUUUAa2kf8gzX/APrwX/0pgrR8PXl5/wAI/qVlbXcUYSeG5kS5w0CxAOjuyMCrfM0Py4LEhcAlRjO0j/kGa/8A9eC/+lMFWfCUt6NTurawknjuLmynVWtiRLlF81QhHOS0aqfUEjvmgDcm1K28QaLY2a6a1wsV79lH2Zo7ORi4zDuAUx4ZjccBTt/vckvoyahb2esazq+gWS3lveKRFPcK0i3kssqB7YpxgfMzBMbzsDZKHBraP4igsLLV1vbeLU7yC08yWePylXczrERnYwmfEpzI+7OWAyrFnfbSapH4ZunUWZ03Upo0jljSDTxPCFlEilxtCuGK/KSckNgOm7IBDeadqqaLc6nd6pPas9zbolxqNw32i2CiVzC2AXyH8pwFXkFHwMHbcttI0iXwNfaqZLOdjexeeyectmrqpAZkCJIoPnH5UyNxXGFyBnXun2/h/TNLSXVoJLCVZppESFpzc72Csg2kREARRZAlyrbiGJCGuhhi0RWXTrCDUZoba9tNOuYnlVTAHE6PuIQgqWmkUkNksx2lQELAGNbWviCXwxNex6jixt7tpbiazdZo5oWjUEGFSMBFjQCN1AxLghFVq57xHdxarp2majDB9njXzbMQ4T+AiTd8iIvPn4wFH3c5JNdDp+j6jrum3t5pKXUVkI45LRGiaP7JLHKNvlsuTIFR5+V+Zm3Fl3Fc5mrak2qeHb2weKd7rTblJnnvQPtLKcxSFjgEDd5A2Esw6bmCjaAcfRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAa3in/AJG/Wv8Ar/n/APRjVk1reKf+Rv1r/r/n/wDRjVk0AFFFFAGt4W/5G/Rf+v8Ag/8ARi1k1reFv+Rv0X/r/g/9GLWTQAUUUUAFa3hz/kJzf9eF5/6TS1k1reHP+QnN/wBeF5/6TS0AZNFFFABRRRQBraR/yDNf/wCvBf8A0pgqvot5Hp2u6ffTKzRW1zHM4QZYhWBOM9+KsaR/yDNf/wCvBf8A0pgrJoA9DhnudK1W90bX/K1G88iZ7hiiFwkUZmjzMyFpCTHGQG3KFwCrE7ULqTTrbSbO6vr+6eCaSU3VoturyRpPDCYk4ZYwAkYZG4wVXEfyMFedWutGns9bvjPfaTerExg2+bblpEH2lufkVyxnARSDktnC/K79EFtF4g1H7fB9jminkaW6Ny80BuLcmXfHGymRyAh3EvnbIwypdQQAnttOsvFtrpzXV/e2t3Jb6ZPEirFBI0SpCxY5YkqRnbtVhuDKw+VmvaRqUl3puveINEtbOG585Jyq8yLI4lRjIZGZUCGTfvUKrKGB25YJh6RPZaDNqBl0O8FsLJpJ4rq9Eizxt+6VoisajJaTHmAkbGkxnNPhl1Kbw5eyRy2sultd25L/AGdYLby9k28SpGAFcHywcZfIj2E/uyQC8LVrjVrFLa/gnj1eZnvPOvQZUjcPbCNGkb96YwZwroW3EjK427s54tVsbKbw9q0d44mspj51yG2w+RGZRFbluNu6NA5GQ3AHCh2fqSaVPYaRaaTd/Zby4tGiEjwyPGyGeUNHCVDSDc5cDcuSmAWBLK2hMb7wv4oudYspZb+K6nW9vf7Ok82K3gY+YwcA/MSrOFZwF2/MOT+7APMaKsahZyadqV1YzMrS20zwuUOVJUkHGe3FV6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDW8U/wDI361/1/z/APoxqya1vFP/ACN+tf8AX/P/AOjGrJoAKKKKANbwt/yN+i/9f8H/AKMWsmtbwt/yN+i/9f8AB/6MWsmgAooooAK1vDn/ACE5v+vC8/8ASaWsmtbw5/yE5v8ArwvP/SaWgDJooooAKKKKANbSP+QZr/8A14L/AOlMFZNa2kf8gzX/APrwX/0pgrJoA7XR47+TRNP1XTjePcWiy2H2OxdxLOA/nbmKYYRAzANjnKqMjfldG61W3vby21vW4m8m404W8V6s7IZneExSjZtcYVzITsVQo5IcsgbnfD9nBqui39pPMoNtNFdqjyrGTHhkcK7/ACIWZoQST0AOGKhTv6ldeILnSLO81VrWBRPNEJ7+3WeFIgsRj8ssrl9xZ8Mu5nAySwTIAK8eqQeH9FurJ9LWBJr17QmUrdyxmMKZSQ48oncYcBVAYIQSCFeta6TVoPA0MN9JZ3EMtzFdCe9Ci38h1lXZECAVAWNXCxgOBLgKpHNHWvEQvrXRlspfsF49gFgvPLhiyElkjC7lXdDu2E/K+xd20jaS9aNzpFxcWr6FrF5FEjz2EUQkuTK8VxJFI0jYTcd7Sux+fAYZAYYUqAZ2rx6FB4esJre6uraQQfZpzBbCUxLI8sgVN7oypJmQgnLGMLnaGO+KfSGs7LRtUtbu1vdUjgCWyKzIzyI5ZXxIFLlUeAJHjLZXAKLhpRJo0etTPbi61GynsHWO4BSON0toQyxsjIxLgwxkk7ckglNhAava6Pbav4du7tr9nRrlLzyb2eOK4x86SFXc7SrO0SmU4yUOVyoUgGB4ttbi214vdW8sM9zBDcyeYhUtI8atI2D/ANNC/A4BBHGMVh10/itb6ey0u/1C3+zSN51tHGo/dmNX8xWjOSDHibYuCRiMYJB45igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA1vFP/I361/1/wA//oxqya1vFP8AyN+tf9f8/wD6MasmgAooooA1vC3/ACN+i/8AX/B/6MWsmtbwt/yN+i/9f8H/AKMWsmgAooooAK1vDn/ITm/68Lz/ANJpaya1vDn/ACE5v+vC8/8ASaWgDJooooAKKKKANbSP+QZr/wD14L/6UwVk1raR/wAgzX/+vBf/AEpgrJoA3PC0cN1qNzp91P8AZ7S7tJVnnCFjEsY84MAOvzRLkdxkDBII6K1TVYtD1G3tltbTT4ZIZw7Sx3NoEXcjiRhuSSUmSN9pGTsG0DEa1x+i3kena7p99MrNFbXMczhBliFYE4z34rtbCw1HTNZutH0O782BY57aY2MjLO9wFbY0g4dQJAg3D92obbuO5ywAy8uree20S18POun3stsfs8nlMjy5nlURoxaRom3bud+GDncyhQDuQwwJfeIX1bUFiitdVa5tZoSs32Nv9IZHlx/DvJxHnO84Kjf8xZx6mNSsLE+Rp15pLO0jpEkD6kikyGNI4x5nlbgQNqsrjcxG5dpxtLvNLHg/VtPu7v7c80lrbefH/o6nG94081wTgCMruaMYyFJ2AMoBF4b1HTtA1S983R5fscEHmXsdzcLcsyNiNDEAqIc+cPmOcox2kAndes9Bsr+41sXVzPayzWwRIpGEi3MazRFXhdEXCNtSNAIyPmGzdgoGaXq6WmhnSn0aKG6mklWyjkLfaIzF3DNkiRi0yoUVQJQ2F+ZgIbmbTpPDRvpNS1SDVPMgklkWFZLpYMu0bO3mKWG5kG8lchIDsGVJAMm/try58L30jtaz29tPBJbi1lDx28BDq2BndHuZovlfDsQSQSrEclXo11bWs7atYaU6xW39nSXOpWvl+VIsoHnBgoyoVHEcWzcSnzjHLOfOaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDW8U/8jfrX/X/AD/+jGrJrW8U/wDI361/1/z/APoxqyaACiiigDW8Lf8AI36L/wBf8H/oxaya1vC3/I36L/1/wf8AoxayaACiiigArW8Of8hOb/rwvP8A0mlrJrW8Of8AITm/68Lz/wBJpaAMmiiigAooooA1tI/5Bmv/APXgv/pTBWTWtpH/ACDNf/68F/8ASmCsmgAru7v7RFd22q6DJAdWu4YrqeY3C+a0jKC4iR1UEtJvDLGZDkFPlBKHhK7C1lsW8MaZd/aVsdTgaazhuJ97RKqsJS6hELLLmcAE5AAJGG2kAGtdpZQ67rVjf2zHUZmnhsVt3EUzRBs4kcqxLyKu1Thnk8xgxIdDU009je+DtkOjQS6lLcwzyR3s7vLclklEeWjEZMpVGYKeGDBgWeTlmryaxpRsNZ1qaWWweC38hCEuWaVYwGCy5Ih3lC3mI247lYAlW23tSlfV7vVrHQrOziuU1W3tHhms4nRQiyxBgW3FhtQEhUGxQ2AfnYgFE3+saldWllpenxfarK0tXtblLBJ/L3xrIsTu6sUALEI2Rjb85OS6ytLpZ8f3Frqn2WSe6v5bZPsMOJFjkZk2SMGWP5g/LBXfDMCVYDD9uoa/4ui1HVReaabO5e6s01EiGKSND5gBV2BQhUUM0auMbSwBBZs7RbTSQ1/BqupM+o2VlLCs8MLIqK4+ziOUy7CWUyADIUKOC+AAgBNc3FreeMdOubO+VIZr2HUI7Q2nlm4Z33BVkUsJHDF0JkZVViwBAyBwOoWcmnaldWMzK0ttM8LlDlSVJBxntxXYGXTk8P2tkmnapa3c13cWSy71uLiEARlogmxMhmkI2gqQS/JDMpw/F1u0HiGVnO55o45ZJQrKJJSg81gGAI/e+YCMDBBGBjAAMOiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDW8U/8jfrX/X/P/wCjGrJrW8U/8jfrX/X/AD/+jGrJoAKKKKANbwt/yN+i/wDX/B/6MWsmtbwt/wAjfov/AF/wf+jFrJoAKKKKACtbw5/yE5v+vC8/9Jpaya1vDn/ITm/68Lz/ANJpaAMmiiigAooooA1tI/5Bmv8A/Xgv/pTBWTWtpH/IM1//AK8F/wDSmCsmgArp/Dj2L6Hqcd62ZbaSK5tjJF5kcJOY2d17puaLIGSSEJVwpFcxW54WaFtRuba6XdaT2kpnAUk7Yh54AAZerRKDyMgkAg4IAOnisNRTStP1mO7/ALRuD58EUFvIxOox+Z5h3I2HdBI8okGMkKvABMg2Y28QjQtT1ZLC8try6ZSLW2sDDKZmWdHBKKGZV3pKGbPIC7i2WrnrTSYNb0LU7j+2VaF7mCUtLEsEirGrxlQrMsQAMsQAWTCqV6Eqphge/Gj3+mLoTOI722SPS5oXZ8GKdix27X3kKrFhgkDHCYWgCa20RJNE1e+lns7eSSFIbmK1mjnUjeJTJEsTHDYhP7s7VHzMGVQVV9rJpF54YSzMF1eXEs5FpLM4iNy9vHlYpFXJAxNsQKzMxwu5AFAhu9NstM0OykN5dBreeS/jjsnjldEfy0XdKrYXDwsvmKGxlSVUkIdS0ure+8RaLpdnGunzqsDtJGjF5oZf37IjIu6FgJXBKbVYFidihVoAh1LWLUeFlsJ7FbWS0aOC5ltPmljaZH+UNIWbCRxKjoWUkjZuVVw3O+JLCO30TQbiGdniaGWBFkj2SAB/NDOoJ2k+fwMnKhWz82B0UF+1rfapY+IrddS1mW2klc7BEYdmJijsU/eH92CMq6AIiqSjttxtVs1fwo91uv3ma7W7SO9RRIkcqkSSZDFpEZhCPMZVBIGOWIoA5KiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDW8U/8jfrX/X/P/wCjGrJrW8U/8jfrX/X/AD/+jGrJoAKKKKANbwt/yN+i/wDX/B/6MWsmtbwt/wAjfov/AF/wf+jFrJoAKKKKACtbw5/yE5v+vC8/9Jpaya1vDn/ITm/68Lz/ANJpaAMmiiigAooooA1tI/5Bmv8A/Xgv/pTBWTWtpH/IM1//AK8F/wDSmCsmgArR0C6hsvEel3dw+yCC7ikkbBO1VcEnA56Cs6igD0CwsLLU9a1C0mnn02FIZLGezljEkcGCTHFFIhzI/morhAoL7XyWOS00T6mfCN3pq2cH9jrcwJ5aX6PHsIlZi1xuKI+4RH+FdxX5MOQ1e7u7e98U6fLGZbS/TydQVdgktWmkRJ3d+VaNAeWYlztHYIBW9Jpen6XDc+GEv2fSbrUbW3CRxGSVnfzAxdztUEPGAChYKYQGUneCAYOpW9jpL6PLp5utTmggWCOGJf3e6ZnmRJCRucMku3bsTzBuwQQyixBqA1LxraWumXcFva2uowwtbpIiJcQRSKsTh8gykKq/KxZs8pkMQrLPVbO38U/2rp2m+ZbzxzXCvczl12QoZBCiKFEZXYo2tv2YjZcgKWZpU+uTw3mqaTPOumrbShYbdVtkSZtsZEnlhUDIJRJ5hHKxg/LghACv4Zv30jUbXSbsfa7ubfbw2lwqvDaPICoVwylhuZhvVCuBw245RWWFnZX+maxebtRtJL6ylMRvCJxcvGwnYrINhJ/dMD8pCnktlgp17q81mzW212W6bVJWhFx9gjuY7qO3kQkNOR84CFkzmMLt3su9No3EdlY3Hj0veWbabF/aLWltMJH8m6RZDH5QiKsWBUGNtrLGoIBA4VgDzOiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDW8U/8jfrX/X/P/wCjGrJrW8U/8jfrX/X/AD/+jGrJoAKKKKANbwt/yN+i/wDX/B/6MWsmtbwt/wAjfov/AF/wf+jFrJoAKKKKACtbw5/yE5v+vC8/9Jpaya1vDn/ITm/68Lz/ANJpaAMmiiigAooooA1tI/5Bmv8A/Xgv/pTBWTWtpH/IM1//AK8F/wDSmCsmgAooooA7Wzlj1Xw3omkyST2tvK0ttJcQngFJPNZpk4DxKsikHcuw+Y3PGelt5tItv+Ej1KeS/urSG/g1NQFEZt2l3mKWIb2Dk70yHC8AZBI21xmh3sv/AAi9/ZJYxag32uEpbMH3bXDBz+7ZWILpAMEld2zjOK6JbzRF8Hz2bPEssc8McimeWS0GfOcRMYwHZFbzWG0v8xj+dgOACppt82kWWox22j2stjc+RbxRxhpzeM7kxyfvAVJCxzDhBiQgNHwVWW90/WLHRBfahrMq+fdoFudUinDRhEfbEyMjFt4mkyADGNjDc26nr/bw8LQ2TadPbWFxc3CzmwjEaRxbIgkhkBCumC/zOxDrnLZAdampWNr4fg0qO41RWtTbMskFvB54nLuZPnAZY8+WYclZCwIjK8BXoAlv3sITpZ8Oxt/bFrbI8cV2UHlq7tMpijYsHf8AeDClmYB1wGcFk0ZEkuPiSJtctoIGXVVFnOz+TPKFkAiGxVbemBw5UZxjzBjFZmu3EMus3EGgWlrbanabbV0cEyjy1EYEDu5DkFBgqiS/dwD82ND/AJqN/wATv7L/AMhb/RP+fv8A13yfd/g/1f8Arf8Aln/q6APMaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKANbxT/yN+tf9f8//AKMasmtbxT/yN+tf9f8AP/6MasmgAooooA1vC3/I36L/ANf8H/oxaya1vC3/ACN+i/8AX/B/6MWsmgAooooAK1vDn/ITm/68Lz/0mlrJrW8Of8hOb/rwvP8A0mloAyaKKKACiiigDW0j/kGa/wD9eC/+lMFZNa2kf8gzX/8ArwX/ANKYKyaACiiigDf8KXklrd6jFEqk3OnTo28ZUoq+aykDBwyxlOCCN+QciunsNJ0w+FdZm1WwbTZrea2mktBK5VWy8cZdCDIiHeSw3lyASoUFc8b4cv10zxNpl687QRQ3MbSyLnIj3Df05I25BHccV3ujwx2mi61Ya7osEE1zNDGbezm2yXEyCWVUdQ7eWHMe1diru3jaMYIAKOo6de30OiWV+1g1rNaAqYHiiaMvNIVlhhG1m3IUJQJl+hAcAqPbaXB4tSyvLr+0bC58qNYoFzA9tGvlpK02Rh0VGZmQEcOu4AsA/QRp2qSSXMup3jXKXM99bXFxZxQr9o8pnfb+92kgrFId2EXywCR5nNfQpNO0t9Ssjpd/qb20BdI5ZljEpmZIT5aoGK7kmxlXYOAp/u7QA0u5uNX8QW1zpaxGKWcT34t4iL2Nc5ldnA3/ADAMP3JCnIG1C4Uu0W5E/inT5PEl1Z3V7JextC1oUlnDlwVLSRny9mQAQxZlUAKqgg1egvX0WK3u9L1S1RZ5wn9li4WCKMRtHIyCZMxyOVKKZXYErlSGY7Vr6fbNZeNbW1157OSSHUUS3lWMJeSsJAFchOzHYxM2SVJKEk5oA85ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK2/C+hxa5qM63VwbeztLd7u5dVy/lJjIUf3jnv9eehAMu7tJbKdYZsbzFHKMHPyugdf0YVBXcxW/grxDqUFnFe+IIby48u2hmukhaNSFCIGCckYCr/ADPU1xl5ay2N7PaTACWCRonwcjcpwf5UAQ0UUUAa3in/AJG/Wv8Ar/n/APRjVk1reKf+Rv1r/r/n/wDRjVk0AFFFFAGt4W/5G/Rf+v8Ag/8ARi1k1reFv+Rv0X/r/g/9GLWTQAUUUUAFa3hz/kJzf9eF5/6TS1k1reHP+QnN/wBeF5/6TS0AZNFFFABRRRQBraR/yDNf/wCvBf8A0pgrJrW0j/kGa/8A9eC/+lMFZNABRRRQAV61p1wt3qS3OpQxJDPqemTxPDbLGxuJImlKqyqN2GcZ8wkhCedxBPktek6DqdnZ+CtN1K+jie0sL+GLaYiZTKjTy5Qqy5+WVMb22jD/ACk4DAFayl0IXkTLZaimjx2VzsuI7tCqgwlHLKYxiZiyqQW+80YBKbM2YL3U7XwpPa2yWo0Rp1jUi5klgMO2QyGWRSHjJLQkp+7LE4EeWZTUi1OHQ9EvrZtNtYbeWeGKGUA3DSROhkMirN8jHC27MAqZyoIQ7Sti8TXLfwtp97caky6S9zK++4jUo8LJEYkFs3ykgq+1ANqkZBC4egCvfNotppWl22iXHkXTxyXMM98SVDmQxlo5AFCuTEAC6ABVVsxsCTetS1p4s0O31cwFVWwjtrd4xJcRSiOIHOGV4lDZ+VzjLZCNyRR1K+sGsNIOiyRaReNaMIJX8xSU8+UFVlMjeWWYE8gYBIMu3IOhF52neMtH0/Vr2I+V9giisCguHikEcQyGyBEN4OdrZOFJRlPIB5jRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVteGdQk0rUJ72HUxYyxWzsgaIyLcHj90R0w3qeBjPXFYtdT4Cu7Wz124ee5t7W5azlSyuLjAjhuCBtZiQQBjPUHrQBIPiDfQ/PZaRodjcgYS4trELInrgkkdMjp3rk2ZnYsxLMTkknJJr0621XS/D2maTpWq3Oiatm9eWaSKJbmOKBhzk4zv3E4wDx+FeYUAFaNrNoyW6Ld2F/LOM7nivUjU88YUxMRxjuazqKAOq8ST6EPFOribTdReUXs29kv0VSd5yQDCcD2yfrWX9o8Pf9AvVP8AwZR//GKPFP8AyN+tf9f8/wD6MasmgDW+0eHv+gXqn/gyj/8AjFH2jw9/0C9U/wDBlH/8YrJooA6rw3PoR8U6QIdN1FJTew7Ge/RlB3jBIEIyPbI+tZf2jw9/0C9U/wDBlH/8Yo8Lf8jfov8A1/wf+jFrJoA1vtHh7/oF6p/4Mo//AIxR9o8Pf9AvVP8AwZR//GKyaKANb7R4e/6Beqf+DKP/AOMVqaBPoR1GXytN1FW+xXeS1+jDH2eTIx5I5IyAex5welcrWt4c/wCQnN/14Xn/AKTS0AH2jw9/0C9U/wDBlH/8Yo+0eHv+gXqn/gyj/wDjFZNFAGt9o8Pf9AvVP/BlH/8AGKPtHh7/AKBeqf8Agyj/APjFZNFAHVaVPoR07W9mm6iqiyXeGv0JYfaIeAfJGDnBzzwCMc5GX9o8Pf8AQL1T/wAGUf8A8Yo0j/kGa/8A9eC/+lMFZNAGt9o8Pf8AQL1T/wAGUf8A8Yo+0eHv+gXqn/gyj/8AjFZNFAGt9o8Pf9AvVP8AwZR//GK6rQdTtv8AhFr63soNRt7KG9hkn338ewB0kDFz5HKHYoKENuO0AZOG8/ruPAxvpdE1uw0yWWG+vZII4ZYpNjKypPKADkfe8rZ1GN2e2CAa0vi/RZ/D9ijaddR2lvdzRLdWyW32iAEB0YL5QSMuScbdpBiJDEg0+W1tdK0K01O5k1GKynuZ5DdC+3NdCRYiQVa3BkD+W3yyKqnYSWwymsy38SxReH7+MQxX0kM8DS3sUSRXDkiQGZXKEja2wCR1L5kJJVnAUgsNRj8Ly6zHqcv2BLsytelG3SpKMSrJG/8ArDuihXbkoWdgWIBKgGhJqmgTJpdtpOn39hc3EBXTzBcqrsPtEyhDKyu0RJB5U4PmbWO0ZrReSy0jxLo2nara35uW+xJZ2slzHMkOBGhbdsBjwwP3G+cxncApGee1K8sb+w0iz0//AIl9zdWjIs32Xf54M8qlcIC0O4hztjDA+bsPyqDWhFG2ieMtHsdUnlcyfYAumhGKJKscUfmFzhQVZeGj3btrISoJoA8xooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA1vFP/I361/1/wA//oxqya1vFP8AyN+tf9f8/wD6MasmgAooooA1vC3/ACN+i/8AX/B/6MWsmtbwt/yN+i/9f8H/AKMWsmgAooooAK1vDn/ITm/68Lz/ANJpaya1vDn/ACE5v+vC8/8ASaWgDJooooAKKKKANbSP+QZr/wD14L/6UwVk1raR/wAgzX/+vBf/AEpgrJoAKKKKACun8M3UNnYNPcvttV1ay+0HBIMRS4DggdQVLAjuCRXMVrW//Ioal/1/2n/ou4oA620vjpz6pp+sxS3+traEyebDGrAKySuhkkV/O+Rd251IHlYQkMDVcQ3NtoTay2u3jpd3Im+3RpJ9pRYlMQGGI3E+ftYhti7Nu5iwFa1vcXFrrdhczlr2LV2j2RSwLLbWkl0m51LNkqcuzGJdpZChLmsw3NvLpFvqRvtZOoLJJeQW63I+0tEVEUj/AGjHIHkjogYBXBUr86gBqWo2eo2GkWWmwy6RcXtoy+ajmQSqZ5VMLLGm4Bm3thBtJYKUwFK3oJW0bxzaWNzctPC97Db21omGRFjZYUmcujJv2xgfu/mzvG6MrtNHUL5b+6h0OwiurF5LSMxNZwrIZEliEzxyBFD7N0jsdnygAYi4rQgL6T4t0lryS6m/tSe2n8pUU2xndYzJMrsGVn3k/wCrAwGGHX7tAHmNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGt4p/wCRv1r/AK/5/wD0Y1ZNa3in/kb9a/6/5/8A0Y1ZNABRRRQBreFv+Rv0X/r/AIP/AEYtZNa3hb/kb9F/6/4P/Ri1k0AFFFFABWt4c/5Cc3/Xhef+k0tZNa3hz/kJzf8AXhef+k0tAGTRRRQAUUUUAa2kf8gzX/8ArwX/ANKYKya1tI/5Bmv/APXgv/pTBWTQAUUUUAFa1v8A8ihqX/X/AGn/AKLuKya1rf8A5FDUv+v+0/8ARdxQB0WiNcrpulavp6yz3VnG9pHZIqMbiRZWm5UtuZF82NvlVjlCfkwr1YvLyHT9WGs3Wg2cVq65jDtcLJIQNj2wUybcIQ0bZUKFX7uGRGxtAsrTVvD97b3lzsaynjuIIwyIXDgrIN7EKgOyIb2yAQAAS2G2bmTxFJ4etWuBBbW0FzIv+nIj2qQ+XEIvKEm4SgCOTBj3sRk87/mAG63PDrupDStO+1ac1zBBMLaJDNFKGiSUK3lp5mEHCgiQDoBGorQijbw94y0dWnluRe/YIFWNG+xyhY4k8zecCQqcsoAwCyNuyCtZ+py6brFrpen6bY3VpPe2mfNgRpzOscsiKkiZZwg8vdwz7QFG19ikacMMmgeLNJYO17Fdtp9sz28m6zBWONRv4+d+siD5do2P82cAA8uooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA1vFP/I361/1/z/8Aoxqya1vFP/I361/1/wA//oxqyaACiiigDW8Lf8jfov8A1/wf+jFrJrW8Lf8AI36L/wBf8H/oxayaACiiigArW8Of8hOb/rwvP/SaWsmtbw5/yE5v+vC8/wDSaWgDJooooAKKKKANbSP+QZr/AP14L/6UwVk1raR/yDNf/wCvBf8A0pgrJoAKKKKACta3/wCRQ1L/AK/7T/0XcVk1rW//ACKGpf8AX/af+i7igCbwusNxeXlhcNsgurRxJJuI2LGVnJ4VjyIdvQ43ZwcYPSafDqz6Tqdrpc8Fvp0KpdpJBcLNF5SEq4mUckushdg6gsItoTACryfhyWOHxLpjTyKlubmNZi5wvllgHDZ42lSQc8YJzXWaZp1019daPos0CQPDIpSO72XP2mP96mRIsblg8ajITaqlsYbe1ADbq8std0PTreCyv1mmkms/NsYIy8qRbZhmBFUYJlY7FYYwGYuVFaEVp/YPjLR58fbvtH2C08+B91ov7uJcMcfO52+Yoyu3Eb/NnAoy3Q1HQn0iWOeaWC9MV5dIiQSs7ru3kFRuQeQ7P5pVmKIzMvIW9FD/AGB4y0eWCT7XJcfYLKWaC4xCi+XEOPLfc2/buXzAqkKflccqAeY0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAa3in/kb9a/6/5/8A0Y1ZNa3in/kb9a/6/wCf/wBGNWTQAUUUUAa3hb/kb9F/6/4P/Ri1k1reFv8Akb9F/wCv+D/0YtZNABRRRQAVreHP+QnN/wBeF5/6TS1k1reHP+QnN/14Xn/pNLQBk0UUUAFFFFAGtpH/ACDNf/68F/8ASmCsmtbSP+QZr/8A14L/AOlMFZNABRRRQAVrW/8AyKGpf9f9p/6LuKya1rf/AJFDUv8Ar/tP/RdxQBk13d7OsWtLe6XeWcF9cTRalPb3bGMyM5WdYxIcJ5Shl6spZlJxwgHCV2Uc1u3h7Sbq1uorfV2je2a5uowVJjclUSQ52SBXiw5AAUKA6bWBANfWLWbSIn0HUNU8zSxI5mE+qgSRRq2IEEa72+6qtxGQRLyo2BlsQwrpHjazfTUnvQk1rp11dpMUjiCeXCQ0cbblJZODIdrcgKwAY0dQ0i8udatND1e8tYrcwWlrDHJciSS3n8mNfkRNzLls5BARh1YHYwti1XTviHHqWmJLefadTVnvVK+XBHNIARsGSNwYhZHIDBiVU/K9AHmNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVv6Z4a/tLTItQF4I7ZJZEvHaPP2dVUMG6/NuyQBxyMd6q6FZfa7qXO7asTA4/2gR/U01dSktNDvNHEZBnuUkkk38YQMNu3Hq2c+wpX1sZRqxlUdNbq34ma2Nx2kkZ4JGKSiimahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGt4p/wCRv1r/AK/5/wD0Y1ZNa3in/kb9a/6/5/8A0Y1ZNABRRRQBreFv+Rv0X/r/AIP/AEYtZNa3hb/kb9F/6/4P/Ri1k0AFFFFABWt4c/5Cc3/Xhef+k0tZNa3hz/kJzf8AXhef+k0tAGTRRRQAUUUUAa2kf8gzX/8ArwX/ANKYKya1tI/5Bmv/APXgv/pTBWTQAUUUUAFa1v8A8ihqX/X/AGn/AKLuKya1rf8A5FDUv+v+0/8ARdxQBk10+iXdvD4cnkujLE1pdqLa4gQO8DzISzhSQGIFuoXkbd5YEkLjmK6LwhPbx3mow3MXmLPYSbcqGCGMrNuKnhsCIkKeGICnAJIAN650iGy0Cz1OTV7MTSWRsEuGiuCAWZyS37onP2dkRQwGVbK8IubmkWaR674c1KyZdTvZlgjmNuZVS3hRjB5oX5XIKx4JPyqQ24EOuM6e0+x6FYTza5Zlbu5uZnW9SctPHIsB2yqqMQ3Ct1/iVlY8NWmtrbr48sxo2n/a/st3BaTzTSiWWBYSsRYRADaNq5MhDr8ykFG4AB5jRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAaGk28E5vzNDHIUs5GXeoOCMYIz3rOACjAAA9BWron/ADEf+vGX+lZdSt2YU/4s/kFFFFUbhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGt4p/wCRv1r/AK/5/wD0Y1ZNa3in/kb9a/6/5/8A0Y1ZNABRRRQBreFv+Rv0X/r/AIP/AEYtZNa3hb/kb9F/6/4P/Ri1k0AFFFFABWt4c/5Cc3/Xhef+k0tZNa3hz/kJzf8AXhef+k0tAGTRRRQAUUUUAa2kf8gzX/8ArwX/ANKYKya1tI/5Bmv/APXgv/pTBWTQAUUUUAFa1v8A8ihqX/X/AGn/AKLuKya1rf8A5FDUv+v+0/8ARdxQBk1qeHJY4vEVh58ix20swhuGc7V8l/kkBPYFGYZ7dcisuigD0bw5/ZV/rpTVbW8tIp7mOBkvZFmWSdGXZEsYiXYR90nBVUYphd4Ih0WKR/FOnz6VZ2d7E97G0t7532u5ZC4Lu6uAUAP/AC08pCMD5jnLN1K+t9U8WpeSxy6fPHHDereW7BobRGVZgXif7x3SYJVl3MchCzbWt2uk2+m+OoIfD9vFeRx6mqXMhxK9ugl5URMu5AvAMvzZwuHUkrQB5tRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAamif8xH/AK8Zf6VXh0nUriye9h0+7ktEBLzpCxRcdcsBgYp+l3VvarfNcTxQq9pIimRwu5jjAGep9q3mQ6X4FP2TULN5r7DXSrdoZI48jbGEzuyT8zcdAB60rNamFP8Aiz+RyVFFFM3CpY7eeaOWSKGR0iXdIyqSEGcZJ7DJxUVdR4LubHTL2XUdTuIxZbfs0trwz3Afgjb12j7xPsB1NAHNzW89uUE8MkXmIJE3qV3KejDPUH1qOtHX5JpdevWnu47t/NYefEwKOB0K44xjGAOnSs6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA1vFP8AyN+tf9f8/wD6MasmtbxT/wAjfrX/AF/z/wDoxqyaACiiigDW8Lf8jfov/X/B/wCjFrJrW8Lf8jfov/X/AAf+jFrJoAKKKKACtbw5/wAhOb/rwvP/AEmlrJrW8Of8hOb/AK8Lz/0mloAyaKKKACiiigDW0j/kGa//ANeC/wDpTBWTWtpH/IM1/wD68F/9KYKyaACiiigArWt/+RQ1L/r/ALT/ANF3FZNa1v8A8ihqX/X/AGn/AKLuKAMmiiigDso5W1Tw9pNo2n3V9brG5mkgumiKSxuRmQsGQIsUkI3lRgFRvAUrW4lrbx+ONPm0h7W/uJ57We8mkwZGDhHaRIXUbN2WclC5QDrGMg83os8lz4TuNOe0W7t01GN/K3+WQXik3Sb84UosPBbKgMxYNgY6S2toYvEfh240meKW7uPswnUSFpEhjfyWWMhQrACPDurEsAxAWMtkA8xooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMTXLW4mmjkjRpIwu3auTg+uP89K6XRbiws9It7e+0n7RcoDvk+1MueSQMDjgYH4VVorrr4uVbDQw0lpHtdP+tQg3CTkvxSf5mz/AGlov/QA/wDJx/8ACj+0tF/6AH/k4/8AhWNRXB7KPn97/wAzb28+y/8AAV/kbP8AaWi/9AD/AMnH/wAKu3usaJLaQRjTPNdY1GN5XYB/Du6nFczRUuhFtO7082aQxlSCaSWvkv6+8KKKK2OUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKANbxT/yN+tf9f8//AKMasmtbxT/yN+tf9f8AP/6MasmgAooooA1vC3/I36L/ANf8H/oxaya1vC3/ACN+i/8AX/B/6MWsmgAooooAK1vDn/ITm/68Lz/0mlrJrW8Of8hOb/rwvP8A0mloAyaKKKACiiigDW0j/kGa/wD9eC/+lMFZNa2kf8gzX/8ArwX/ANKYKyaACiiigArWt/8AkUNS/wCv+0/9F3FZNa1v/wAihqX/AF/2n/ou4oAyaKKKAN/wo0j3OoWcFstzcXdk6RwvHvWTYyyspA5yVjYDbzuK4I6jr9OS3+3eF5NKe1iuI5xbXJ+0gqoE3mSRwO2N3+uAbBYsrKqs48wnh/C90tp4o02SV4kgadY5zMFKeU52yBt3GCrMDn1ru/D1vezXOkQ2WnNBeQXouL+WOEiOMsyCWJWHyxN5ccbMv+06DZ/q2APLqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKANbxT/yN+tf9f8//AKMasmtbxT/yN+tf9f8AP/6MasmgAooooA1vC3/I36L/ANf8H/oxaya1vC3/ACN+i/8AX/B/6MWsmgAooooAK1vDn/ITm/68Lz/0mlrJrW8Of8hOb/rwvP8A0mloAyaKKKACiiigDW0j/kGa/wD9eC/+lMFZNa2kf8gzX/8ArwX/ANKYKyaACiiigArWt/8AkUNS/wCv+0/9F3FZNa1v/wAihqX/AF/2n/ou4oAyaKKKACvYoo9Rv/E2l6xLazma9aGWK6jglkWG2ZopNhYEqpwZIsgLwGLriXcvjter+DJDfWeiXYhnnvLVo7SG7WB3EH76QzI7AH5fJaNV3ZAL/Ltw5UA8oooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKu6XpN/rV6tnp1q9xORnanYepJ4A5HJ9aAKVFd/438LeI9R1u/11dCnhtHCHYJI5HUBFU/KjE9RnjtXAUAFFFFAGt4p/5G/Wv+v+f/0Y1ZNa3in/AJG/Wv8Ar/n/APRjVk0AFFFFAGt4W/5G/Rf+v+D/ANGLWTWt4W/5G/Rf+v8Ag/8ARi1k0AFFFFABWt4c/wCQnN/14Xn/AKTS1k1reHP+QnN/14Xn/pNLQBk0UUUAFFFFAGtpH/IM1/8A68F/9KYKya1tI/5Bmv8A/Xgv/pTBWTQAUUUUAFa1v/yKGpf9f9p/6LuKya1rf/kUNS/6/wC0/wDRdxQBk0UUUAFemfC5rKaGQahbLMtjexPanywds03ybmY9APLGORknozbAPM67X4WvanxitrdRtILmEiPacASI6zKTyOB5X547ZoA4qiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArp/COpWdvb6vpt/LcWsGoW4Q3tuhdoNrZ+YDkoc4YDr075HMV0nhSxWeLVby7vprPS7e2C3jQIGeQO4CxgHoWI69BjmgDZ0R/C3hXU49Yg8UT6hJAG22sNi8JlJGMFmOMc5P0rgq79PAGk6gllNp3iIoNTWQ6fBc2jbnZPvK7A4XB4zjnsDXAUAFaOm6Je6ttFmbVnaQRrHJdxRuzHGAFdgTnI6Cs6igDqvEmgXk3inV5Vm04K97MwD6lbq2C56guCD7Hmsv8A4Ry+/wCe+l/+DW2/+OVU1W+/tPV72/8AL8v7VPJNs3Z27mJxnvjNVKANb/hHL7/nvpf/AINbb/45R/wjl9/z30v/AMGtt/8AHKyaKAOq8N6BeQ+KdIlabTiqXsLEJqVuzYDjoA5JPsOay/8AhHL7/nvpf/g1tv8A45VTSr7+zNXsr/y/M+yzxzbN2N21gcZ7ZxVSgDW/4Ry+/wCe+l/+DW2/+OUf8I5ff899L/8ABrbf/HKyaKANb/hHL7/nvpf/AINbb/45WpoGgXkWoys02nEGyu1+XUrdjk28gHAfpzyegHJ4FcrVvTb7+z7p5vL8zdBNDjdjHmRNHn8N2ffFAFv/AIRy+/576X/4Nbb/AOOUf8I5ff8APfS//Brbf/HKyaKANb/hHL7/AJ76X/4Nbb/45R/wjl9/z30v/wAGtt/8crJooA6rStAvE07W1M2nEyWSqNupW5AP2iE8kPwODyeM4HUisv8A4Ry+/wCe+l/+DW2/+OVUs777Ja6hD5e77XAIc7sbMSpJn3+5j8aqUAa3/COX3/PfS/8Awa23/wAco/4Ry+/576X/AODW2/8AjlZNFAGt/wAI5ff899L/APBrbf8AxyteHw7dL4QvV+16WZHv7c7BqUHyhY5uS2/aM7uBnJ2txgVyVW477y9IubDy8+dPFNv3dNiyDGPfzP096ALf/COX3/PfS/8Awa23/wAco/4Ry+/576X/AODW2/8AjlZNFAGt/wAI5ff899L/APBrbf8AxytrwlpWpad4u0q5iudOUrcorbNRtnYox2sAockkqSOBnnjmuPq3pV9/Zmr2V/5fmfZZ45tm7G7awOM9s4oAryxSQTPDNG0csbFXRxhlI4IIPQ0yiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArT0TXr3QLqSa08p1mjMU0E6B45UPVWHp/nvWZRQB1c/xH8TSI8Vvex2dsU8tILWBEWJcYAQ4LLx6HiuUoooAKKms7WW+vYLO3UNNPIsUYJxlmOBz9TXT6p4LhstNv57LWob650wqt/bpA6eUSdvyseHwc56YA/CgDkqKvaNp6arrFrYPdLbC4fyxK6lgGPQYHqcD8aj1KybTdVvLBnDtbTvCXAwGKsVz+lAFWiir+iaRc69rFtploUE07EKXOAAASSfoATQBQorpNZ8MWtlo66tpWsR6pZC4+zSsIGiZJNu4cHORjvVTwvoKeJNaXTGvltJJEYxs0Zfew528dOMnPtQBjUUUUAFFa/h3Qv7evp4nuktLe2t3uridkL7I1xkhRyx5HFT+IPDsGkWlhf2GppqOn3ocRzCFoiGQ4YFT068evPHqAYNFdVovhC2vrCxutT1qPTf7RlaKxT7O0pmKsFOSCAg3EDmue1Cyl03UrqxmKmW2laJyhyCVJBx7cUAVqKK3fD3h6HWLe/vb3Uk0+wsVQzTmFpSC7bVAVeTyOvagDCorZ8R6CNBvLdIrxLy1urdLm3uFQpvRs9VPQ8Hj6fStLSfBsOr6M1xBrVudTMElwmnom87EP8bg4QnsD6j3wAcpRRRQAUV0ei+GrO+0WXWNV1lNMsluPsqP9naZnk27sYXoMd6z/EGiy+H9cudMmlSVoSMSIDh1IDA/kR+PrQBmUV1cvg2H/hG59StNat7u7tYY57q0hTIiVz08wHaWHcex9s8pQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q==",
+      "text/plain": "<IPython.core.display.Image object>"
+     },
+     "execution_count": 8,
+     "metadata": {
+      "image/jpeg": {
+       "width": 1600,
+       "height": 1600
+      }
+     },
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Image(zslice, width=1600, height=1600)"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "pycharm": {
+     "name": "#%%\n"
+    }
+   }
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "outputs": [
+    {
+     "data": {
+      "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAMABAADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDi6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKsWFnJqOo2tjCVEtzMkKFzgBmIAz7c11E/hnwnbXEkEvjdRJExRwulysMg4OCDg/UUAcfRWjrmlf2LrE9gLmO5SPayTxfdkRlDKw+qsPX6nrWdQAUUVb1Kx/s+6SHzPM3QQzZ24x5kSyY/Ddj3xQBUooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAt6U80esWT29xFbzrcRmOaYgJG24YZic8A8mupvvGMCajci48NeHbq4WVg1xDExjlIJ+Yc8g9c965nRYrWfXdPiviotHuY1nLvtAQsA2T2GM816de2HiWPUJ4rb4feHHgEjCJjaxtlc/KSd47Y7D6CgDzDV9Un1nVJr+4SJJJdo2QrtRQqhQAOwAAFUq3vGdvb2viy+htreG2QbC0EL7kjkKKXUH0Dlhjt0wOlYNAGt/ZFj/0Mel/9+7n/wCM1teJ9Es11SF/7es44XsrUwNPBcK0kYhRQ+BGwwdp6E46HkGuPrrfEP8Ap+nRoOZ9NtLSQ55Jgkt4V69gsmPl5yZicDBJAMj+yLH/AKGPS/8Av3c//GaP7Isf+hj0v/v3c/8AxmsmigDW/six/wChj0v/AL93P/xmj+yLH/oY9L/793P/AMZrMiiknmSGGNpJZGCoiDLMTwAAOprZtfB3iG7d400qaN0GSlxiFjwT8ocgtwOcZx+NAA3h63Szju28Q6WIJZHjRtlzyyhSwx5OeA6/nUP9kWP/AEMel/8Afu5/+M11Fh4H1Cfww0VzPAha8SRVXMrwqFYS4wNu5t0RwGwdoyRt4vWHwws/tiC7vrye3eMsPKiWFkIUtzkv6YxjuOexAOJ/six/6GPS/wDv3c//ABmj+yLH/oY9L/793P8A8Zr0ez8D6AsL289irSIxVJJLhzI3JwWCsF5GCAADjrzmt46PbWWqW09pYWsLpGmZYLeOEgleTlRnnPQcc4zigDye18IS31u1xZ6lbXEKttaSG0vHUHjgkQYzyPzrQk+G2oxW8U8mq6UqSruXc0wYjp93y8gjuCMjvXortDJFLJLEwDEAuCTjDDj5wABk9OnB9KszqifY44rrbthLhdvykb2O47cD8+KAPN4vhbq81w8Eeo6Y0iEKwDS4BIBxny8ZwQfxp/8AwqfWh11HSx9ZJf8A43Xq1q07XhIkikTzVAwfu4IyMY64z39OBVG9FzPZMJI5Iv3eG2MDk5XIwA3BGRnr16daQHjN34ZXT5FjvdZsraRlDqs1vdoSp6EAw9ODz7VX/six/wChj0v/AL93P/xmvXn0fS9Xtrqzvbdp9qovmMiq8f7pm3IQvyklFzwBwBgjivKvEnhO88O+RLITLazIhEu3BRyoYo4BIDdcckEDg8EBgMtvD1vdytHB4h0t3WN5CNlyPlRS7HmHsqk/hUP9kWP/AEMel/8Afu5/+M0aB+6lv7xv9Xb2E+8DqfMXyFx/wKVSfYHvwcmgDW/six/6GPS/+/dz/wDGaP7Isf8AoY9L/wC/dz/8ZrJooA1v7Isf+hj0v/v3c/8AxmnxaFazzJDD4g06SWRgqIkN0WYngAAQ8msatbw3+61lL08Cxje8DH7oeNS0Yb2aQIvbO4AHJFAD5dDs4ZnibxJpJZGKkotwy5HoREQR7jimf2RY/wDQx6X/AN+7n/4zWTRQBrf2RY/9DHpf/fu5/wDjNH9kWP8A0Mel/wDfu5/+M1k0UAakulWccLuuv6dKyqSI0juNzH0GYgMn3IFZdFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTxLIqbBI4X0DcUyigAooooAK6pnz4usbVxugvLKytZk9Ue3iUn0yDhlznDKpxxXK11D/wDI8aJ/uab/AOiYaAOstPAWhRRrPHFe6o8MghnQzqkZbDBjwFIAYDgMTz3xzsR+GtD06aVY9HtoxPatKqTKJyrCLdg792CCSflODjvxW9LCJrOdZsvDvRgoznIDZ6dR0/H8KI7qOW/2RFlke2D/ADAsMGLjgHjt6frmgDLhYm2+zu7PACqRRwMSAOfkAzhQABwMcY5q7bRQnUFZLmMuLd0VcDcBsOCOw9enc9ujpo7Z4xFMI9qjIUnGOD/TP5e1LBahpP3b5jeF1bn5SPLwOAOfwI/LikMbsuLTSoQoQiN2UIicbdqgYUDg8Djp15HGEhuSbpra4EWx4X3Hfgj92SQRzjvznGO9Ri4mWwi+bJSSRWLDYo+VMZ3ckAkdwT6GrVpOJJfJYPvMTbyqsADszjPbrQBUhhiaLEPm2/zHaGGDu5bvyQCx46cccVZnt5kliEco8sJGGTkcBV6Hk9unQg+vNQDTIEtxBEZI4wQww2SCO+Tk56fl9asXLSxXkS/NIjomSEzjCLyTnA/AUAZ63ck4ZHijm2KJFUDcWIYEHBxg9McdeR2FWJLe1nSyVrSVQIQEXDBEVXYgY4A6AH1BA5FR+a95bywNJBvIx5kYLgHI5AIwcZHrjjNQ3VlM9la2p1G3ZBbvujkt0dnfMgz2GASONv8AD15NAG1BY7b6KRJn2+aHKMSQDuJJXBGM7iD1HA465z4r83IuBbXAuhHtzyAeWx0wORtYdeo/JkXmHxDEXtrdl88ZkVSjZ3AAkg84AA5Hbr2D4pQnnyGS4IA4V33DqOlAia1e4PmrIqonBDZHz5hlyuMnkEZ+h6nmnXMVrc6Tqa3ESXEEltb70cDay49ePzzxwRjrRaNvN0SCwwGRjjAzFJwPfrz70qtE2i3gQx+X9mtiDncu3aMc9xQB5fq3hSbw2viQReZNp5tFSKdhyD9ph+VscbuD9QM8cgcNX0VJiW7u7dwWiku4kkjAB3qzOCrDupHUEYxnrXlPjjwU2hTS6hpyM2lGYxFSctA3oT1KnsfwPOCzA4uiiigArWs/9G8N6lcdHuZIrNQ3Rkz5rlfUq0cIPoH5HINZNa2r/wCjadpVgPlZIDczJ1xJKchs+8Qg4HA9juoAyaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArrYpkh8caTvtop98GnIvmFhsJhh+YbSOR75HqDXJV1D/API8aJ/uab/6JhoA9jnheaxcRzNEwlRgy/Ruo7iiW8ihvRbu8m/7MSX29AIs56Y/IVMv/HrJ/vr/ACalWUG/eI4DLACBnqvl9fzyP/10hmVa28n2J01BllRh80coDADnOT3/ABrRtwryiQMSBG5BDHByp/A1n3EklpK8+ZGiJX5cg9mzgdux/D8tCMHeWEjqBHJkKAc/KfY0AVr58WMcUMau7SuMBQduQuTj1w3fjnk88ut7ZVLPIw+WFwAfuqNmDkcAjj2HHQVMkyz2UMkRDRs7/NyP7vb86fbAh8EkkRtye/ymgCtGQgEXJK8ZCEL68dsVZuc+YuACdidT/sioiQoySAPU0l5e20VwqPOgciNNoOTkhQOB/vL+YoAqw2shSRbkx7XAASHKqBgf4CrEsSR28DRRjBhbLMTuALMe4z19apx61ZTQNNC7SICgyFI+82wdcdwfypt5rcYt9MIiPl3dtLJuY4KBctyOc/560AWbfd/a6biD/pAxgY43VWP+on/3B/6EKitL+STxJFDtUL9sZPf5SKqpfyG1vnZFIjgRwBxnJBNIDc0//Uz/AO6v/oqSkixLp99G4yDaWmeeuRzS6f8A6mf/AHV/9FSUlt/x6Xv/AF52f8jTAtp/x/S/9fyfzapiMjBz/wAhPPBxUKf8f0v/AF/J/Nqn/wDllQI4HxX4PigSXUNE8M2V4izsk8ANwZAc8MipIBt5A2gcYz0+753/AGvY/wDQuaX/AN/Ln/49X0fpv/L3/wBfL/0rz34jfD5b1n1nRosXjEme1Qf684JLKP7/AASR/F2+b7zA84tb63vbyC0t/DOlvPPIsca+bcjczHAGTNjqasaxr2mz6tcGDQ9Onto28m3ldrkM0KAJHkeaOdir2FVNCikstWuLmeNon02GWZt4w0MyjbESvXImaMYx9RjNY1AGt/a9j/0Lml/9/Ln/AOPUf2vY/wDQuaX/AN/Ln/49WTRQBrf2vY/9C5pf/fy5/wDj1Z91MlxcPLHbRWyNjEURYqvHbcSffk96hooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK6h/+R40T/c03/0TDXL11D/8jxon+5pv/omGgD2lf+PWT/fX+TVDdlbe9S8ZgqR2z+Z8uSV8rP6YqZf+PWT/AH1/k1QamY1gmMylohauXUdSPIbNIZjXmtWMtheOYHmS2SJ8H5Q28Arg9R15otdekk1S0tBHgXFk02/cCVJiZvTnp7delY74+watEltDKwis1AjLsJCQuMc5Ptj9au2VvONd09jp5VBp5DSlXAjPkv8ALknA9OeeaAM288T6nLoVnKskcbNPNG4WMEMAsWMhs/3jWkJrmTVL63ic5SHy4VGBtzaytx6ZYDn2FZEsMa6DaedHp0S/ap+szuM7YumxmOf0GB0yM7iSQW+qX0paMuqbsojswItZT8wJA6Zxj8cdQAZtx/yDtR/7CVz/AOiXq9qn/IzH/rrD/K2ptzJaR2V7vs3YC+m3AuU3N5TEnvwRx+vHSp9TmQeIipt4ifMhG8ls9LfnrjuO3Ye+QDJ0b/kDP/27f+lD1avFZ7Dw2iKWZrC4AAGSTsNLpmoNLpbyfZraM/uMCOIKBmZl/TGR6E5qe/vZTpuihssJ7G4ZwXfnCseeefxzQBZsbS5XxPFIbeUR/bpG3FDjBIwc+lUzbTw6dqTSwyIptkALKQCeKt2u1PFkKhF5vGOcnOeCe/vVOGYx2movGNjLbIQVJB7e9IDo9P8A9TP/ALq/+ipKS2/49L3/AK87P+Rp9i5eGctjO1ecf9MnpIEK2d43VGtLPafwP60wLKf8f0v/AF/J/Nqn/wDllVSMn+1rgZ4+1xcf8Ckq0CDnB6anzQIvab/y9/8AXy/9Knn/ANda/wDXU/8AoDVBpv8Ay9/9fL/0qef/AF1r/wBdT/6A1MDj/GXhBtds9TuNLSKPVX2ROxGPtEShX8snoDuCkMeflC5A6eF39hdaZfTWV7A0FzC21426g/1HcEcEc19SQf666/66j/0BawvFvhOz8Q2vnmxtJ9RhQrA1wZFUjOdrFGU49Mk4yeOTQB84UV0mrBtCvjZal4S063uAoba0twQQehBExBH0PUEdqo/2vY/9C5pf/fy5/wDj1AGTRT5XWSZ3WNYlZiRGhO1R6DJJwPck0ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArqH/AOR40T/c03/0TDXL11D/API8aJ/uab/6JhoA9pX/AI9ZP99f5NVfVnMdpcsApIs5D8ygj/UN2NWF/wCPWT/fX+TVV1r/AI8br/ryk/8ARDUhnKSTz3Og6kEnlaVbW23KZCeCoZm5PcEgjvj3pth/yMmk/wDYMP8A6IepbC28y01SKOaN2ktLZBjcMfusAnI6GixiQeIdMbz4yV00gKA2W/cvyOMY+uKQHOTf8i3Zf9fdx/6BDXQy/wDIT1b/AK5f+2c1Y01vF/wj1mPtsGBdzndh8H5If9n/ADmt54kOo6mTPGpMXIIbK/6JKOePx49PXigBupMsmm3UgYFmvZwwB6FYnUfooP41Pqn/ACMx/wCusP8AK2qtPAG07UcTIQNQuGY4bC5iYYPHbP0q5qcanxJnzUB8yE7SDnpb+3sPzHvhgZejf8gZ/wDt2/8ASh6tXis+n+G1VSzNYXAAAySdhqHSYkXSHAnjYf6PyA2P9ex7jv0/+tzVm9jQ6doH7+MbbC4A4b5vkPI4/HnFAF6FHTxfbllZd12xXIxkYXms5P8Ajw1P/r1j/pWtaTzDxFboLg7Gu5AUyfmG/p+FQLfu9neeeYpljhVuVPOSM546fhSA2NP/ANTP/ur/AOipKS2/49L3/rzs/wCRp1gcwz9PujoP+mUlJb4+x3uBg/ZLPvx0NMCeJc6tdEEcXcWRnn70n+NSxf6yb/sK/wDsoqCP/kMXP/X3F/6FJViM/PLxj/ia/n8ooEaOm/8AL3/18v8A0qef/XWv/XU/+gNUGm/8vf8A18v/AEqef/XWv/XU/wDoDUwCD/XXX/XUf+gLU9QQf666/wCuo/8AQFqegDD8U+FrHxVpZtLsbJky0Fwoy0Tf1B4yO/sQCPn7X/DWqeGbxbfU7fy9+TFIp3JIAcZU/kcHBGRkDNfTteTfGz/mB/8Abx/7ToA8looooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK6h/8AkeNE/wBzTf8A0TDXL11D/wDI8aJ/uab/AOiYaAPaV/49ZP8AfX+TVV1r/jxuv+vKT/0Q1Wl/49ZP99f5NVbVwGs7kFgoNnINx6D9w3pSGchZ/wDIO1r/AK8bb/0TU9oZLrxVYXG0Z/sxpHx0GYn/AKkUy0jjXT9XzMrKbK3DbFOQPK68gdeo/XFX9Jki/tG3hDOzDS90ZKgAL5eD36nC8dsdaQHHzf8AIt2X/X3cf+gQ10Mv/IT1b/rl/wC2c1Z0raSugWZVbpl+1T7RIARnbFnIBHGMYwa2zJbrf6jlcSCL5m8vd/y6y+rYPGew9PcAFVncabqkUa7jNqNwmAMn/VsePfIFW9TVm8TkKpJ8yE4A7AWxNRvcpFa3cob/AFeozf8ALBeojY9jz069T0qxqjqfEOxppcCSH5MZUHFvjv7/APjx/FgZuk280ekOskbRn/R/vjb0nY4574I/MetWb2Fv7O0DLRgJYXAY7x/cI49fwzVbSVgGkPskkK/6PyYwD/r2x39f89qs3qw/2doGZJOLC42fIORsPXnjj60AXbTafE1tiRcreyAjB67s+nvVFEH2HUgHVibZB6Y+761bsRH/AMJTFhmz9uk4298jPeqiBPsOpYZsfZkz8vQfL70gOl0//Uz/AO6v/oqSktv+PS9/687P+RpdP/1M/wDur/6KkpLb/j0vf+vOz/kaYE0f/IYuf+vuL/0KSp4v9ZN/2Ff/AGUVBH/yGLn/AK+4v/QpKni/1k3/AGFf/ZRQI0tN/wCXv/r5f+lWJlJltyASBISfb5Wqvpv/AC9/9fL/ANKnn/11r/11P/oDUwCD/XXX/XUf+gLU9QQf666/66j/ANAWp6ACvJvjZ/zA/wDt4/8Aades15N8bP8AmB/9vH/tOgDyWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArqH/5HjRP9zTf/AETDXL11D/8AI8aJ/uab/wCiYaAPaV/49ZP99f5NVXWv+PG6/wCvKT/0Q1Wl/wCPWT/fX+TVV1r/AI8br/ryk/8ARDUhnI2f/IO1r/rxtv8A0TVvRv8AkO23/YF/9kqrYI0ljrCIpZ2srYKqjJJ8roKv6TaXCazbu1vKqjSPLLFCAG2fd+vtSA5Kb/kW7L/r7uP/AECGuhl/5Cerf9cv/bOasmbTpz4fs0322RdTn/j6jxykPfdjt/nNbrwRnUdTJuoVJi5Uhjt/0SUc4XHfPGeB64FAFS4/5B2o/wDYSuf/AES9XtU/5GY/9dYf5W1V50txYX4ed8HULgsUjzgmJsjkjOB39eOnNXdTNuPER3CV5DJD0IUKcW/1z/Ce3ce9MDJ0b/kDP/27f+lD1Zvv+Qb4d/7B9z/6AaZpUlsNJcxQPt/0f5ZZN3/LdsdAvIOT+X42ry4VLDw+628IY2M7JkFgmEJwASQR/vZoAlsP+Rri/wCv+X+Yqon/AB4an/16x/0rRsbqQ+J4oysW37dIuRCgOAR3xnPvVVblnsdR8yOFlW2Q7RGFz06lcH9aQHQaf/qZ/wDdX/0VJSW3/Hpe/wDXnZ/yNPsSrQzkLt+VeAeP9U9Nt1ItL09V+yWYDY4PBpgSx/8AIYuf+vuL/wBCkqeL/WTf9hX/ANlFQR/8hi5/6+4v/QpKni/1k3/YV/8AZRQI0tN/5e/+vl/6VPP/AK61/wCup/8AQGqDTf8Al7/6+X/pU8/+utf+up/9AamAQf666/66j/0BanqCD/XXX/XUf+gLU9ABXk3xs/5gf/bx/wC069Zryb42f8wP/t4/9p0AeS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRVzSLaC91qxtLmQxwT3EccjggFVZgCcngcGvQNTjutP1W4srD4cwzWUEhjjkezllaRQcbt/fPXvjPegDzOiuj8a6XaaRr629pD9m328Ustp5hk+zSMuWj3H73Y5965ygArqH/5HjRP9zTf/AETDXL11D/8AI8aJ/uab/wCiYaAPaV/49ZP99f5NVfVneO0uXRirCzkIYcEHyG5B7VYX/j1k/wB9f5NVXWv+PG6/68pP/RDUhnK29zPNpusCWeRwtlAQGcnBMWT+fep9G/5Dtt/2Bf8A2Sqln/yDta/68bb/ANE1b0b/AJDtt/2Bf/ZKQHLzf8i3Zf8AX3cf+gQ10Mv/ACE9W/65f+2c1c9N/wAi3Zf9fdx/6BDXQy/8hPVv+uX/ALZzUAR3H/IO1H/sJXP/AKJer2qf8jMf+usP8raqNx/yDtR/7CVz/wCiXq9qn/IzH/rrD/K2pgZ2jf8AIGf/ALdv/Sh6tXgDaf4bBYKDYXALHoPkPPFVdG/5Az/9u3/pQ9Wb7/kG+Hf+wfc/+gGgDTs7Vk8TwOJYXBvZGIWQZGSOMHnP0qt9guY7DUN0fL26KoVgSSMZ6Gn6erHxTGwUkC/kycdORVWPfFZ6kfmRhbRkHoR0pAdLYAiGfII+Uf8AoqSktwRa3oIwRaWfH4GlsP8AUz/7q/8AoqSi2YmyvBk4FpZnGeOhpgToV/tafAIb7XFkk9fmkqaMEPLkddV4/wC+RVeP/kMXP/X3F/6FJU8X+sm/7Cv/ALKKBGlpv/L3/wBfL/0qef8A11r/ANdT/wCgNUGm/wDL3/18v/Sp5/8AXWv/AF1P/oDUwCD/AF11/wBdR/6AtT1BB/rrr/rqP/QFqegAryb42f8AMD/7eP8A2nXrNeTfGz/mB/8Abx/7ToA8looooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKALelW4u9XsrZoXmWadIzEjBWfLAYBPAJ6ZNbtxeeJ7bxA+h2d9q9q6z+Rb2j3jKUBOEXO7b0I5HB6jisfQrqKw8Q6ZeTkrDBdxSyEDOFVwTx9BXW6r4k0HxVcXUGttPBJFcyGw1OCHcfILMQkicEgcYxyM9ucgHFX9veWt/NDfxzR3YbMqzAh8nnJz65znvmq9bnivWYNc1lbi1WbyIoI4EkuMGaXauN8hB5Ynv6AVh0Aa39r2P/QuaX/38uf/AI9XYyzWEmvaJPaaLZPIkVgLstJPvhLJHsZR5mNgDIoJBwww33l3ecV1sN1NaePdGkgfY7QWEZOAfle3iVhz6qxH40AezF1a1fEap86/dzzw3qaqaupazuVGMmzkHJwP9Q3c1ZX/AI9ZP99f5NVXWv8Ajxuv+vKT/wBENSGcraQ7NP1cNJGN1lbg4bdt/dYycZ46/l9M2tIjUa1bsJkYjSNoUBskbOvTp+vtVGz/AOQdrX/Xjbf+iat6N/yHbb/sC/8AslIDn5ks/wDhHrP9/Pt+1z4PkjOdkPbd9K3naD+0dT3RyFhF8xEgAP8AokvTjjjPr/SuZm/5Fuy/6+7j/wBAhroZf+Qnq3/XL/2zmoALh4l0+/Kw7v8AiY3G4OxOT5TZIxjA7Y96u6nIF8SYEaZ8yEbiMnpb+vHf9BWdcf8AIO1H/sJXP/ol6vap/wAjMf8ArrD/ACtqYFLSZ3fSHYiPP+j9I1A5nYdh/nr1qzezyrp2gbZGQPYXBYIdoJCEjgccVS0b/kDP/wBu3/pQ9Wb7/kG+Hf8AsH3P/oBoAu2TM3iuHcxOL6QDJ6DIqpGzCw1LDEYtkI56H5atWH/I1xf9f8v8xVRP+PDU/wDr1j/pSA6fT/8AUz/7q/8AoqSktv8Aj0vf+vOz/kaXT/8AUz/7q/8AoqSktv8Aj0vf+vOz/kaYE0f/ACGLn/r7i/8AQpKni/1k3/YV/wDZRUEf/IYuf+vuL/0KSp4v9ZN/2Ff/AGUUCNLTf+Xv/r5f+lWJiRLbjjmQjp/stVfTf+Xv/r5f+lTz/wCutf8Arqf/AEBqYCw4824wTnzBnjp8q1NUEH+uuv8ArqP/AEBanoAK8m+Nn/MD/wC3j/2nXrNeTfGz/mB/9vH/ALToA8looooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK6h/+R40T/c03/0TDXL11D/8jxon+5pv/omGgD2lf+PWT/fX+TVV1r/jxuv+vKT/ANENVpf+PWT/AH1/k1VtXAazuQWCg2cg3HoP3DelIZyFn/yDta/68bb/ANE1b0b/AJDtt/2Bf/ZKr2kEq2utW+wmUWdumxeTu8rGBjrzV3SbS4TWbd2t5VUaR5ZYoQA2z7v19qQHJTf8i3Zf9fdx/wCgQ10Mv/IT1b/rl/7ZzVkzabeDw/ZpJAYSLqcnzyIhykOOWwOcH8j6VuvayNqOpsGhw0XGZkH/AC6Sjnnjk9+3PQZoAqXH/IO1H/sJXP8A6Jer2qf8jMf+usP8raq89uv2C/V7iFM6hcNkkkDMTcHAPOOf068Vd1OFD4iLG4iB8yE7CGz0t+OmOw79x74YGTo3/IGf/t2/9KHqzff8g3w7/wBg+5/9ANM0pLUaS4SaZk/0flogD/r2xxuPfI9hzz0q1eC1Fh4fLvM6rYz7VChS67DnJydpx7NQBLYf8jXF/wBf8v8AMVUT/jw1P/r1j/pWjYtbf8JPEBFKJPt0nzGUYzkZONvT2zVVTatY6iAk0Y+zJuYsH446DA/nSA6DT/8AUz/7q/8AoqSktv8Aj0vf+vOz/kafYhRDPtYkbV6jH/LJ6bbqy2l6SOPslmM9s4PemBLH/wAhi5/6+4v/AEKSp4v9ZN/2Ff8A2UVBH/yGLn/r7i/9CkqeL/WTf9hX/wBlFAjS03/l7/6+X/pU8/8ArrX/AK6n/wBAaoNN/wCXv/r5f+lTz/661/66n/0BqYBB/rrr/rqP/QFqeoIP9ddf9dR/6AtT0AFeTfGz/mB/9vH/ALTr1mvJvjZ/zA/+3j/2nQB5LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV1D/8AI8aJ/uab/wCiYa5euof/AJHjRP8Ac03/ANEw0Ae0r/x6yf76/wAmqvq0jx2ly8bsjCzkIZTgg+Q1WF/49ZP99f5NVbV1LWdyoxk2cg5OB/qG7mkM5i2urm70zVIXd5GWyg2ckklosn8SfxOfpT9G/wCQ7bf9gX/2SoLSB10/VwTH81lbqMSKekWOeeB7mr2lwsdYhmeZWkGlFWG8Ek7Ccjnkdefp17IDkJv+Rbsv+vu4/wDQIa6GX/kJ6t/1y/8AbOas6XSs6BZp9vseLqc7vO4OVi4HHXj9RW2bQNf6jIbiEB4uV3jcv+iyjkHAzznr0BoAo3H/ACDtR/7CVz/6Jer2qf8AIzH/AK6w/wAraop7aP7BejzuGv52JynBMbAj73v3wfUAc1b1KFP+Ei3lskvCdu5R2t/fPYcY5zjjIywMjRv+QM//AG7f+lD1avNo0/w3uBK/YLjIBwSNh70mlxRLpbgJhf3HH2hG6TMeoGP8eg5FWL2NP7O0P5AdtjcBQZ1wPlP/AH19Rj1oAt2YtT4ngMbTBxeyZDKCC2RnnPA/A1WjitTY3/8ApTANboHzF9wcc9eamsR/xU8XyRj/AE6TkPz1HbPWqqqPsOogogBt0+6/X7vucUgOjsMeTPg5+Udv+mUlJbri0veQf9Esxx9DRp/+pn/3V/8ARUlJbf8AHpe/9edn/I0wLERX+1roFeftcWCD/tSVNGPnl5z/AMTX8vlFV4/+Qxc/9fcX/oUlTxf6yb/sK/8AsooEaWm/8vf/AF8v/Sp5/wDXWv8A11P/AKA1Qab/AMvf/Xy/9KsTY823yDnzDjnp8rUwEg/111/11H/oC1PUMIAluOQcyD8PlWpqACvJvjZ/zA/+3j/2nXrNeTfGz/mB/wDbx/7ToA8looooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK6h/wDkeNE/3NN/9Ew1y9dQ/wDyPGif7mm/+iYaAPaV/wCPWT/fX+TVV1r/AI8br/ryk/8ARDVaX/j1k/31/k1Vda/48br/AK8pP/RDUhnI2f8AyDta/wCvG2/9E1b0b/kO23/YF/8AZKqWf/IO1r/rxtv/AETVvRv+Q7bf9gX/ANkpAcvN/wAi3Zf9fdx/6BDXQy/8hPVv+uX/ALZzVz03/It2X/X3cf8AoENdDL/yE9W/65f+2c1AEdx/yDtR/wCwlc/+iXq9qn/IzH/rrD/K2qjcf8g7Uf8AsJXP/ol6vap/yMx/66w/ytqYGdo3/IGf/t2/9KHqzff8g3w7/wBg+5/9ANVtG/5Az/8Abt/6UPVm+/5Bvh3/ALB9z/6AaALlh/yNcX/X/L/MVUT/AI8NT/69Y/6VbsP+Rri/6/5f5iqif8eGp/8AXrH/AEpAdPp/+pn/AN1f/RUlJbf8el7/ANedn/I0un/6mf8A3V/9FSUlt/x6Xv8A152f8jTAmj/5DFz/ANfcX/oUlTxf6yb/ALCv/soqCP8A5DFz/wBfcX/oUlTxf6yb/sK/+yigRpab/wAvf/Xy/wDSp5/9da/9dT/6A1Qab/y9/wDXy/8ASp5/9da/9dT/AOgNTAIP9ddf9dR/6AtT1BB/rrr/AK6j/wBAWp6ACvJvjZ/zA/8At4/9p16zXk3xs/5gf/bx/wC06APJaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuof/keNE/3NN/9Ew1y9dQ//I8aJ/uab/6JhoA9pX/j1k/31/k1Vda/48br/ryk/wDRDVaX/j1k/wB9f5NVXWv+PG6/68pP/RDUhnI2f/IO1r/rxtv/AETVvRv+Q7bf9gX/ANkqrYI0ljrCIpZ2srYKqjJJ8roKv6TaXCazbu1vKqjSPLLFCAG2fd+vtSA5Kb/kW7L/AK+7j/0CGuhl/wCQnq3/AFy/9s5qyZtL1A+H7NBY3O8XU5K+S2QCkOD09j+Vbr2d02o6my20xV4vlIQ/N/okq8fiQPqaAKlx/wAg7Uf+wlc/+iXq9qn/ACMx/wCusP8AK2qvPaSmwv1OxS2oXDgPIq8GJgOp465+nPTmrup27t4iMgaLHmQnBlUHpb9s57H9PUZYGTo3/IGf/t2/9KHqzff8g3w7/wBg+5/9ANM0q0kj0l0LQk/6P92ZCOJ2PUHH+J461avLVjYeHw0sKKljOrsZAQMoRkYyWH+6DQBLYf8AI1xf9f8AL/MVUT/jw1P/AK9Y/wClaNjDGPE8Ti6iLfbpDsAfOcjj7uM/jVVbdfsOorHcQyM1sgwCVx05JYAUgOg0/wD1M/8Aur/6KkpLb/j0vf8Arzs/5Gn2KFYZwSv3V6MD/wAsn9KSCN0s7wujKDaWeCRjOAc0wJI/+Qxc/wDX3F/6FJU8X+sm/wCwr/7KKgj/AOQxc/8AX3F/6FJU8X+sm/7Cv/sooEaWm/8AL3/18v8A0qef/XWv/XU/+gNUGm/8vf8A18v/AEqef/XWv/XU/wDoDUwCD/XXX/XUf+gLU9QQf666/wCuo/8AQFqegAryb42f8wP/ALeP/ades15N8bP+YH/28f8AtOgDyWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArqH/5HjRP9zTf/RMNcvXUP/yPGif7mm/+iYaAPaV/49ZP99f5NUGqGVba48kuJPsj7dmc58g4xjvmp1/49ZP99f5NVXWv+PG6/wCvKT/0Q1IZzUJvpNO1ZZ/tDZs4QgfccsYvmxnvnr71LpEEya1bu0ThV0jYWKnAbZ0+vtVGz/5B2tf9eNt/6Jq3o3/Idtv+wL/7JSA5+aylPh6zXfBkXc5/16Y+5D3z7VvPA7ajqbAx4aLjMig/8eko55469/r0rmZv+Rbsv+vu4/8AQIa6GX/kJ6t/1y/9s5qAC4gf+z78Zj+bUbhh+8XvEw9eD7dqu6nET4k3F0UeZCeWyelv2HPb9R61nXH/ACDtR/7CVz/6Jer2qf8AIzH/AK6w/wAramBS0mJF0hwJ42H+j8gNj/Xse479P/rc1au0VbDw8wmiyljcbdykhvkPOMdPrVHRv+QM/wD27f8ApQ9Wb7/kG+Hf+wfc/wDoBoA1bSZH8Swgx2+5bx1BVWDdR+BPqTVNXi+xahiKDH2dM4L8jjrz0+nNPsP+Rri/6/5f5iqif8eGp/8AXrH/AEpAdPYHMM/AHyj/ANFSUW5BtL3C4/0Sz/kaNP8A9TP/ALq/+ipKS2/49L3/AK87P+RpgWImI1a6XjBu4uwz96T/AAqaM/PLxj/ia/n8oqvH/wAhi5/6+4v/AEKSp4v9ZN/2Ff8A2UUCNLTf+Xv/AK+X/pViYAy2/IGJD+PytVfTf+Xv/r5f+lTz/wCutf8Arqf/AEBqYCwgiW4PHMgPX/ZWpqgg/wBddf8AXUf+gLU9ABXk3xs/5gf/AG8f+069Zryb42f8wP8A7eP/AGnQB5LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXoVva+FIvBHh863ZyxS3/wBoH9oWv34ykuPmH8QwfQkY4HORFdeCbfS/CGt6obi21GALAbC9gc45l2uCueDgjIOceuc0AcFRRRQAUUUUAFFFFABXUP8A8jxon+5pv/omGuXrqH/5HjRP9zTf/RMNAHtK/wDHrJ/vr/Jqq61/x43X/XlJ/wCiGq0v/HrJ/vr/ACaqutf8eN1/15Sf+iGpDORs/wDkHa1/1423/omrejf8h22/7Av/ALJVSz/5B2tf9eNt/wCiat6N/wAh22/7Av8A7JSA5eb/AJFuy/6+7j/0CGuhl/5Cerf9cv8A2zmrnpv+Rbsv+vu4/wDQIa6GX/kJ6t/1y/8AbOagCO4/5B2o/wDYSuf/AES9XtU/5GY/9dYf5W1Ubj/kHaj/ANhK5/8ARL1e1T/kZj/11h/lbUwM7Rv+QM//AG7f+lD1Zvv+Qb4d/wCwfc/+gGq2jf8AIGf/ALdv/Sh6s33/ACDfDv8A2D7n/wBANAFyw/5GuL/r/l/mKqJ/x4an/wBesf8ASrdh/wAjXF/1/wAv8xVRP+PDU/8Ar1j/AKUgOn0//Uz/AO6v/oqSktv+PS9/687P+RpdP/1M/wDur/6KkpLb/j0vf+vOz/kaYE0f/IYuf+vuL/0KSp4v9ZN/2Ff/AGUVBH/yGLn/AK+4v/QpKni/1k3/AGFf/ZRQI0tN/wCXv/r5f+lTz/661/66n/0Bqg03/l7/AOvl/wClTz/661/66n/0BqYBB/rrr/rqP/QFqeoIP9ddf9dR/wCgLU9ABXk3xs/5gf8A28f+069Zryb42f8AMD/7eP8A2nQB5LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGjc2usf2NZ3FxHdtpfzfZnbc0KZYhgvZSWU5HBOM1TjuriK3mt455Ugn2+bGrkLJtORuHQ4PIzXo/wtm8Qu17BB50mn/Y5fIW5VjbCYEbRntyxyF65NVvGlv4Wi0g/8eEXiQFd8WkuzW55wcgjavAPyjDZxnI5oA88ooooAK1V8Ma+6K6aHqbKwyCLSQgj8qraVdRWOsWN3cR+bDBcRyyR4B3KrAkc8cgV32oajZ3upXV1b/Eu9t4JpnkSEQ3IEakkhQAegzj8KAPOJoZbeZ4Zo3jljYq6OpDKR1BB6GmV0PjLVbXVtbSW0lNwsVtFBJdlCjXTquDIVPIJ6c9gK56gArqH/AOR40T/c03/0TDXL11D/API8aJ/uab/6JhoA9pX/AI9ZP99f5NVXWv8Ajxuv+vKT/wBENVpf+PWT/fX+TVV1r/jxuv8Aryk/9ENSGcjZ/wDIO1r/AK8bb/0TVvRv+Q7bf9gX/wBkqpZ/8g7Wv+vG2/8ARNW9G/5Dtt/2Bf8A2SkBy83/ACLdl/193H/oENdDL/yE9W/65f8AtnNXPTf8i3Zf9fdx/wCgQ10Mv/IT1b/rl/7ZzUAR3H/IO1H/ALCVz/6Jer2qf8jMf+usP8raqNx/yDtR/wCwlc/+iXq9qn/IzH/rrD/K2pgZ2jf8gZ/+3b/0oerN9/yDfDv/AGD7n/0A1W0b/kDP/wBu3/pQ9Wb7/kG+Hf8AsH3P/oBoAuWH/I1xf9f8v8xVRP8Ajw1P/r1j/pVuw/5GuL/r/l/mKqJ/x4an/wBesf8ASkB0+n/6mf8A3V/9FSUlt/x6Xv8A152f8jS6f/qZ/wDdX/0VJSW3/Hpe/wDXnZ/yNMCaP/kMXP8A19xf+hSVPF/rJv8AsK/+yioI/wDkMXP/AF9xf+hSVPF/rJv+wr/7KKBGlpv/AC9/9fL/ANKnn/11r/11P/oDVBpv/L3/ANfL/wBKnn/11r/11P8A6A1MAg/111/11H/oC1PUEH+uuv8ArqP/AEBanoAK8m+Nn/MD/wC3j/2nXrNeTfGz/mB/9vH/ALToA8looooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD0HQ9Mu/F/hC20jSdanhuLLeLmxnBSB0aQsGDKOeT0bJyDjAHPL+JdHttB1NNOhuzczxRAXTeWUVJcnKrkAkAbee+c+w6bR0uL3wfZWUfizSdIgDvI8Ak8uZ23nBkIOT2x2wF9BWd4ptpbpnnvPE1hqc1laRJG8bgtKpkYbc/xMv3iTzgigDkaKKKALujLdPrmnpYyLHeNcxiB26LJuG0ng8Zx2NbHiHRZZfEWqpYTzanJaiSbULgwiMCQMfMIXsAf644rnYZpLeaOaGRo5Y2Do6nBVgcgg9jXWN8SNdVd1olhZXLkNPc21qqyXBAIzJnIPUnoOTQBia/okmhaituZkuIJYlntrhBgSxN91sdR9D6d+tZ0UskEyTQyNHLGwZHQ4ZSOQQR0NWdT1S91m/kvtQnae5kxucgDoMDgcD8Kp0Aa3/CU+If+g9qn/gZJ/jXRt4g1r/hMdIg/te/8mRNPLx/aX2tuiiLZGeckkn1ya4auof8A5HjRP9zTf/RMNAHtZd5LaQuzMd6jJOezVV1aR47S5eN2RhZyEMpwQfIarC/8esn++v8AJqq61/x43X/XlJ/6IakM5e0vLprDVma5mLR2duyEucqTFkkehJ5q1pN3cPrNujXErKdI8wqXJBbZ976+9Z9n/wAg7Wv+vG2/9E1b0b/kO23/AGBf/ZKAMKbVNQHh+zcX1zvN1OC3nNkgJDgdfc/nW695dLqOpqtzMFSL5QHPy/6JK3H4gH6iuXm/5Fuy/wCvu4/9AhroZf8AkJ6t/wBcv/bOakA6e8uhYX7C5mDLqFwikOchRExAHsCM4q7qd1cL4iMazyiPzIRtDnGMW/GP+BN+Z9azLj/kHaj/ANhK5/8ARL1e1T/kZj/11h/lbUwKmlXt1JpLu9zMz/6P8zSEnmdgfzAA+lWb28uV0/QGFxMDJYXDOQ5+YhCQT6kHmqGjf8gZ/wDt2/8ASh6s33/IN8O/9g+5/wDQDQBpWN3ct4nijNxKY/t0i7S5xgEYGPSqq3l01jqJNzMStsjKS54PHIqSw/5GuL/r/l/mKqJ/x4an/wBesf8ASkB1FgzGGfJJ+UdT/wBMpKS3ZmtL3LE/6JZnk9yDRp/+pn/3V/8ARUlJbf8AHpe/9edn/I0wJ4yf7WuBnj7XFx/wKSp4yS8uT01Xj/vkVXj/AOQxc/8AX3F/6FJU8X+sm/7Cv/sooEaWm/8AL3/18v8A0qef/XWv/XU/+gNUGm/8vf8A18v/AEqef/XWv/XU/wDoDUwCD/XXX/XUf+gLU9QQf666/wCuo/8AQFqegAryb42f8wP/ALeP/ades15N8bP+YH/28f8AtOgDyWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPRfD+r+GU8K6XDqVyif2dPNdXNgbYsb2XkRHd04Bxzx2PAzWH401qw11tMu4BE2om2Bv5oojGpc9EwepUcbu/HpgctRQAUUUUAFFFFABRRRQAV1D/8AI8aJ/uab/wCiYa5euof/AJHjRP8Ac03/ANEw0Ae0r/x6yf76/wAmqrrX/Hjdf9eUn/ohqtL/AMesn++v8mqrrX/Hjdf9eUn/AKIakM5Gz/5B2tf9eNt/6Jq3o3/Idtv+wL/7JVSz/wCQdrX/AF423/omrejf8h22/wCwL/7JSA5eb/kW7L/r7uP/AECGuhl/5Cerf9cv/bOauem/5Fuy/wCvu4/9AhroZf8AkJ6t/wBcv/bOagCO4/5B2o/9hK5/9EvV7VP+RmP/AF1h/lbVRuP+QdqP/YSuf/RL1e1T/kZj/wBdYf5W1MDO0b/kDP8A9u3/AKUPVm+/5Bvh3/sH3P8A6AaraN/yBn/7dv8A0oerN9/yDfDv/YPuf/QDQBcsP+Rri/6/5f5iqif8eGp/9esf9Kt2H/I1xf8AX/L/ADFVE/48NT/69Y/6UgOn0/8A1M/+6v8A6KkpLb/j0vf+vOz/AJGl0/8A1M/+6v8A6KkpLb/j0vf+vOz/AJGmBNH/AMhi5/6+4v8A0KSp4v8AWTf9hX/2UVBH/wAhi5/6+4v/AEKSp4v9ZN/2Ff8A2UUCNLTf+Xv/AK+X/pU8/wDrrX/rqf8A0Bqg03/l7/6+X/pU8/8ArrX/AK6n/wBAamAQf666/wCuo/8AQFqeoIP9ddf9dR/6AtT0AFeTfGz/AJgf/bx/7Tr1mvJvjZ/zA/8At4/9p0AeS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFdQ/8AyPGif7mm/wDomGuXrqH/AOR40T/c03/0TDQB7Sv/AB6yf76/yaqutf8AHjdf9eUn/ohqtL/x6yf76/yaoNUErW1x5IcyfZH27M5z5BxjHfNIZx1n/wAg7Wv+vG2/9E1b0b/kO23/AGBf/ZKbCL6PTtWaf7QuLOEoX3DDCL5sZ756+9S6TNK+tW6tK7KdI3kFiQW2dfr70gOUm/5Fuy/6+7j/ANAhroZf+Qnq3/XL/wBs5qxpr2UeHrNtkGTdzj/UJj7kPbHvW887rqOpqBHhYuMxqT/x6Snnjnp3+nSgCtcf8g7Uf+wlc/8Aol6vap/yMx/66w/ytqq3E7/2ffnEfy6jcKP3a9omPpyffvV3U5SPEm0ojDzIRyuD0t+457/oPSmBl6N/yBn/AO3b/wBKHqzff8g3w7/2D7n/ANANRaTKjaQ5EEaj/R+AWx/r2Hc9uv8A9birV26tYeHlEMWXsbjbuYgL8h4znp9aAJ7D/ka4v+v+X+Yqon/Hhqf/AF6x/wBK1LSFE8SwkyW+5rx2AVmLdR+APqDVNUi+xahiWDH2dM4D8Djrx0+nNIDf0/8A1M/+6v8A6KkpLb/j0vf+vOz/AJGlsBiGfkH5R/6KkotwBaXuGz/oln/I0wJY/wDkMXP/AF9xf+hSVPF/rJv+wr/7KKiiUnVrpuMC7i7jP3pP8amjHzy85/4mv5fKKBGjpv8Ay9/9fL/0qef/AF1r/wBdT/6A1Qab/wAvf/Xy/wDSrExAlt+AcyH8PlamAkH+uuv+uo/9AWp6hhJMtwOOJAOn+ytTUAFeTfGz/mB/9vH/ALTr1mvJvjZ/zA/+3j/2nQB5LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV1D/8AI8aJ/uab/wCiYa5euof/AJHjRP8Ac03/ANEw0Ae0r/x6yf76/wAmqrrX/Hjdf9eUn/ohqtL/AMesn++v8mqrrX/Hjdf9eUn/AKIakM5Kwdo7HWHRirrZWxVlOCD5XUVf0m7uH1m3RriVlOkeYVLkgts+99fes+z/AOQdrX/Xjbf+iat6N/yHbb/sC/8AslIDCm1TUB4fs3F9c7zdTgt5zZICQ4HX3P51uveXS6jqarczBUi+UBz8v+iStx+IB+orl5v+Rbsv+vu4/wDQIa6GX/kJ6t/1y/8AbOagB093KLC/Y7GK6hcIC8atwImI6jnpj6cdOKu6ncOviIxhYseZCMmJSelv3xnuf09BjMuP+QdqP/YSuf8A0S9XtU/5GY/9dYf5W1MCppV3JJpLuVhB/wBH+7CgHM7DoBj/AAPPWrV5dMLDw+WihdXsZ2dTGADhCcDGCo/3SKz9G/5Az/8Abt/6UPVm+/5Bvh3/ALB9z/6AaANKxmjPieJBaxBvt0g3gvnORz97Gfwqqtwv2HUWjt4Y2W2Q5ALZ6cEMSKksP+Rri/6/5f5iqif8eGp/9esf9KQHU2LloZyQv3V6KB/yyf0pIJHezvA7swFpZ4BOcZBzSaf/AKmf/dX/ANFSUlt/x6Xv/XnZ/wAjTAmj/wCQxc/9fcX/AKFJU8X+sm/7Cv8A7KKgj/5DFz/19xf+hSVPF/rJv+wr/wCyigRpab/y9/8AXy/9Knn/ANda/wDXU/8AoDVBpv8Ay9/9fL/0qef/AF1r/wBdT/6A1MAg/wBddf8AXUf+gLU9QQf666/66j/0BanoAK8m+Nn/ADA/+3j/ANp16zXk3xs/5gf/AG8f+06APJaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuof/AJHjRP8Ac03/ANEw1y9dQ/8AyPGif7mm/wDomGgD2lf+PWT/AH1/k1Vda/48br/ryk/9ENVpf+PWT/fX+TVV1r/jxuv+vKT/ANENSGcjZ/8AIO1r/rxtv/RNW9G/5Dtt/wBgX/2Sqln/AMg7Wv8Arxtv/RNW9G/5Dtt/2Bf/AGSkBy83/It2X/X3cf8AoENdDL/yE9W/65f+2c1c9N/yLdl/193H/oENdDL/AMhPVv8Arl/7ZzUAR3H/ACDtR/7CVz/6Jer2qf8AIzH/AK6w/wAraqNx/wAg7Uf+wlc/+iXq9qn/ACMx/wCusP8AK2pgZ2jf8gZ/+3b/ANKHqzff8g3w7/2D7n/0A1W0b/kDP/27f+lD1Zvv+Qb4d/7B9z/6AaALlh/yNcX/AF/y/wAxVRP+PDU/+vWP+lW7D/ka4v8Ar/l/mKqJ/wAeGp/9esf9KQHT6f8A6mf/AHV/9FSUlt/x6Xv/AF52f8jS6f8A6mf/AHV/9FSUlt/x6Xv/AF52f8jTAmj/AOQxc/8AX3F/6FJU8X+sm/7Cv/soqCP/AJDFz/19xf8AoUlTxf6yb/sK/wDsooEaWm/8vf8A18v/AEqef/XWv/XU/wDoDVBpv/L3/wBfL/0qef8A11r/ANdT/wCgNTAIP9ddf9dR/wCgLU9QQf666/66j/0BanoAK8m+Nn/MD/7eP/ades15N8bP+YH/ANvH/tOgDyWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArqH/AOR40T/c03/0TDXL11D/API8aJ/uab/6JhoA9pX/AI9ZP99f5NVbV2K2dywxkWch5GR/qG7GrK/8esn++v8AJqr6tG8lpcpGjOxs5AFUZJPkNSGcnaTu2n6uSI/lsrdhiNR1izzxyPY1d0uUjWIIXiVZP7KLMdgBHyEYHHA68fTp3rW1rc2mmapM6PGzWUGzgggrFg/iD+Ix9Kfo3/Idtv8AsC/+yUgMeXVcaBZv9gsebqcbfJ4GFi5HPXn9BW2bsLf6jGbeEhIuW2Dc3+iynknIzxjp0JrlJv8AkW7L/r7uP/QIa6GX/kJ6t/1y/wDbOagCWe5j+wXp8nhb+dSMJyRGxJ+77d8n1JHFW9SmT/hIthXBDwjdtU9rf2z3HOeMZ5wMZdx/yDtR/wCwlc/+iXq9qn/IzH/rrD/K2pgV9LlibS3IfK/uOfs6L1mYdAcf4dRyasXsif2dofzgbrG4KkwLg/Kf++foM+lZ2jf8gZ/+3b/0oerV5tOn+G9xIX7BcZIGSBsPagC/Yn/ip4vnjP8Ap0nATnqO+OtVVYfYdRJdCBbp91On3fYZq7Zm1HieARrMXN7JkswADZGeMcj8RVaOW1Fjf/6KxC26F8y/fHHHTikBvaf/AKmf/dX/ANFSUlt/x6Xv/XnZ/wAjTrDHkz4GPlHf/plJSW7ZtL3gD/RLM8fQ0wJY/wDkMXP/AF9xf+hSVPF/rJv+wr/7KKiiC/2tdEtz9riwAP8AakqaM/PLxj/ia/n8ooEaOm/8vf8A18v/AEqxNjzbfJOfMOOOvytVfTf+Xv8A6+X/AKVPP/rrX/rqf/QGpgLCQZbjgDEg/H5VqaoIP9ddf9dR/wCgLU9ABXk3xs/5gf8A28f+069Zryb42f8AMD/7eP8A2nQB5LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV1D/8jxon+5pv/omGuXrqH/5HjRP9zTf/AETDQB7Sv/HrJ/vr/JqrauQtnckqGAs5DtPQ/uG9Ksr/AMesn++v8mqrrX/Hjdf9eUn/AKIakM5S0nla11q43kSmzt33rwd3lZyMdOau6Td3D6zbo1xKynSPMKlyQW2fe+vvWfZ/8g7Wv+vG2/8ARNW9G/5Dtt/2Bf8A2SkBhTaleHw/ZvJOZibqcHzwJRwkOOGyOMn8z61uvdSLqOpqFhwsXGYUP/LpKeeOeR37cdDiuXm/5Fuy/wCvu4/9AhroZf8AkJ6t/wBcv/bOagB09wv2C/Z7eF8ahcLgggHETcnBHOOP1681d1OZB4iKm3iJ8yEbyWz0t+euO47dh75zLj/kHaj/ANhK5/8ARL1e1T/kZj/11h/lbUwKmlPanSXKQzKn+j8NKCf9e2Odo75PuOOOtWb02x0/QAUmUGwuNhDg7BsOcjA3HHuKoaN/yBn/AO3b/wBKHqzff8g3w7/2D7n/ANANAGlYrbf8JPERLKZPt0nymIYzkZGd3T3xVVRarY6iQ80g+zJuUqE446HJ/lUlh/yNcX/X/L/MVUT/AI8NT/69Y/6UgOpsSphn2qQNq9Tn/lk9Nt2ZrS9BPH2SzOO2cHtRp/8AqZ/91f8A0VJSW3/Hpe/9edn/ACNMCaP/AJDFz/19xf8AoUlTxf6yb/sK/wDsoqCP/kMXP/X3F/6FJU8X+sm/7Cv/ALKKBGlpv/L3/wBfL/0qef8A11r/ANdT/wCgNUGm/wDL3/18v/Sp5/8AXWv/AF1P/oDUwCD/AF11/wBdR/6AtT1BB/rrr/rqP/QFqegAryb42f8AMD/7eP8A2nXrNeTfGz/mB/8Abx/7ToA8looooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAJrS1mvbyC0t03zzyLHGuQMsxwBk+5rq7jwn4esLh7S/8AGUMV5Edk0cdhJIqOOqhgecHjt+FczpTTprFk9rLHFcLcRmKSQgKj7hgnPGAcda6vUfEfh2TUrltT8IW9zfeawuJ7bUpEjlcHDMoAxgnn8aAOb13RZ9B1I2k0sUytGssU8JyksbDIZT3H+BrNrT13Wp9e1I3c0UUKqixQwQjCRRqMBVHYf4msygArrYbWa78e6NHAm91gsJCMgfKlvEzHn0VSfwrI/six/wChj0v/AL93P/xmuxlhsI9e0SC01qySR4rA3YaOffMVSPYqny8bCFRgCRljlvurtAPSl/49ZP8AfX+TVV1r/jxuv+vKT/0Q1XCiraviRX+dfu544b1FVNXYrZ3LDGRZyHkZH+obsaQzkLP/AJB2tf8AXjbf+iat6N/yHbb/ALAv/slQWk2/T9XLRxnbZW5OF27v3WcHGOOv5/TFrSZFbWrcCJFJ0jduBOQNnTk9P196QHKTf8i3Zf8AX3cf+gQ10Mv/ACE9W/65f+2c1Y0z2f8Awj1n+4n2/a58DzhnOyHvt+lbzrB/aOp7pJAxi+YCMED/AESXpzzxn0/rQBWuP+QdqP8A2Ern/wBEvV7VP+RmP/XWH+VtVW4SJtPvws23/iY3G4upGD5TZAxnI759qu6nGG8SZEiZ8yE7ScHpb+vHb9RTAy9G/wCQM/8A27f+lD1Zvv8AkG+Hf+wfc/8AoBqLSYHTSHUmPP8Ao/SRSOJ2PY/56das3sEradoG2NnCWFwGKDcAShA5HHNAFiw/5GuL/r/l/mKqJ/x4an/16x/0q5ZKy+K4dykZvpCMjqMiqkasbDUsKTm2QDjqflpAdNp/+pn/AN1f/RUlJbf8el7/ANedn/I0un/6mf8A3V/9FSUlt/x6Xv8A152f8jTAmj/5DFz/ANfcX/oUlTxf6yb/ALCv/soqCP8A5DFz/wBfcX/oUlTxf6yb/sK/+yigRpab/wAvf/Xy/wDSp5/9da/9dT/6A1Qab/y9/wDXy/8ASrEwJltzxxIT1/2WpgJB/rrr/rqP/QFqeoYcebcYBz5gzz1+VamoAK8m+Nn/ADA/+3j/ANp16zXk3xs/5gf/AG8f+06APJaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigC5pMVrPrNjDeuEtJLiNZ3LbdqFgGOe3Gea9JutBt9KvPEmo674bsk0hEAsikmzcVYLGq7GLAuCCW9Rz3FeVUpJIAJOB0oA1vE8Wnw+IJ10uNI7MxxOiJKZApaNWYbiSThiayKKKACuof/keNE/3NN/8ARMNcvXUP/wAjxon+5pv/AKJhoA9pX/j1k/31/k1Vda/48br/AK8pP/RDVaX/AI9ZP99f5NVfVkeS0uURSzGzkAUcknyG4A70hnH2f/IO1r/rxtv/AETVvRv+Q7bf9gX/ANkqC3tp4dN1gywSIGsoACyEZIiwfy71Po3/ACHbb/sC/wDslIDl5v8AkW7L/r7uP/QIa6GX/kJ6t/1y/wDbOauem/5Fuy/6+7j/ANAhroZf+Qnq3/XL/wBs5qAI7j/kHaj/ANhK5/8ARL1e1T/kZj/11h/lbVRuP+QdqP8A2Ern/wBEvV7VP+RmP/XWH+VtTAztG/5Az/8Abt/6UPVm+/5Bvh3/ALB9z/6AaraN/wAgZ/8At2/9KHq1eELp/hslQwFhcEqeh+Q8cUAXNPZh4pjUMQDfyZGevIqrHvls9SHzOxtkAHU9q0LO6Z/E8CCKFAL2RSVjGTgjnJ5z9Krfb7mSw1DdJylujKVUAgnGegpAb1h/qZ/91f8A0VJRbKRZXhwcG0sxnHHQ0WBJhnySflH/AKKkpLck2t6Sck2lnz+BpgTR/wDIYuf+vuL/ANCkqeL/AFk3/YV/9lFRIF/tafBJb7XFkEdPmkqaMkvLk9NV4/75FAjR03/l7/6+X/pU8/8ArrX/AK6n/wBAaoNN/wCXv/r5f+lTz/661/66n/0BqYBB/rrr/rqP/QFqeoIP9ddf9dR/6AtT0AFeTfGz/mB/9vH/ALTr1mvJvjZ/zA/+3j/2nQB5LRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV1D/8AI8aJ/uab/wCiYa5euof/AJHjRP8Ac03/ANEw0Ae0r/x6yf76/wAmqrrX/Hjdf9eUn/ohqtL/AMesn++v8mqrrX/Hjdf9eUn/AKIakM5Kwdo7HWHRirrZWxVlOCD5XUVf0m7uH1m3RriVlOkeYVLkgts+99fes+z/AOQdrX/Xjbf+iat6N/yHbb/sC/8AslIDCm1GceH7N9ltk3U4/wCPWPHCQ9tuO/8AnFbrzxjUdTBtYWIi5Ylhu/0SU84bHbHGOD64NcvN/wAi3Zf9fdx/6BDXQy/8hPVv+uX/ALZzUAOne3Nhfl4HwNQuAwSTGSImyeQcZHb156cVd1MW58RHcZUkEkPQBgxxb/TH8I79z7VmXH/IO1H/ALCVz/6Jer2qf8jMf+usP8ramBU0qO2OkuIp32/6P80se3/lu2OhbknI/L8LV5bq9h4fRbiEsLGdUySofKEZBIAA/wB7FZ+jf8gZ/wDt2/8ASh6s33/IN8O/9g+5/wDQDQBpWNrIPE8UhaLb9ukbAmQnBI7Zzn2qqtsyWOo+ZJCqtbINwkDY6dQuT+lSWH/I1xf9f8v8xVRP+PDU/wDr1j/pSA6mxCrDOA275V5A4/1T023Ym0vR0X7JZkLngcGjT/8AUz/7q/8AoqSktv8Aj0vf+vOz/kaYE0f/ACGLn/r7i/8AQpKni/1k3/YV/wDZRUEf/IYuf+vuL/0KSp4v9ZN/2Ff/AGUUCNLTf+Xv/r5f+lTz/wCutf8Arqf/AEBqg03/AJe/+vl/6VPP/rrX/rqf/QGpgEH+uuv+uo/9AWp6gg/111/11H/oC1PQAV5N8bP+YH/28f8AtOvWa8m+Nn/MD/7eP/adAHktFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXUP/wAjxon+5pv/AKJhrl66h/8AkeNE/wBzTf8A0TDQB7Sv/HrJ/vr/ACaq2rkLZ3JKhgLOQ7T0P7hvSrK/8esn++v8mqrrX/Hjdf8AXlJ/6IakM5W0kjbT9XzCqqLK3LbGOSPK6ck9Og/XNWtNMUeq2LhHDTacYky4I2iFmPbqML6Z3e1UbP8A5B2tf9eNt/6JqW2iaDxZpsLEFo9OZSR0yIXFIDNlXSW0CzCtdKv2qfaZCAM7Ys5IB4xjGBW2Y7dr/UctmQxfMvmbf+XWX1XA4z3Pr7HlJv8AkW7L/r7uP/QIa6GX/kJ6t/1y/wDbOagCWeFDYXoETNm/nO1ZlJJMbDjA6/7PUdataoijxDvaGXBkh+fOFJxb47e3/jp/DMuP+QdqP/YSuf8A0S9X9TZl8TkqxB8yEZB7EWwNMCjpLQHSH2RyBf8AR+DICf8AXtjt6/571ZvWh/s7QMxyc2Fxs+ccDYevHPH0qtpNxNJpDtJI0h/0f753dZ2Gee+APyHpVm9mb+ztAysZD2FwWGwf3CePT8MUAWrEx/8ACUxYVs/bpOd3fIz2qohT7DqWFbH2ZM/N1Hy+1W7F1PimIeWoP26TnnPUe9VEcfYdSIRVItkPrn7vrSA6XT/9TP8A7q/+ipKS2/49L3/rzs/5Gl0//Uz/AO6v/oqSktv+PS9/687P+RpgTR/8hi5/6+4v/QpKni/1k3/YV/8AZRUEf/IYuf8Ar7i/9CkqeL/WTf8AYV/9lFAjS03/AJe/+vl/6VPP/rrX/rqf/QGqDTf+Xv8A6+X/AKVYmYiW3AJAMhB9/lamAkH+uuv+uo/9AWp6gg/111/11H/oC1PQAV5N8bP+YH/28f8AtOvWa8m+Nn/MD/7eP/adAHktFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXUP/wAjxon+5pv/AKJhrl66h/8AkeNE/wBzTf8A0TDQB7Sv/HrJ/vr/ACaqutf8eN1/15Sf+iGq0v8Ax6yf76/yaq+rIZLS5UFQTZyD5mAH+obuaQzjbS5Npp+rTgkMtraBSBnBMYA/Uin2H/IyaT/2DD/6Iei4tJI/D+oj7PKJGt7UsSjD7oUFf+A4JJ9+elFh/wAjJpP/AGDD/wCiHpAYM3/It2X/AF93H/oENdDL/wAhPVv+uX/tnNXPTf8AIt2X/X3cf+gQ10Mv/IT1b/rl/wC2c1AEdx/yDtR/7CVz/wCiXq9qn/IzH/rrD/K2qjcf8g7Uf+wlc/8Aol6vap/yMx/66w/ytqYGdo3/ACBn/wC3b/0oerN9/wAg3w7/ANg+5/8AQDVbRv8AkDP/ANu3/pQ9WrxmTT/DbKxVlsLggg4IOw0AaFha3H/CTRy+TJ5a30jFipxgkYNRpp0sdle+eyRLLAi5Y/dxgHNLZyPJ4rg3uzbb6RV3HOBkcD2qkn/Hhqf/AF6x/wBKQHUWAxDP0+6Oh/6ZSUlvj7He4OT9ks+3HQ0af/qZ/wDdX/0VJSW3/Hpe/wDXnZ/yNMCaP/kMXP8A19xf+hSVYjHzy85/4mv5fKKhibGrXQAHN3Fk45+9J/hUsX+sm/7Cv/sooEaWm/8AL3/18v8A0qef/XWv/XU/+gNUGm/8vf8A18v/AEqef/XWv/XU/wDoDUwCD/XXX/XUf+gLU9QQf666/wCuo/8AQFqegAryb42f8wP/ALeP/add74p8U2PhXSzd3Z3zPlYLdThpW/oBxk9vckA/P2v+JdU8TXi3Gp3HmbMiKNRtSME5wo/IZOScDJOKAMmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArqH/AOR40T/c03/0TDXL11D/API8aJ/uab/6JhoA9pX/AI9ZP99f5NUGpiNoJhMxWI2rh2HUDyGzU6/8esn++v8AJqbcQpcymCQZR7dgwBxwYiP60hnBvM39naxMmIn8mxdfL+XacKePTFXrG9uj4g0yM3MpjfTi7oXJDHyXOSO5zWlcaBamzvIUlkjFykSEn5gvlgBcDr255otPD7x6ra3QnBFvZtDt24LYiZc9eOtAHJzXxbw/ZtNbW0oN1ONvlBAMJDz8m09z9fwGN15YDqOprJb/AHYuWjcgt/okvXOR0yBgDrk5qheeF9Tj0SzgSOOZluJnYpIAACsQH3sf3TV+Wzuf7Q1FxBIVlhJQhc7sWkyn9SB+I9aAIpxatYX+XmRf7QuN2EDEN5TZxyOMc/p71d1OFD4iLG4iB8yE7CGz0t+OmOw79x74zLj/AJB2o/8AYSuf/RL1e1T/AJGY/wDXWH+VtQBU0q0lTSXQtET/AKP92ZG6Tsex/wD1ngc1Y1C2nXTNCJgkAhsLgSEofkJQgZ9Ko6N/yBn/AO3b/wBKHq1eMyWHht0Yqy2FwQQcEHYaALdh/wAjXF/1/wAv8xVaBHks9SSNWdzbRgKoyT0q/Y3dy3ieKM3Epj+3SLtLnGARgY9Kpm5nm07UllmkdRbIQGYkA8UgOksUKQzhsZ2rxn/pk9JA5azvF6ItpZ7R+B/Wk0//AFM/+6v/AKKkpLb/AI9L3/rzs/5GmBPGD/a1wccfa4uf+BSVaAAzgddT5qFP+P6X/r+T+bVP/wDLKgRd03/l7/6+X/pU8/8ArrX/AK6n/wBAaoNN/wCXv/r5f+lTz/661/66n/0BqYBB/rrr/rqP/QFrnPGvjW18J2O1Qs+pTLmC3J4A6b39F/UngdyMnxz48XwyLnT7ArJqszBgeGW3UovzMP73op+p4wG8Uv7+61O+mvb2dp7mZtzyN1J/oOwA4A4oAm1bWNQ12+N7qV01xcFQu5gAAB0AAwAPoOpJ71RoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuof/keNE/3NN/8ARMNcvXUP/wAjxon+5pv/AKJhoA9pX/j1k/31/k1SAf6UT38j/wBp1CWK2kmFJPmLx+DVIUDXW4g58jpn/pnSGVHBclcHHHNWIP8AWEYJ/dv0/wB01WEgSFnnIRFGWZiAAPf0qzb8SEf9M3/9BNABtC2kYHTe/wDJaW3/ANYf9x//AEE1HLj7LGVIB3ufrwtLbtlyCOsb/Q/KaAGEBhggEehpLyytpbhXeBC4Eb7gMHICkcj/AHV/IUDnnn86nuP9YP8AcT/0EUAZUei2UMDQwo0aEocBifutvHXPcn86jv8AQ1e005UnKpaWssahlyWDBl5PHT9fatFXODvxgd15qS5INtFg/wDLJuD1+81AGPaWEkfiSKbcpX7Yz+/zEVVSwkFrfIzqBJAiAjnGCAa2Yc/2vH/18D/0Kqp/1E/+4P8A0IUgLun/AOpn/wB1f/RUlJbf8el7/wBedn/I0un/AOpn/wB1f/RUlR28gEWoREEOljZMcjjncP6GmBeT/j+l/wCv5P5tU/8A8sqgT/j+l/6/k/m1Tf8AyyoEXtN/5e/+vl/6V578RviCtkz6No0ubxSRPdIf9QcEFVP9/kgn+Ht833cXxp8QZfNuNK0C8ZIfPZ5ryBiC5z91GH8Ixyw69Bxy3m1MB8ssk8zzTSNJLIxZ3c5ZieSST1NMoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArqH/5HjRP9zTf/RMNcvXVMmPF1jdOdsFnZWV1M/oiW8TEemScKucZZlGeaAPZd220lLcLvT+TVIFAusjJIgxz/wBc64W0+IegzxRW5a805pHEsz+SrRq2GLAkbmIJPUKD9K3bTxXoF7JIYtZtmEMGwvO3kliY8Zw4XPI7Dv24pDNRimMtjB71JA/7w4HAjc/+Omq6fNAkw5icBo3Tow/vA9CCCORU9uVFwQFGTG5/8dNACFWNnHx1kfOeey0+2XEhY5z5b5wf9k1Gx+06ZHtYFJCxDRvjKkLyGB/UU6Bf3zM2MCN+3+yaAIlnR4lkUMVbGMqQefY81NcZMynkAInf/ZFQI6suV3NyQNwPUZHftx1qe4ZvNXC8bEyf+AigCu26KN32BiBkIpxk+gJOKrX17PFZW87WkUcRhbc0twqMjZfA7rgkAZ3fxdODVggRjc7qgOFBJxySAB/KpJLiERWzCRmUxAqygsrBnYAgjg/0HPAoAjtoZW1hWLQhFn5AfLZyCARjjgg/jTZLJ/s0yxvtdgAGeMlRyO2R6etakEpN2ihGwGX5j0JyeB9MfqPfFQ26QpK0USxF8ZIAyfmJ6/iT+JoAis4HSOUtKcgAFVACtiKQd8kdfXsPfK29rDa6TdJGAdlraxb26sqqMZ/M/makt1cLcMWJBGNvGB+7k5+pz+n1pLme3tdK1Ga5mSCCOC3LyOeFGB+f0HJ6DJoEPJEdzdTOdsUV2kkjk4CKC5LE9gO5NeS+OPGra7NLp+nOy6UJjKWIw07epHUKOw/E84C53i7xXN4k1KUxeZDp4kLxQMeSefmbHG7k/QHHPJPOUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAvaLZx6jrun2MxZYrm5jhcocEKzAHGe/Nd5d2tva3s9tD8MLuSGKRkV987FwDjO4Ajn2J+przu0+zm8g+1+b9m8xfN8nG/Zn5tueM4zjNdXrTeNNKD3bXXiKDTXYmF7i4fcqZwokwcK3Tg456UAZPi7ToNJ8T3VnbW720SrG4gd95iLRqxXPfBYj8KxKfLLJPM800jSSyMWd3OWYnkkk9TTKACut8Q/6Bp0bjifUrS0jOeCII7eFuncNJj5uMGEjJyQMj+17H/oXNL/7+XP/AMera8T63ZtqkKf2DZyQpZWogWee4Zo4zCjBMiRRgbj0Az1PJNAHH0Vrf2vY/wDQuaX/AN/Ln/49R/a9j/0Lml/9/Ln/AOPUAZkUskEyTQyNHLGwZHQ4ZSOQQR0NbVp408R2TStHq07tIMM1xiY9COC4OOvbGfwqD+17H/oXNL/7+XP/AMeo/tex/wChc0v/AL+XP/x6gDrIfH+p2vhvTp54be4Z7yeOVsFHZVWJuMHaD85GdvYcdc37H4p2P2om7026ggEbAGKVZmJIxyCE45Jznt071zd1q2n/APCKaY6eHbAZu7pXRprgruCwncuJARkFQQSfu5GMkVkf2vY/9C5pf/fy5/8Aj1AHptr488PPaiWXUGjkZifKlgfevJxkqpXpjGCeMZ5zXQDVrC9v4re01GzuJnRcRwXCSMSF5ACnPGD+VeJf2vY/9C5pf/fy5/8Aj1H9r2P/AELml/8Afy5/+PUAe4naAQWPHb8fercgU2MbhAThVB9svxxXiFr4vlsbdrez022t4Wbc0cN3eIpPHJAnxngflXRRfEPUZfDU076dprNaXNvDEGWU4DJNkkmTJb5euedxznNID1SDd9pXgAbx+PNVboulsThn6ZC445GT1HTr/j0ryuP4raxFI0iabpSuzbmIjl5OAMn956AflS/8LY1o9dO0s/WOX/45RYD0C41rTtH0+e61CfyAVDCIspkf5GGFXPzHLLnBwM5JA5ryLxL4svPEZgjcGG1hRAIg2d7hQu9iAAT1xwAAeBySUu/Ey6hIsl7o1lcyKoRWmuLtyFHQAmbpyePeq/8Aa9j/ANC5pf8A38uf/j1MBugRRzajKssauosrtgGGRkW8hB+oIBHuKy66rQNVs31GULoGnRn7FdncslxkgW8hI5lPB6Hvg8YPNZf9r2P/AELml/8Afy5/+PUAZNFa39r2P/QuaX/38uf/AI9R/a9j/wBC5pf/AH8uf/j1AGTRWt/a9j/0Lml/9/Ln/wCPUf2vY/8AQuaX/wB/Ln/49QA3xJFHB4p1eGGNY4o72ZURBhVAcgAAdBWXXVeJNVs4/FOro2gadKy3swMjyXG5jvPJxKBk+wArL/tex/6FzS/+/lz/APHqAMmitb+17H/oXNL/AO/lz/8AHqP7Xsf+hc0v/v5c/wDx6gBugRRzajKssauosrtgGGRkW8hB+oIBHuKy66rQNTsJtRlQ6FZwqbK73PbyziTAt5CQpeRlBIyMlT16VytABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAF7RryPTtd0++lVmjtrmOZwnUhWBIHvxXfzeKtM0O11q603xDNrF1qUyslpc2jCNF3ZbfuwGBT5Plx24/u+ZUUAXtXu7W/wBVnurKxWxt5SGW3V9wQ4GcHjgnJx2ziqNFWtMs/wC0NVs7Lfs+0TpFvxnbuYDOPxoAq1b1K+/tC6Sby/L2wQw43Zz5cSx5/Hbn2zXbXGmeH7/UPFOlWmjLZvpdrNNBcrcSOxMJAYMrMQQ36D17cdoZtBrVoL60F3bNJseEyGPdngfMORgkH8KAM+itbxPZ2+neJ9Ss7WPy7eG4dI0yTgA8DJ5rJoAKKK72z0zQrF/CljeaQl7Nqqq9xO08iFRI+1AoVsfL3yOcds0AchLeRvoVpYhW82G5nmYkfKQ6xAY9/wB2f0qjV3WbJNN1zULGNmaO2uZIVZupCsQCffit3xVaaUui6DqWmaaLD7dHM0kQmeTlXCjlj9fzoA5WiiigAq9FeRpoV3YlW82a5gmUgfKAiyg59/3g/WtnQ7DT4/Cera1e2SXskMsUFvE8jqqljlmOwgnjpzTPGWm2Gn3umzadbtbQX+nQ3nkGQuI2fOQCeSOO/cn6AA5uivQNE07w1rNyNPt9LLW0OnM97q0k0iGCUKTv27tpUHjGPfoDnz+gAooroPBelWms+KrWzvlZ7XDySIrFSwVC2MjpyBQBlabff2fdPN5fmboJocbsY8yJo8/huz74qpXV6nZ6VeeBYtcs9NWwuU1JrN0imd0dTHvBO8kgjgcH19sP8CadYa1qS6bPpMV3M7rI80128axwggMFVcEuc9ye3A5NAHI0Vd1e3htNavra3WVYIriRIhKpV9gYhcggEHGOoFUqACigDJxXpWo+HdATV/EOhQ6WY30zSzdRXn2hzI7qiN8wJ24O7BwB3x1GADgNVvv7T1e9v/L8v7VPJNs3Z27mJxnvjNVK0dEezTVIxe6eb9H+RIPtBhUueAWYDOBnsR25xwdnx5oltoerWcFta/Zy9nG86oXaPzjndsZ8kr07mgDlaKKKALem339n3TzeX5m6CaHG7GPMiaPP4bs++KqUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABU9ldyWF/bXkQUyW8qyqG6EqQRn8qgooA7m78U+Ho5dd1DTLfURqGrW7wNHOE8mPzCDIQQ24njjiuYlm0y31W0m08XZt4/LeQXG3fvBy2McY9KzaKANLxBqEWreIb/UIFdYridpEEgAYAnvgms2iigArt9P8T+H5IdBn1e31EX+jkKjWgQpMituQNuIIweuOvPrxxFFAGrql7YaktzflLlNUub2SZ1yvkLG2Tgfxbsn6YqbVtYt7/wAPaHp8SSiWwSZZSwG0l33Dbz6euKxKKACiiigDo9A1rTbfRNS0bWI7s2l20csctqFLxyKfRiAQR79vfIm1zWtD1m+XMWox2dlpa2diQU8xpE+6ZewXk5288D6Vy1FAHoLeI/Bknhi20QRa9awLh7gWqwj7RJxy5JJbB6DgdOOBjz6iigArZ8Ka1H4f8R2uozwtNAm5ZUQ4YqylTj3Gc44zjGR1rGooA6291nw6NBs9CsI9Uax/tH7ZdSz+WJAu3ZtQAkE7fXuPfivZ3PhBopYb201SLy7ktb3NsymSSHJwsgZtoYccr/TnmqKANbxNrR8Q+I73VPK8oTsNqeiqoUZ98AZ96yaKKADoa9Bv/Gmgz3Os6tb2upDVdU0/7G8Mnl+RGWVVYhgdxwFGOOcHpnjz6igDfsrjwtDcxpdWeoT20lmFmfeokhuOctGAQGToAG9c9sF3iLWtPvdN0jStKjuhZ6ckmJLraJHaRtzcKSABjiueooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKv22i6heJaPb25kW7kaKEh15ZQCwPPy4BBycDHNUQCTwCfpW/p+uCw8H6hYRzAXNxcIEXYcpGVYSEN0GcIp74zQFzAYFWIOMg44OaSiigAqza2F1ex3MlvF5i20XnS4YAqmQCcE5PUdKrV0fhHVbDQL46tdO0s0Z8qO0QH94rcOzHGMBc8dScdhQBi3thc6dMsN3F5UrIsmwsCQGGRkA8HHY81Wq7q7RyaxePDdteRNMzJcMCDICcgnIBz61SoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqe4sbu0jhkubWeFJ03xNJGVEi+qk9RyORQBBRU13Z3VhcGC8tpreYAExzIUYZ6cHmlt7G7u45pLa1nmSBN8rRxlhGvqxHQcHk0AQUUVNa2lzfXC29pby3E7Z2xxIXY4GTgDnpQBDRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBNDLHGMO6qWOBuOM+1X4L/So4gs+kfaJBnMv2lk3c+g6Vz1//AMuv/Xwn9auVrWw0VShUu/ev+BnSj7OrKa3fdJ/mbP8AaWi/9AD/AMnH/wAKP7S0X/oAf+Tj/wCFY1Fc3so+f3v/ADOr28+y/wDAV/kbP9paL/0AP/Jx/wDCrt7rGiS2kEY0zzXWNRjeV2Afw7upxXM0VLoRbTu9PNmkMZUgmklr5L+vvCiiitjlCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK9Z+HcTX3h+A6ra20kdnd50aS4fyy05DMyBuTtyAeh5HfbgeTVo3Gualcw2EL3JVNPGLURKI/K5ByCoHzZAOeuec0ARatc313q13PqTSG9aVvO8wYIYHBGO2MYx2xivVvA+nroPheyuZrrT4JNUn826jvpRH5lrtZQqg5yfmDjpndg15Tqmq3mtag99fyLLcyAB3CKm7AwOFAHQU7VNYvtZmhlvpVkaGFYIwsaoEQZwoCgDAyaAOr0zQLew+Id34XvrM3dvcF4EddpkiUruSUE9CF5P48HAFbFpoun2nxO0vw+unhLa2tmDzZIa7YxFjISD0zwADgYP0HFHxhrpd5DfEyvaCyMpjTf5Iz8u7Ge/XqeOeBTIPFes29xp9xHdgTafEYbaQwoWRCMbSSPmGOmc47UAdbY2+iXvgGVNM0+wvLuGyklvVuHMd3FIMYkjbGGReTtGOMAnJIPnNdFH421iPQzpW63ZPINstw0IMywkYMQb+7x9ffgVztABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFO//wCXX/r4T+tXKp3/APy6/wDXwn9a7i3P9l+B5ZLrT7WWS/JS0Z7VWeNM4aUvjI5+VRnrk9q7q/8AutH/ALe/MlfEzk6KKK4SgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM3VbkQtbAxuQJBJkYxgdR168ittNd1O70qO1e/vTZFRttpJ2KBRyPlyR6EVmX1ot3EqkHKsORjOM8/p/KrKqFUKoAAGAB2r0K9SjLB0oxvzpyv+n3/oQk+Zi0UUV55YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=",
+      "text/plain": "<IPython.core.display.Image object>"
+     },
+     "execution_count": 10,
+     "metadata": {
+      "image/jpeg": {
+       "width": 800,
+       "height": 600
+      }
+     },
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Image(xyplane, width=800, height=600)\n"
+   ],
+   "metadata": {
+    "collapsed": false,
+    "pycharm": {
+     "name": "#%%\n"
+    }
+   }
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 2
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython2",
+   "version": "2.7.6"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
\ No newline at end of file
diff --git a/examples/read_profilepoints.ipynb b/examples/read_profilepoints.ipynb
index f403997da46b6387c443acea2574347281cf87b4..815676c9222fcd8c10b2da0d247c5493088c449e 100644
--- a/examples/read_profilepoints.ipynb
+++ b/examples/read_profilepoints.ipynb
@@ -28,7 +28,7 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAZACAIAAACubhnwAAB/VklEQVR4nOz9aZRV9Z03fO9TAxRUFZNSYCKjMkgZERRBBCWIiRkc4pB0x06uHtL9rPTTb3r1WterXkt9cb/JWs/db667r6ufTifGVhONxikSo4iYKJMIDkCYZBKUQRBqouZzv9h4gkUNp6rO8D/nfD6LF7vO2Wef/9nnULX39/z+v51IJpMRAAAAAISqLN8DAAAAAID+CLAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgVeR7AAAAAOTHww8/nO8hAEP04IMP5nsIOaUCCwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgVeR7AAAAAFDqnnrq/p0750VRdM89v7nmmg8uXmHz5kWrV38ziqKFC7feeeeLuR5fYLKxN1555bb165dGUbRixboVK97IyDbJIBVYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0DRxBwAAgNB95Svbp08/GEXRqFGt+R5L/tkbJUiABQAAAKEbNercqFHn8j2KUNgbJUiABQAAQOFpbR25fv3SI0cuP3ZsckVF56RJJ2bM2L948aby8u4cj+TIkct375598OD0xsYxTU015eWd1dXNl132yRVX7L/mmvcrKjoz8iytrVVNTdVRFFVVtdXUNPWzZldX+f79M3fvnn306OVNTTUtLaNGjz5XU9N4+eVHZ8/ePXPmgfLyrkE9dXt75a5dV+3YUX/y5MTGxtqKio4xYxovu+yTefN2XnHFvgzu8PTf0/T3Rnd34tChaXv2zD58eGpjY21zc/WoUa21tQ2TJh2vr98xc+b+IYy/s7N8//6Zu3Zd9fHHlzU21ra1jRw37uz48afr6k4sWLDt0ktPDXaDpCORTCbzPQYAAADy4OGHH873EIboww+veP75OxsaxvS4va7uxL33/mbSpOMX3rh586LVq78ZRdHChVvvvPPFdLb/xBN/uWfP7CiK7rvv6auv3tHXavv3z1yz5taPP/5SXyvU1DQvWbLx+uvfrqpq63HX2rVf/cMfbh5wJN/+9m+vv/6dNF9FMpl4771rXn/9q2fPju1rg+PGnV25cu1XvvJBItF7GtDjifbsmfXSS9/qa4OXXHLqW99aPXPm/gFfyICy8Z7u3HnV2rW3fvrpJX2tUFPTdPvtv7/66u1RFL3yym3r1y+NomjFinUrVrzR6/rJZOL9969Zu3bl2bM9x5kyc+b+W255Y9q0w32tkCkPPvhgtp8iKJq4AwAAUEhOnx7/q199L5V0jBt3NlWDc+JE3ZNPfq+9vTLbY+jqKn/xxTseffQHF6ZXo0e31NWdrKlpSiTO39LUVL1mza3//u//35MnJ2Z7SOfOVT322F8999zdqbCprCxZW9s4adKJmpqmVFx15szY3/zmO7/61V+0t48YcJsbNy554onvxxtMJJK1tU11dSdqappTL/DUqUseffQHce4zHBl/T9vbK5988rtPPfXdVHqVSETV1c11dSdqaxvLys7vjaammqefvveJJ77f0THw9ltbRz7++APPPnt3Kr0qL+8aN+7MpEknamv/XAW2f//MX/zir99666ZBDZgBmUIIAABAIXnhhTvjuGHy5OP33vvMxIknoyg6fHjK00/f39BQe/r0+Ndf/+rXv/5K9gbQ0VHx2GN/dejQtPjH8ePP3Hjj+quu2lVb25ha4eDB6Zs337Bv36xkMmpoqP3Zz/7mgQeeuPzyI6mNjB9/Jm5DHjt5sq65eXQURRMnflpd/ec0JLXN/jU3V//sZ3976tSE+MfLLz+6ZMnGWbP2jhx5vvKrpWXUnj1z3npraRyl7d49+2c/+9u/+Zufp1a42N69s7duXRhFUW1t0/Llf6iv31Fd3RLf1dAwZvv2q//4x2Xnzo2KouiVV26rrOxYtOjtdIbaq8y+p62tIx955K+PHZsc/3jJJaeWLl0/d+6u1Pjb2kbs2zdr8+ZF8Zu4Z8+sxx57YOLET/vZZkvLqJ///G9SQeTkycdWrnx9xowDlZUd8S1NTTU7d171xhsrmptHd3cnXn111SefXHbvvU+nwj6GSYAFAABAwWhsrDl4cHoURZWVnd/73q/Gjz8T3z516kff+MbqJ5/8XhRFu3fPzWqA9fzzd6fSq+XL/3jLLW9UVHyhq1RlZeesWftmzdr34Yczn376/nPnqs6dG/WLX/zwRz/66aRJJ+J1FizYtmDBttRDnnrq/p0750VRtHz5H6655oNBjaerq+zJJ78bp1fl5V3f+tZLCxdu67HO6NHnrr323Wuuef/NN5e9/vpXk8no2LFJzz1393e/+2RfCUtjY00URVdcsf/++39dVfWFi/2NGdOwdOn6a69994knvn/kyJejKHr11dtmz949dmzDoEaeeqIMvqfJZOKZZ+6L06tEIlqx4vXly98sK/tCo6uRI9vr63fU1+/YsWPeCy/c1dY24tChaYcPT+1rm93diV//+v44vRo5sn3lyrWLFm1OlXHFamqabrjh7Wuu+WDduhUbNy6Oomj79vrLLvv4ppvWD2Jf0DdTCAEAACgYx4+fL6u5/PIjqaQjNnv23rg9+enT41taRmVpAFu2XLd9e328fNddL9x669oe6dWFrrhi/z/8w/8/rqLq6Kh8+eXbszGkP/5xeRy+lJd3/9VfPX5xepVSVtZ9881/uOOO802j/vSnue+9d20/W5448dPvfe9XPdKrlNGjW37wg/8ePboliqL29sqNG5cMbfyZfU83bly8d++VURQlEtF3vvObW275Q4/06kL19Tv/7u9+Gr+EZLLPWqn16286cGBGFEWJRPL++3+9ePGmHulVSlVV6+23v7x8+R/jH1977daPPro8nWEzIAEWAAAABePMmXHxwqhR53rcVV7e9Y//+L//8R///R//8d9HjOjIxrO3t1euW7ciXr7xxg0XllD1Zfz4z+655zdxC6oDB2bs2jU3s0Nqbh69YcP5FlS33fbKjBkHBnzIwoVbUyHXG2/c3N3dZzJw001v9r8nR45sW7x4U7z8wQdfSXfQX5TB97StbcQf/3i+Nf6yZW+mU8tWV3fy/vt/3VcgFUVRa2vVm2+eb2i1cuXaK6/cN+A2V65cO2fOniiKurvLXn995YDrkw4BFgAAAAXj0kvPNyo6dGjqxY23L7nkVF3dybq6kxUVndl49nffXdDUVBNFUU1N08qVr6f5qBkzDt5//9OrVq1ZtWpNZ2eGO/ls3XpdW9uIKIouvfTU4sWb03zUqlVr4uZNn302fvfuOb2uM2rUufjyfP274YbNcQ1aU1NNP9fm60cG39Nt2xbEhVpjxjTccsu6NAcwY8bBa6/tM4vcunVha2tVFEWTJx9btuzNdDaYSER33/1cvFsOHJjRz0UhSZ8ACwAAgIIxadKx8vLuKIqam6uffvq+traRuXz2VP3UkiWbUt270zFv3s5ly95atuytdCKhQdm9e/bnQ9qYutTggEaPbpk//714ed++K3tdZ/Lk4/3MjkwZNao1lUAN7WKLGXxPU2HcjTduTGfwKbfc8oe+eoGltjl//vvpd2QfNerc3Lm7oihKJqP33puf/kjoiwALAACAgjFqVOstt7wRL+/ePft//a9/2rhxSVyClG0dHRWp3u1xNpF3bW0jjh79crw8a9beQT121qzzU+H275/R6wo1NU293n6xcePOxAutrUNpPZap97Sjo+Lw4fNv0Jw5g3uDxo49+6UvfXzx7e3tlR99NCWKokQiWV8/uPAxNcN0374rBvVAeuUqhAAAABSSZcv+ePjw1DgUaGysefnlr7/++levvfbdRYs2X3rpqew9b2PjmK6usiiKqqraUjVH+dXYWBu3Hh89+tzYsWcH9dgvf/lovNDQMDaZjC6uLaqoSLfEbMSI9nihvb3nBMA0ZeQ9bWysjd+gUaNaJ0z4bLBjuPzyI0ePfunibXZ3J6IoKi/veu65uwe1wWTyfM3Q6dOXDHYwXEyABQAAQCEpK0t+//uPv/XWsvXrl547VxVFUVvbiE2bbti8+Yb5899dtWpNTU1zNp63sbEmXqipaczG9ocgbsgVRVF1dbrVUimjRzcnElEyGXV1lbW2jrq4gXr6ExJT3aku7PD16KM/2L9/Zj+Puvvu56699vw0xoy8p6m9kX7t2IVqaxv62WZnZ0X/L6cfLS2jh/ZALmQKIQAAAJn30EMPZm/jZWXJ5cv/+M///H9/61svTZx4vhgqmYzefffa//N/fnz69IRhbj8ua7r4SYe52YwrLz/f5qnXAfcvkUgmEt3xclxkNAwZ2DOZeE/Pv4qhvZxUwdQXR9U9hE310N2d6OoqH/52SpwKLAAAADIsTq8eeujBhx56OHvPMmJEx6JFW66/fsu+fbPeeOPmI0cuj6Koqan6scce+Kd/+n9S0UNqobMz3Qluva6ZKrxKVeXkXXX1+bqk5uZBD6m1dVR3d1kURWVlydGje5ZfDd/s2XsmTDjdzwq9zg1M8z3tVarwamhvUGNjbT/bnDTpxI9//L+HsFkyRYAFAABAtmQ7w4qiKJGIZs3aO2vW3nXrVqxbd0sURadPT9i5c17qen8jRpzv5dTcXJ3mNltbe7kQXm1tY0VFV2dneWtr1aefXpLVfltpqq1tLC/v7uoqO3eu6rPPxo0ffyb9x544URcv1NQ0pT9bMH1Llmwa8mMHfE97VVvbUFbW3d1d1tY28sSJiXV1Jwf1pIcPT+ltm+ff9FOnLunqKouvlkhemEIIAABAJmV18mA/VqxYd8UV++PlDz/8c7uiqqrz5UVNTekGWL123a6o6Jo+/UC8vGvXVUMfaOZUVnZOnXo4Xt63b9agHvvhh+cvjTd9+sHMjiqD+npPe1VZ2Tlt2qF4edeuuYN6os8+G3/s2OSLb0+96Z2d5Xv3Dm4Pt7WNbGkZ1dIy6sLWYAyZAAsAAICMuTi9ymCe1dpadfDgtIMHpx07NqnXFWbN2hsvnDkzPnVj6oqBn302oaNj4FmEhw9PbWsb0etdc+fuihc2bFgyqCvuffrppfHIjx79cvqPSsesWXvihY0bF6ffCauzs2Lr1gXx8pVX7svskAZlaO9pX+bO3R0vbNq0eFBv0B/+sDyNbS5Jf4PNzdX/9m///JOf/M+f/OR/njx5afoPpC8CLAAAALIrUxnW6dPjH3nkrx955K+ffPJ7va7Q6/UBx48/U1XVGkVRe3vlrl1zBnyWzZtv6Ouua699b8yYhiiKmpur16y5Lc1hf/zxl/7jP/4/8cj37BlcFc+AFi7cFr+6U6cu2bSpz5H3sH79jXGjqJqapquu2pnZIQ3K0N7TvixYsC3uC9bcXP3aa6vSfNTBg9Pfe+/avu6dP//d2trGKIoOHJj+/vvXpLnNNWtWxRNRZ83ad9llx9J8FP0QYAEAAJAZ2Z48OG7cmUQiiqLos8/G99qo+8SJ81U8Y8eeTd2YSCRTRTSbNy+OO5f35dixSX/6U5/TAysqOleufP3zTS3qJ+pKOXNm7C9/+ZcdHRVRFI0d23DTTesHfMigVFW1Ll16fpuvvvq1AwemD/iQAwemr1u3Il5etuzNysrOzA5pUIb2nvZlxIj2FSveiJc3bbphy5brB3zIqVOXPP30ff1cuLCysjO1zRdfvOPw4akDbnPz5kXvvnttFEVlZcmbb35jwPVJhwALAACADOg/vcpItjV69LnLLvskXn7ttVt73Hvu3Kh33rkuXp4xY/+Fdy1evClOST766PKXXvpmXxnW8eOTHnvsr7q6+jtTvvbad+fPfy9eXr36G7///df66XB04MD0//zPv29srImiqKys+667nh8xor2fjQ/NTTe9Ffd+6uoqe/zxv9q27dp+Vv7gg6sff/yBeA9Mn37whhs2Z3w8gzLk97Qv11//9rx5f4qXf/vbb7366qrOzvK+Vv7ww5n/9V9/FzdHmzixz6bv1133Tn39ziiKOjoqHn30B9u2Lehrza6usrVrv7p69TeTySiKoq997ZUpU46kM2wGpJEYAAAAw5VOPpWRKxKuWrXm0Ud/EEXRtm3XVlR0rFr12siRbVEUnTx56bPPfqe5eXQURXV1J3tcru6yyz5ZvHjTxo2Loyh6553rPv74S8uX/3H27L0VFeeLj06fnrB168ING5Z0dZWPG3dm7NiGQ4f6LLS5444Xm5pq457iGzbcuGNH/dKl66+66k9jxzak1vnoo8u3bLn+gw+uiUt7ysqS99zz7MyZaUUwg1Ve3v3d7z7185//7aefXtLZWf7883e98871S5ZsuPLKfVVVbfE6nZ0V+/fP2Ljxxv37Z8S3jB//2f33P11WlvnrDw7W0N7TviQS0Xe+82xTU3VcKvXWWzdt33710qXrr7pqVzz9M4qi7u6yAwemb9my6E9/Ot/rfcWKN9rbK0+enNjXZu+667nGxtrDh6d0dlY8//ydW7Zct3Tphiuv3BcPNYqi5ubqnTvnvfXWTWfOjI1vWbBg25IlG4e2T7iYAAsAAIAcGX6GNXPm/gUL3o2LjN5+e9GWLdePH3+mq6v87Nkx8QqJRHTHHS+Wl3f3eODXv/77pqaa7dvroyj65JPLnnrquxUVXbW1DSNHtjU11aYuUFhe3nXPPc+++eZN/YyhoqLrgQcef+WV2zZuXBJFUUPDmJdfvv3ll2+vqWmuqWlqb69saBhzYVnWyJFtd975Yn39juG88P5VV7f86Ec/ffrp+/btuyKKoiNHvvz00/eVlSVraxtHj25paxvZ0DDmwkKkKVOO/MVf/LK6uiV7Q0rfkN/TvlRWdvyP//Ho6tXffOedhVEUnT079ne/+8bvfveN+A3q6KhoaBhzYTv/665755Zb1r36an9NzUaM6PjhD3/xwgt3xm2wjh798q9/fV9ZWfeYMQ1VVW1nzoxtba26cP2lSzesWrVmEHuBgQiwAAAAGJZst77q4ZvffGn06OYNG27s7i5LJhOnT//54nS1tY133PHbKVM+uvhRiUTy3nufmTLlo7VrV8YXGezsLP/ssy9c2K62tvG7331qypQjUdRfgBVFUVlZ9+23//6qq/60du2tqVqtpqbqVBCWWq2+fudtt72aqv3Jnqqq1gceePyDD77y+usr4tfV3Z04e3ZMKgaKjR597uab/7Bo0dvl5V3ZHlL6hvae9qO8vOuOO16sr9+xdu3KI0fOX/nx4jdo5Mj2b33rpWuueT+dbVZUdN1zz7P19TvWrLktvrBgd3fZmTPjeqw2efLxW29dM2tWPq/tWJQSyWT+ywUBAADIvYcfHu6EvmhI6dXwJxJGUXTs2OQNG5YcPjytqakmkegeN+7MrFl7ly17c9So1v4f2NIyateuq3btmnPq1CVNTTXd3WU1NU0TJnxWX7+9vn5nPCNs5855cYYyZ87uiRM/7X+Dn3wyec+e2fv3z2xoGNPUVJNIRKNHt9TVnZg+/WB9/fYL5xXmRldX2cGDM/bunfXRR1MaG2taWqorK9tra5smTTo+Z87uWbP2jByZ+T5cGTHk97R/R49+ae/e2QcOzIjfoLKyrtrapvHjP5s3b8e8eTtTe+PAgelHj345iqKpUw9PndpfXtbdnTh0aNru3XMPH57S2Fjb0jK6qqq1trZx2rTDs2fvnjlzf6LPjvCZ9OCDOQ2O806ABQAAUKLyFWBFGcqwoJSVWoDlKoQAAAAMUY4nDwIlS4AFAADAUAwnvZJ8AYMiwAIAAGDQhp9AybCA9AmwAAAAyA8ZFpAmARYAAACDI3gCckyABQAAwCBkNr2ShQHpEGABAACQTzIsYEAV+R4AAAAAheShhx7O9xCAkqMCCwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACFpFvgcAAAAAkDuLNm/+5urVURRtXbjwxTvvzMg2b3vllaXr10dRtG7FijdWrMjINrmQCiwAAAAAgibAAgAAACBoAiwAAAAAgibAAgAAACBomrgDAAAAJWT7V75ycPr0KIpaR43K91hIlwALAAAAKCHnRo06J7oqNAIsAAAACsnkY8dm7N8fRdGJSZM+vOKK+May7u6Z+/dfvX37xBMnxjQ2jmppaamubqytPTxlyu65cw9NnZosG1wLnUnHjy/cuvXLR46MbWj4//3Lv/S6Tnln58z9+6/ateuyjz+ubWwc2dZ2dty40+PHn6ir27ZgwalLL03niUa2ti5dv/7yI0cmHzvWWVFxYtKk/TNmbFq8uLu8PCPrZ0nO9k/60t8zVa2t1U1NURS1VVU11dT0s81Ed/e0Q4dm79kz9fDh2sbG6ubm1lGjGmprj0+atKO+fv/MmUPY7TneLUUjkUwm8z0GAAAA8uDhhx/O9xCGYtHmzd9cvTqKoq0LF754551RFF31pz99c/XqmsbGvh7y6cSJa1at2j1nTjrb/O23v/21V19dsmFDfFdnRcX/9a//2mP9RDJ5zfvvr1y7dszZs31tc//MmW/ccsvhadP6eS1XfPjhnc8/P6ahocftJ+rqfnPvvccnTRrO+hfvqAH95RNPzN6zJ4qip++7b8fVV/e6qVzun/RlY89ctXPnrWvXXvLpp32t0FRT8/vbb99+9dVRFN32yitL16+PomjdihVvrFjR6/qZ3S0PPvjggOsUE03cAQAAKFSJ7u67n3vuu08+mUqvusrLz44bd6KurmX06NRql548+Re//OU9zzxT0dk54DZvf/nlVDrTq5GtrQ88/vjdzz6biiG6ysvPjBt3YtKkptra1Goz9+//61/84qa33uprO+NPn/7er36VylzOjhuXqgaqO3Hie08+WdnePpz1syRn+yd9Gd8zle3t333yye8+9dSf06tEorm6+kRdXWNtbaqar6ap6d6nn/7+E09UdnQMuM3c75YiYwohAAAABSkRRd/83e/mv/tu/OOuuXO3Xnfd/hkzuirOn+rWNjbO2bVr6YYN40+fjqLoKx98MP6zzx794Q87Rozoa5uXHzlSd/JkFEVdFRXvzZ9/cPr0Q1+shRnV0vI3P//5xJMn4x+PTZ78+sqVB2bM6KisjG+paWq6aufOFW+8Mbq5OdHdverVVy/75JOn7703SiR6PNedL7wQBx/HJ09+5t57T06cGEXRlMOH73/66dqGhvGnT3/19ddf+frXh7x+NuRy/6Qvs3tmZGvrXz/yyORjx+IfT11yyfqlS3fNndtSXR3fMqKtbda+fYs2b5526FAURbP27Hngscc+nTixn23mZbcUGQEWAAAABWnO7t2jm5ujKGqqrX36vvsOXTTrqrG2dsuiRdsWLrz5D3+4+Y03oii6/MiRu55//un77+9rm3UnTkRRdGzy5GfvuedEXV2PexPd3ff/+tdxDNE+cuTalSs3L1rUo7tWU03N2zfc8ME116xYt27xxo1RFNVv3/7xZZetv+mmC1eraWycfvBgFEWdlZW/+t73zowfH9/+0dSpq7/xje89+WQURXN3707FLoNdP0tytn/Sl9k9k0gm73vmmfPpVSLx+ooVby5f3v3Fl9A+cuSO+vod9fXzduy464UXRrS1TTt0aOrhw31uMx+7pfiYQggAAEBBitOrM+PH/+ff//3F6VVKV3n561/96vN33RX/WL9jx4Jt2/rZbOOYMT/727+9OJ2Jouim9etnHDgQRVEykfj1/fdvWry4r97wrVVVL99++x+XL49/vPW11y7/6KMLV5h8/Hi8cOTyy1OZS2zv7Nld5eVRFI0/fXpUS8vQ1s+e3Oyf9GV2zyzeuPHKvXujKIoSid985zt/uOWW7r7b/++sr//p3/1dPFk10XeH8bzsluKjAgsAAIBC1VlZ+au/+IuGMWMGXPPdBQsmHzu2eNOmKIpWrFv3/le+kppp2MOrq1b1OsewqrX1pjffjJfXrly578orB3zStStXTjpxYvbu3WXd3Stff/3RH/4wdde4M2fihXOjRvV4VFd5+f/+x38s6+qKoig1ksGunz252T/py+CeGdHWdvMf/xgvv7ls2QfXXDPgQ07W1f36/vt/+N//neju7nWFfO2W4qMCCwAAgEK1cfHiiy/V15e1t94aF8uMOXv2K9u397pO+8iRH3zlK73etXDr1qrW1iiKjk2e/OayZWk9ZSLx3N13x0nZjAMHxl5w7blPL700Xph66NDFLcBPXXLJybq6k3V1nZ+nbINdP0tytn/Sl8E9s2DbtrhQq2HMmHW33JLmAA7OmLHt2mv7ujdfu6X4CLAAAAAoSN1lZeuXLk1//fYRI95etChenrN7d6/rnJ4woa+22amHvD9/fvqttc+NGrVr7twoiqJkcv5776VuPzZpUnd5eRRF1c3N9z399Mi2tv63M9j1syRn+yd9GdwzqZew8cYb+yrQ69UfbrkltN1SfARYAAAAFKTD06adGz16UA/ZM2dOvDDzww+j3poWnZ4wodcHVra3T/nooyiKkonE9vr6QT3ptgUL4oUr9u1L3dg6atQbn9f4zN69+5/+1/9asnHjiL7Dl8GunyU52z/py9SeqejomPZ5I/Zdn39O0nR27NiPv/Sli2/P424pPnpgAQAAUJCO9hYZ9O+Tyy7rLisr6+4e0d4+uqWlpbq6xwqtI0f2+sDaxsa4yVFXefndzz03qCct+zwpu+T06Qtv/+OyZVMPH47jiZrGxq+//PJXX3/93Wuv3bxo0anPp8UNZ/1syOX+SV9G9kxtY2PcLat11KjP+sjp+nHk8su/dPToxdvM424pMgIsAAAAClJTTc1gH5JMJJqrq2sbG6MoqmlqujjA6ktNU1O8UNHZOXP//sE+b2z0Fy+Elywre/z731/21ltL16+vOncuiqIRbW03bNp0w+bN786fv2bVquYvvsDBrp9LGd8/P3j00f6389zdd7/3eeepjOyZ1EsYwucqiqKG2tp+tpnBj03JMoUQAACAzHvwoYey/RRlvc0BHFCy7PyJcFkfl43rVXdZBk6fE93d5V1dPQbzx+XL/+9//ueXvvWtTydO/PzW5LXvvvvj//N/JlxUejPY9Qc9wiHt0ihr+yd9w98zqfZUfV1PsH+9fhrzvluKiQosAAAAMixOrx586KGHsxljpcpbBqU6VWjTW8lMX1JVOScmTfrfP/7xEJ63Hx0jRmxZtGjL9dfP2rfv5jfeuPzIkXicDzz22P/zT/90cQiS5vqphcrOzjRHkv6aPWR8/+yZPbuvfluxXucGDnZPXij1Eob2uYrL+vraZjY+NqVGgAUAAEC2ZDXD+vKRI4N9SN3x43ExS2dlZXPa8wejKGqsre2qqCjv7Lzk1Kmyrq74sncZlkjsnTVr76xZK9atu2XduiiKJpw+PW/nzu1XXz209TtGjIgXqpub0xzCyNbWoY094/tn05IlQ3/wYPdkFEVR1FBbG/dHG9nWNvHEiZN1dYN6zimfN4C/UC4+NiXDFEIAAAAyKQeTB2NTjhwZnXY0E5u9Z0+8sH/GjGQi0f/KF+qqqDgwfXoUReWdnbP27h3Uk45saxvV0jKqpaUivfqmdStW7L/iinh55ocfDnn9c1VV8UJ12iVFQ+4Xnsv9k75B7cnOyspD06bFy3N37RrUE43/7LPJx45dfHuYu6VACbAAAADImIvTq+zlWYnu7hs3bEh//YqOjsWbN8fLu+fMGezT7Z47N15YsmlT+o+qbm7+53/7t//5k5/8z5/85NKTJ+Mbq1pbpx08OO3gwUm9pR5RFO2dNSteGH/mzBDWj336+SS7CZ99VtnRMeBQpx4+PKKtLY3X1LsM7p/0DW3P9CX1EhZv2lTZ3p7+MJb/4Q8DbjOXu6UoCbAAAADIruxlWIs3bZp44kSaK9/yhz/UNDZGUdRYW/v+NdcM9rnenT+/sbY2iqLpBw5c8/77aT5q1Zo18by8fbNmHbvssvjG8adP//Ujj/z1I49878kne31U4xcvhDfY9WNnxo9vraqKoqiyvX1OGiVFN3ye7g1NBvdP+oa2Z/qybcGCeGJpdXPzqtdeS/NR0w8evPa99/q6Ny+7pSgJsAAAAMiMnE0eTKns6PiLJ59Mp+t2/fbty958M15e99WvdlZWDva5Oisr31ixIl6+48UXp/bW86iHRZs3X/vuu1EUJcvK3rj55tTtZ8aNixKJKIrGf/ZZr4Of9Hkqd3bs2CGsH0smEn8uKdq8uf+rLk46duyqP/1pwFfUjwzun/QNbc/0pX3EiNRLuGHTpuu3bBnwIZecOnXf00/3c+HCvOyWoiTAAgAAIAP6T6+ykW2dGz06iqIJp0796D//80tHj/a1WqK7+6Y337z3mWeiZDKKop319VsXLhzaM75z3XU76+ujKKro6PjBo48u2LatrzXLurq+unbtN1evjp/0la997ciUKReO/JPPy2puvajSZ9S5c9e98068vH/GjCGsn7Jp8eI437n8o4+++dJLfWVYk44f/6vHHivr6ur7paclU/snfUPeM315+/rr/zRvXrz8rd/+dtWrr5b33YJq5ocf/t1//VfcYuzkxIl9rZb73VKUXIUQAACA4Uonn8r4FQl3zZ3bVV5+/dtvjz179u9/+tPtV1+9dcGCQ9Ompa71NrqlZfbu3UvXr5/4eRehj6ZMee7uu4fzpM/ddVdtY+OUw4crOjvvfP7567Zs2bB06b4rr2wbOTJeobq5ed7OnTe99dbYz5subVuwYONF19Rbs2rVDx59NIqia7dt66ioeG3VqngLl548+Z1nn42b05+sq0tdOG+w68c+ueyyTYsXL964MYqi695550sff/zH5cv3zp7dWXE+DZhw+vTCrVuXbNhQ3tV1Zty4hrFjpx46FML+Sd/Q9kyfEolnv/Od6qamuFTqprfeunr79vVLl+666qqGMWPiVcq6u6cfOLBoy5a5n9esvbFiRWV7+8S+m1XlfrcUHwEWAAAAOZLZDCsZRau/8Y3K9vb5770XJZNXf/DB1R980FlZ2Vhb2zZyZHVzc01jYyKZTK3/3vz5L95xR1fFsE6EO0aM+MUPf3jnCy/E/Yy+fPTofb/+dXdZWcOYMW1VVWPPnKlqbb1w/Q1Ll65Zteri7eyfOfPdBQuu3bYtiqJFb799/ZYtZ8aPL+/qGnP27Pk1EokX77gjFcYNdv2U33/96zVNTfXbt0dRdNknn3z3qae6KioaamvbRo6sbWpKXaCwq7z82XvuuenzWZZ53z/pG/Ke6fMlVFY++j/+xzdXr174zjtRFI09e/Ybv/vdN373u+aamqaamoqOjjENDRc2xX/nuuvW3XLLba++2t82c75bio8ACwAAgGHJfeurlGRZ2XPf+c6eOXO+uXp1nMVUdHSMP326x2onJk167dZb98yenZEn7aqoePaee3bU19+2Zk18hbiy7u5xF13k7vjkyWtuvXXf51fBu9hL3/xm8+jRN27YUNbdnUgmLxx2Y23tb++446MvTh8b7PqxZCLxzL33fjRlysq1a+OLDJZ3do7/7LML12msrX3qu989MmXKTenvhb5lav+kb2h7ph9d5eUv3nHHjvr6lWvXfvnIkfjG6gvyvlj7yJEvfetbaV4QIPe7pcgkkhek0QAAAJSOhx9+ePgbGUJ6NcwirEWbN39z9eooirYuXPjinXfGN5Z1dV25b9/VO3ZMPHmytqGhqrW1ubq6sbb20LRpe+bMOTx1ajKRGM6T9irR3T3t0KG5u3dPOXy4trFxdEtLa1VVY23t4WnTds+evX/mzCiNJ5187NiSDRumHT5c09TUnUicGTdu76xZby5b1jpqVEbWTxnV0nLVrl1zdu265NSpmqamsu7uppqazyZM2F5fv7O+Pp7LNm/nzjj92T1nzqd9N3VKU0b2T/qGvGf696WjR2fv3TvjwIExDQ01TU1dZWVNtbWfjR+/Y968nfPmtX8+B3D6gQNfPno0iqLDU6d+NHVqPxvM1G558MEHh/O6Co4ACwAAoETlK8CKhpdh9RpgQakptQDLVQgBAAAYojxOHgRKigALAACAoRhOeiX5AgZFgAUAAMCgDT+BkmEB6RNgAQAAkB8yLCBNAiwAAAAGR/AE5JgACwAAgEHIbHolCwPSUZHvAQAAAFDSHnzooYcHE2O9fcMNb99wQ9aGA4RIgAUAAMAgDCpsAsgIUwgBAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgVeR7AAAAAMBwbd68efXq1VEULVy48M4778z3cCDDVGABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAAABBq8j3AAAAAGC4jhw5snv37oMHDzY2NjY1NZWXl1dXV1922WVXXHHFNddcU1ExuJPfrq6uAwcO7N69+8iRI01NTS0tLaNHj66trZ00adL8+fOnTZuWSCQGO8Jdu3Z98MEHR48ebW5urqioGDNmzOTJk6+77rqpU6f2WLO7u3vv3r3vvffep59+2tDQ0N3dHT/1vHnz5s6dO6jX0t3dfeDAge3bt584caKhoaGlpaW6urq2tnbq1Klz5swZwgvp7Ozcv3//rl27Pv7448bGxra2tnHjxo0fP76urm7BggWXXnrpoLYWRdHx48e3bt165MiRhoaGf/mXfxnswykdiWQyme8xAAAAkAcPP/xwvoeQAfv371+zZs3HH3/c1wo1NTVLliy5/vrrq6qqBtxaMpn84IMP1q5de+bMmb7WmThx4n333Tdp0qQoip577rl33303iqJvf/vb119/fWqdzZs3r169OoqihQsX3nbbbc8+++yePXt63dqcOXPuueeekSNHxj8eP378qaeeOnXqVK8rjx8//lvf+taVV1558V0XPuOdd94ZRdHu3btfeumlhoaGvl5IXV3dqlWrZs+e3dcKF0omk++///7atWvPnj3b1zozZ8685ZZbpk2b1tcKFw7y29/+9quvvrphw4b4roqKin/9139NZyTEHnzwwXwPIadMIQQAAKAgdXV1vfjii48++uiF6dXo0aPr6upqampStUVNTU1r1qz593//95MnT/a/wba2tieeeOI3v/lNKr1KJBLV1dV1dXVjxowpKzt/Bn3y5Mmf/vSn77//fjqD7OjoePzxx1PpVVlZ2aWXXjp27NjU8Hbv3v1f//VfbW1tURTt27fvpz/9aSq9GjFixKWXXjphwoRU1dVnn332+OOPx5FZP5LJ5AsvvPDLX/4ylV6Vl5ePHTu2rq6uuro69dQnTpx44oknnn322c7Ozv432Nra+vjjjz/77LOp9Kq8vHzcuHGTJk2qra1NrbZ///5f/OIXb731Vjp75uWXX06lVzAgUwgBAAAoPB0dHY899tihQ4fiH8ePH3/jjTdeddVVqTylo6Pj4MGDmzdv3rdvXzKZbGho+NnPfvbAAw9cfvnlvW6wpaXl5z//eSrkmjBhwtKlS+fOnVtTUxPf0t7evm/fvs2bNx88eLCjo+O5554bO3bsgOPcvn17PPPpyiuvXLlyZV1dXZxGNTY2bt68+c0330wmkydOnHjppZe++tWvPvPMMx0dHVEUTZs27eabb545c2YcNnV0dPzpT3/63e9+d+7cuWQy+fzzz48dO3bGjBl9Penvfve7rVu3xstz5sy57rrrZs6cmUrBmpubd+/evWHDhvjFvvfee6dPn/7hD39YWVmZzp6ZPHnyypUrZ8yYkVq/qalp586db7zxRnNzc3d396uvvvrJJ5/ce++9/cxPPHLkSLzBioqK+fPnT58+vZ+6LYhMIQQAAChZBT2F8Omnn96+fXu8vHz58ltuuaWv5lAffvjh008/fe7cuSiKKisrf/SjH8Wz/y7U3d392GOP7d+/P4qiRCJxyy23LF++vLy8vNcN7tix4/nnn29vb6+pqZk8efK+ffuivqcQxm699dZly5ZdHOgcOHDgmWeeaWpqiqKopqYmXrjxxhu/9rWvXbzyZ5999tRTT33yySdRFF1yySX/9E//dOE6qWesrq5ubm6ON3jfffdNnz6911fR3d29YcOGNWvWxLHA1Vdffd999/W62n//938fOHAgiqKRI0euXLly0aJFqWK0C7W2tq5bt27jxo3xj7fddttNN93UY50eu2Xy5Mn33HNPXV1dryOkf6YQAgAAQNC2bNmSSq/uuuuuW2+9tZ/W5ldcccU//MM/xJVZHR0dL7/88sXrbNiwIU6voii6++67V6xY0Vd6FUVRfX393/zN34wcObKpqSlOr/o3derU5cuX91qONGPGjK9//evxcpxeTZ8+vdf0Koqi8ePH33ffffFdp06dSg24hzi9Gjdu3N///d/3lV5FUVRWVnbTTTfdf//98Qa3b9++bdu2i1dbv359nF4lEon7779/8eLFvaZXURRVVVXdfvvty5cvj3987bXXPvroo76ePYqiMWPG/O3f/q30ijQJsAAAACgk7e3t69ati5dvvPHGBQsWDPiQ8ePH33PPPXFSc+DAgV27dl14b1tb25tvvhkvL1u2bP78+QNu8LLLLrvrrrvSHPCqVav6uffqq6+eOHFi6scbb7yxn5l3l1xyyRVXXBEvf/jhh32tVllZ+Zd/+ZfpzHCcN2/ezTffHC+//vrrPZphtba2pvbMypUre20e38PKlSvnzJkTRVF3d/frr7/ez5qrVq0aMWLEgBuEmAALAACAQvLuu++m5tytXLkyzUfNmDHj/vvvX7Vq1apVq3rENFu3bo0nGI4ZM2bFihVpbnDevHmpLKkfVVVVU6dO7WeFRCIxd+7ceHnkyJEDXhNw1qxZ8cLx48f7Wmfx4sUXT5Psy/Lly8eMGRNFUUNDwwcffHDhXVu3bm1tbY2iaPLkycuWLUtna4lE4u67744L4g4cONDXJQtHjhz5la98Jc0RQiTAAgAAoLCk6qeWLFnSV9/xXs2bN2/ZsmXLli27+uqrL7w9dYnAG2+8sZ+piBe7uMfTxSZMmDDgOpdcckm8MH78+H7Kr2KpLvXxVMGLlZWVLV26dMAnTamoqFi8eHG8vHv37gvvSv04f/78AQeWMmrUqDiSSyaT7733Xq/rTJgwIf0NQiTAAgAAoIB0dHSkrjyYKlwajs7OzsOHDw9tg9OnTx85cmT/64wfP37A7aQ2UlVVNeDKqQCrvb291xWmTZs2evToAbdzoVRV1/79+1OXemtvb4+bWCUSifr6+kFtMDWvs68eYenkenChQUTLAAAAkF+NjY1dXV1RFFVVVV166aXD32BDQ0O8wVGjRqUTNl2orKxs8uTJqUCtVwMmXFEUpRrG99UfvdcNdnd397rCl770pQE30kNdXV15eXlXV1d7e3tLS0t1dXUURY2NjfFTlJeXP/fcc4PaYCoFO336dK8rpLNb4EICLAAAAApGY2NjvFBTU5ORDaYm4g1tg5kaRgYN+YXE/aoaGxvjACtuNBZFUWdnZ19XPBxQS0vL0B4IPZhCCAAAQOY99NBD2dhsOjVKg5KqY+qroCnNh4cjVf00KKkXkmpNlZFd3d3dHRe4wTCpwAIgr3o07+z1eGvAdYa/QprrAADpidOrhx56KOMxVqq8KFUflN8NZmoYGdRXc/d+JJPJiyvRUguTJk368Y9/nKnhwdCowAIgmxKJL/wraMX0WgAgVzIeYNXW1sYXCmxtbf30008zssG45qitre348eODemxnZ+exY8eGP4bMOnLkyGAf8vHHH8cVWJWVlakG8KldferUKVVU5J0AC4BhkOlcyN4AgCiKsjZ5MFZRUTF9+vR4edeuXcPf4IgRIy6//PKhbfDAgQMdHR3DH0NmffTRR4MtwtqzZ0+8MGPGjNQUwtSu7uzs3Lt376A22NbW1tLS0tLS0tnZOagHQl8EWAD0TSKTWfYnACXg4vQq43nW3Llz44UNGza0t7en/8BPP/304MGDBw8ePHr06IW3z5kzJ17YtGnToDb41ltvpb9yznR3d7/55pvpr9/e3v7222/Hy7Nnz77wrtSu3rRpU/obbG5u/rd/+7ef/OQnP/nJT06ePJn+A6EfAiwACImQC4BilNkM69prrx0zZkwURc3NzWvWrEnzUR9//PF//Md/PPLII4888kiq4Ci2cOHCkSNHRlHU0tKS/ga3b99+8ODBQYw7hzZv3vzRRx+lufJrr70WXyuwurr6mmuuufCu+fPn19bWRlF04MCB999/P80NrlmzprW1NYqiWbNmXXbZZYMYN/RNgAVQqgIJSpLJL/wb2jrDXyHNdQCAfmV18mBKRUXFypUr4+XNmzdv3rx5wIecOXPml7/8ZTzdb+zYsTfddNOF944ePXrp0qWpDW7ZsmXADX7yyScvvvjioIeeK11dXU899dTp06cHXHPbtm2p6qqbb755xIgRF95bWVm5YsWKePnFF188fPjwgBvcvHnzu+++G0VRWVnZzTffPMiBQ58EWABkUzGlQoG8lkCSRwC4SP/pVcaLsObPnx8vr169+ve//30/vZYOHDjwn//5n42NjVEUlZWV3XXXXT1imiiKli1bNm3atHj5t7/97Zo1a/rZ4O7dux955JG2trYoiuJasKDEXdgbGxt/+tOf9lMj1tXVtW7duhdeeCH+8corr7zhhhsuXu26666rr6+Poqijo+PRRx/dtm1bPxtcu3bt6tWrk8lkFEVf+9rXpkyZMryXAn9Wke8BAJAdPaKNLAUuhZ5JZZa9AUAJSyefeuihhzIYY91xxx1NTU0ffvhhFEUbNmzYsWPH0qVLr7rqqrFjx6bW+eijj7Zs2fLBBx/El9grKyu75557Zs6cefHWysvLv/e97/3sZz+Lr2z45ptvbt++/aabbpo7d248hy6Koq6urgMHDmzevDk1A3HlypWnT5+OC47CMXfu3PLy8rfffrulpeWRRx6pr6+//vrrp02bVlZ2voSlubl5165d69evP3XqVHzLpEmT7rvvvkQf343dddddjY2Nhw8f7uzsfP7557ds2bJ06dIrr7wynncZb3Dnzp1vvfXWmTNn4lsWLFiwZMmS7L5OSowAC4C+SWQyKzf7MzfZJQAMSQYzrIqKigceeOCVV17ZuHFjFEUNDQ0vv/zyyy+/XFNTU1NT097e3tDQcGEV1ciRI++88864mKhXo0eP/tGPfvTMM8/EV9w7c+bMSy+9tHr16urq6l43uGTJkptvvvm5557LyMvJrG984xtdXV1bt26NomjHjh07duyorKwcM2ZMZWVlc3NzU1NT8oIjhDlz5tx7770XV6WljBgx4oc//OELL7wQt8E6evTor3/967KysjFjxlRVVZ05cybueJWydOnSVatWZe3FUaIEWACFSUhRrLyVABSg3LS+ulhZWdntt99+1VVXrV279tChQ/GNTU1NTU1NPVarr6+/7bbbBpzuV1VV9f3vf3/79u2vv/563EAqmUxevMHRo0ffeeedqSv0BaisrOzOO++cM2fOSy+91NDQEEVRR0dHqt4qZcKECStXrqyvr++r9iqloqLinnvuqa+vX7NmTXxhwe7u7lS9VcrkyZNvvfXWWbNmZeyVwOcSSQfKAIVowABLwlWshv/W+2wA8LmHH354+BsZQnqVjcDrk08+2bNnz/79+xsaGpqamhKJxOjRo+vq6qZPn15fX3/hvMJ0dHd3Hzx4cO/evYcPH25sbGxpaamsrKypqbnkkkvq6+vnzp1bWVkZr7l3797jx49HUXTllVdOnjw5468rfZ988kk8oXLSpEmpCKm7u/vAgQPbt28/ceLE2bNnz507N3r06Nra2ilTpsyePXvGjBmpeYVp6u7uPnTo0O7du1N7pqqqqra2dtq0abNnz545c+aAWRiZ8uCDD+Z7CDklwAIIkpCCIfPZACBt+QqwhvwoIKXUAixTCAGKlFQCAMg+ORSQG4OrFQQAQpdMfuHfECQSX/gHAH0YTnol+QIGRYAFkA/DDwiGH1IAAAzD8BMoGRaQPgEWAJQYJVoABEOGBaRJDyyAICmqAgACJngCckwFFkAWqE8BAIpXZtMrWRiQDgEWAPBFw5xjKMAFYJBkWMCATCEEyAczBAGAgiVvAnJPgAUweD2KSqRRlBqfeQAAcssUQgAAAACCpgILIAvUp0A/1DACADBIAiyA3jjBhiHz/wUAgEwzhRAAAACAoKnAAhg8BSaQVUogAQD4IhVYAAAAAARNBRZQktR3QB75HwcAwCAJsAB64wQbAAAgGAIsAKCgqKAEACg9AiwAIDAyKQAAvkiABRQpNRoAAADFQoAFlCR5FgAAQOEQYAEAxUUBJgBA0RFgAQAFRSAFAFB6BFhAYVJhAQAAUDIEWECREmkBAAAUCwEWAFBK1G8CABQgARYAUFxkUgAARUeABYRKlQQAAABRFAmwgEIlzwIAACgZZfkeAAAAAAD0RwUWAFBK+q/fNHkZACBIKrAAAAAACJoKLCB/+q90UPgAAABAFEUqsAAAAAAInAosAID06JAFAJAnAiwAgM/JpAAAgiTAArJJtQIAAADDJsAC8keeBQAAQBo0cQcAAAAgaCqwAADS03/dqEnTAABZowILAAAAgKCpwAKGp/+KAwUIAAAADJsKLAAAAACCJsACAAAAIGiJpAk+wHBoWgyQDr8tAQCGQQUWAAAAAEHTxB0YHkUEAAAAZJkACxiIaS8AAADklSmEAAAAAARNBRYAQPYpXwUAGAYBFgBAvpmsDQDQL1MIAQAAAAiaCiwgiqJ+v/xXCAAAAEBeqcACAAAAIGgCLAAAAACCZgohAEC+9TNZW393AAAVWAAAAAAETgUWEEWRr/QBAAAIlwALSoZJKAAAABQmUwgBAAAACJoKLACAgCmYBQAQYAEAFDDTwwGA0mAKIQAAAABBU4EFxaWfr+J9LQ8AAEBhUoEFAAAAQNAEWAAAAAAEzRRCAICCZXo4AFAaBFgAAMXIBQoBgCIiwILi4vwEAACAoiPAggLkS3UAAABKiSbuAAAAAARNgAUAAABA0EwhBAAoRiaYAwBFRIAFAFBi9FIEAAqNAAsKkDMNAAAASokAC0Ll63EAAACIokgTdwAAAAACJ8ACAAAAIGimEAIAlBjT0gGAQiPAAgDgApowAgDhEWBBqJwwAAAAQBRFemABAAAAEDgVWJBvZmoAAABAv1RgAQAAABA0FVgAAFxALTAAEB4BFgAA6THtHQDIE1MIAQAAAAiaCizIN19fAwAAQL8EWJAT5lwAAADAUJlCCAAAAEDQVGABAJAeFcQAQJ6owAIAAAAgaCqwAAAYNt0eAYBsEmBBTjiOBwAAgKEyhRAAAACAoKnAgowygQIAAAAyTQUWAAAAAEFTgQUAwLApOgYAskmABQBANplfDwAMmymEAAAAAARNBRZklG+VKSWJHlUVhSzpPy8AAARMgAVDZUIERSr9WKqYQp/SfNUAAFAoBFgApWXApKY0A5r0X7UdCAAAuSfAAihC/YQs4pVhGnAH2vnQk08+ADBsAiyAAtZXViIoyaN+dr73CwAAhkaABVAYes0+BB+Fpa/3y5tL6dJQEgBIjwALhspBNlkjzig1vb65F38MfAYAAChZAixIg++HySY5Bb26+GMg2QQAoGQJsAByrUcMIYAgTekUavk4AQBQlARYANmlwIqs6vFx8nkDAKAoCbAAMkxFDHk04MRDH0jC4gMJAKRHgAUwXAICQtZ/iZaPKwAABSHhyBVgsEQAFA0fZsLlCioAwAVUYAGk5cLzfCf5FI1+6rN8zgEACIcAC77I971cwMk8pebCz7niLAAAwiHAAvgzZ+yQojgLAIBwCLCAUue0HNLRV3GW/zUAAOSAAAsoRU6/YTiEWeSCjxMAcAEBFlAqnGZDNgizyAMNKwGg9Aiw4IscBBed1Bm102nItl7DLP/1AAAYPgEWJcz3t8VLGQjkXeq/nv+PAAAMnwALKBJOkiFM5hgCADB8AiygsJmmBAXEHEMAAIZGgAUUJKe+UOjMMWTofE4AoPQIsIBCIreC4qMsCwCAASUcIAKBU50BJUiSxVC4PAsAFC8VWJQGR7QFyOkrlLKLJxj6VQAAUMoEWEBYnKwCF5JkAQAQCbCAQDg1BfonyQIAKGUCLCCfnIgCgyXJAgAoQQIsIA+cdgLDJ8miJx8AACherkII5I6TTCCr/JIBAChWAiwg65xSAjnm1w4AQJERYFGMPj9vOc+HPH/ic0i/Z4B8kWRxnmMDAChwemABmeeMEQiEPlkAAMVBgAVkjPNDIFg9kiy/pgAACosACxguuRVQQOLfVH5xAQAUFgEWMHQKGYACZWohAEBh0cQdGDTne0DxkcgDAIRMgAUMghM8oLgJ6AEAwiTAosC5KnZOOKMDSo28voQ4lgCAQqAHFtAfp3BAadLrHQAgKAIsoBfO2QCii3q9+5UIAJAvAizgC5ykAVxMQRYAQH4JsIAoclYGkAYFWQAA+aKJO5Q6p2EAQyP6BwDIGQEWlC7RFUBG+HUKAJBtAiwoRc61ADLOr9Zi83mF3XneWQDIKz2wKCgOJYfHbBeA7Lmw0btfswAAmSXAgpLghAogN1yvEAAgGwRYUOREVwC553qFAACZJcCCouWsCSDvzCsEAMgIARYUIWdKAEERYxUk7xQAhMRVCKF4aLkCED4xFgDAEAiwoBg4HQIoLH5vAwAMigALCptTIIDCpXK2IH3+rp3nvQOAnNADi1A5OhyI6Aqg0LlYIQBAmgRYUHic5wAUGV3eAQD6J8CCQuLcBqCIibEAAPoiwILC4HwGoESIsQAALibAgtA5hwEoQWKscHk7ACAfXIUQwuW8BYDInwMAAAEWhMm5CgA9+NNQAFxDGQCyxhRCCIvzEwB6ZVIhAFDKBFgEwNeVURQ5JwEgDWIsAKA0CbAg/5yHADAoYiwAoNQIsCDPEgmt6AAYCjEWAFA6BFiQN045ABg+MVZA7H8AyBoBFuSB0wwAMkuMBQAUN3OXIKecWgCQbSanAwDFx/EN5IjoCoCc8UcnLC64DADDZgohZJ2zCAByzIxCAKDICLDIuRL7EtI8DgDyRYwFABQNARZkixMGAEIgxgIAioAACzLPSQIAoRFjAQAFTYAFmeTEAICQibHyw64GgGETYEHGaHcFQEFIxVj+bAEAhcKBC2SAr7IBKET+fgEAhUKABcPi0B+AQudvWd6U2KWZAWA4TCGEoTP5AoAioDEWABA+ARYMhaN8AIqMGAsACJkAi2wqxsJ4R/YAFDH93QGAMAmwYBAc0ANQCpLJpC9sAICgCLAgLY7jASgpZhTmgh0LAGkTYMEAHLsDULLEWABAIARY0B9zBgFAYywAIO8ciEDvfNsMAD3445gjxXgZHAAYJhVY0AtfMgPAxcwoBADyRYAFX+CgHAD6Z0YhAJB7Aiwyp/DL3R2LA0Caksmkb30AgJwRYEEUKbwCgMEzoxAAyBkBFqXOYTcADIcYK/PsRgC4iACLkmbOIABkhMZYAEBWCbAoUb4oBoCM0xgLAMgS35JRinw/DABZJcbKisK/YA4ADJkKLEqL42kAyAEzCgGAzBJgMQyF9jWgw2gAyCUzCgGATCnL9wAgR6RXAJB7yWQyFWMBAAyZCiyKn+9+ASC/lGIBAMMkwKLIKbwCgBCkumJFYqwhs98AKGECLIqWQ2QACI3m7gDA0Dh6oDg5MgaAkPmeCQAYFCf5FBsHxABQKHzhlBmFdmFoABgCUwgZpLCPkBwHQw8Z/y8b9u8AoMBo7g4ApEmARfGQXlEESjMeKs1XDcQ0dwcA0iHAohg46iWPhC8Aw6e5OwDQPwEWBc/BLnAxwSIUIjMKAYC+CLAoYI5xGTLpBkCYlGINhX0FQAkQYDFIwRwhObSFdGT8f4n/dkAOKMUCAHoQYJGG8IpVpFcUq9L8XBfQqw7v1yEULaVYAMCFBFgUGN/HlrIws4NAhgFQlJRiAQAxARaFxNewQJr8qoCioRRr6ML85gcAhkSARcFw5EoG+SgBFBalWABQ4gRY9K3Ht3b544C1CPgOGPrifwekSSkWAJQyARZpy9PBouNUIBx+G0HeKcUCgNIkwCJo0isu5LMAQKQUCwBKkgCLQPlyFQDoh1KsgdkzABQRARa9yXf3K9+pBkWDHgDCpBQLAEqHAIs05Pag0GFoUfKWQl+y9L9D9EzpUIoFAKVAgEVYpFcAwGApxRocCTcABUiARSh8dwoADIdSLAAoYgIsvihP3a98ZZpVvmcFoEQoxQKAYiXAol85OfhzlBk4bw4AhUUpFgAUHwEWeSa9AsgGv1kpcUqxAKDICLDIG1+NAhQcU5IpLEqxemdvAFCABFh8Lrfdr3wjCgDkgFIsACgOAiz6kM2DPAeRQzCcqgc7G4ASF5diOfwAgMJVlu8BUHIcPgIAuRdnWIk8XXAZABgmFVhEUZSj+YOaUAAAeWQ6YX+0uAMgbAIscsTBIkAR8IucIqCzOwAUIlMI6U2mj+ekVwBAOJLJZCrGAgAKggossk56daEhl+fbhUARM3WJvNDZHQAKiAosstsAy3EhABAsnd0BoFCowOIimcubpFcAQOB0dj+vxF8+AMETYJEVeqMCAAVEZ3cACJwAi8wrne8wNW0BgKKhFAsAQibAIsMc9vXPvgG4mN+NhENndwAIkwCLTHLABwAUOtMJv0DBOQBhcBVCMkZ6BQAUh2QymYqxAIAQCLDIgPj609IrAKCYyLAAIBymEHKRRGJQxeHFFF0Ntka+WF43QHEy84nhM50QAAKhAothKab0CgDgYqYTAkAIVGARRclkzy+p0yO9AgBKROlenbAEXzIAQRJgMRRq6QGAUmM6IQDkkQCL3vTbBqvgvn7UAwUAyIj4EKjgjoUAoAgIsBic4j5iK95XBlCK/FYnS0p3OiEA5I8Aiz5cVISlZh4AIGY6oRJ3AHJMgEUURQP3cfc1IwDAhUwnBIBcEmDRt8+LsAI/MvP9HwCQL6YTAkBuCLD4XB9FWEVwTFbgwwcgIL414WIyLADIgbJ8D4CwORoDABhInGEl+m3IAAAMhwosLjBQJ6x88XU3ABC4kmuJVSIvE4BgqMBiAIlEmKEWAEBwUlcnBAAySwUWX9RnJ6zzdwYozFEBAKVJSywAyAYBFmExWxCAkPnDRDpSdVhiLADIFAEWFznfwaGXexIJB+4AAAMruZZYAJBl/qbSu/67N2TwU5OzJwIAyL3SyrDU0gOQNSqw6F18vNFXupS6fQiHJRqbAgClw3RCAMgIVyGkPw60AACGKZlMujohAAyTCiyGJc068fQP2ERmAJQg865KgasTAsBwCLAYQP9zCXvwzSIAQF9kWAAwZP6CMjgZj6h8AAFABVZJkWEBwBCowGJwBlWQ1f9GAABKkLbuADAEmrgDAEBOaesOAIOlgJnMSOcAzGcNAOBCphMCQJr8yQQAgLwpiQxLmzcAhs0UQgAAyBtzCQEgHQIsAADIpzjDEmMBQD8EWAAAkGfaugNA/wRYAAAQBBkWAPSlBHpGAgCUHl2zC1dJtHUHgEFSgQUAAAFRhwUAFxNgAQBAWLR1B4AeBFgAABAcbd0B4EICLAAACJQMCwBiOkQCAEDQirOtuwsNADAYKrAAACBo6rAAQIAFAAChk2EBUOIEWAAAUABkWACUMgEWAAAUhjjDEmMBUIKKsR8kAAAUteJs6w4AfVOBBQAABcZ0QgBKjQALAAAKjwwLgJKi9hgAgLT0SEscRYbAXEIASoQKLAAAKFTqsAAoERX5HgAAADB0cYZVPHVYKv0A6I0KLAAAKGzqsAAoegIsAAAoeDIsAIqbKYQAAKTFXK7ApTKs4plOCACfU4EFAABFIplMKsUCoCgVUbtHAAAgiqIoKqq27gCgAgsAAIqPOiwAiowACwAAipAMC4BiIsACAIDiJMMCoGgIsAAAoGjJsAAoDpo7AgBAkSuGnu49YrhCfzkADFJFvgcAAECJkkjkTFyHVfAZFgAlzBRCAAAofuYSAlDQBFgAAFASZFgAFC4BFgAAlAoZFgAFSg8sAAAoIYXaD6vgBgxARhXgny4AAGB4CjLDAqCEmUIIAAAlx1xCAAqLAAsAAEqRDAuAAiLAAgCAEhVnWGIsAMJn6jsAAJS6Qm2J1SN6K8SXAEB6VGABAECpM50QgMAJsAAAABkWAEETYAEAAFEkwwIgYAIsAADgPBkWAGEqzGaNAABwER29M6VQe7oDULxUYAEAAF+gDguA0AiwAACAnmRYAARFgAUAAPRChgVAOARYAAAAAARNd0YAAKBPBdnQXT9/gKKjAgsAAOiTiYQAhECABQAA9EeGBUDeCbAAAIAByLAAyC8BFgAAMDAZFgB5VIAdGQEAgDwpyJ7uABQ+FVgAAEC61GEBkBcCLAAAYBBkWADkngALAAAYHBkWADkmwAIAAAZNhgVALgmwAACAoZBhAZAzriECAAC96JHMOGruS8Fcl9A7ClDIVGABAABDpw4LgBwQYAEAAMMiwwIg2wRYAADAcMmwAMgqARYAAJABMiwAsqdAGi4CAACFoGB6ugNQUFRgAQAAGaMOC4BsEGABAACZJMMCIOMEWAAAQIbJsADILAEWAAAAAEHTYREAAMiKwmjo3qNSLPwBA5QkFVgAAEBWmEgIQKYIsAAAgGyRYQGQEQIsAAAgi2RYAAyfAAsAAMguGRYAw1QIXRUBAIDCVxg93QEIkj8hAACQda50F5NhATA0phACAAA5Yi4hAEMjwAIAAHJHhgXAEAiwAACAnJJhATBYAiwAAAAAgqaHIgAAkAehN3TXeB8gJCqwAACAPDCREID0CbAAAID8kGEBkCYBFgAAkDcyLADSIcACAADySYYFwIDC7psIAACUhtB7ugOQVyqwAACA/FOHBUA/BFgAAEAQZFgA9EWABQAAAEDQBFgAAEAoFGEB0CuNEgEAgLCE29C9R7gW5iABipEKLAAAICzqsADooSLfAwAAAAahRGqA4gwr0DosAHJOBRYAABAidVgApAiwAACAQMmwAIiZQggAAJAeUxoB8kQFFgAAEC5FWABEUaQtIgAAEDoN3QFKnAosAAAgdOqwAEqcAAsAACgAMiyAUibAAgAACoMMC6BkuQohAADA8PSI1bTrAsg0FVgAAEDBUIQFUJoEWAAAQCGRYQGUIAEWAABQYGRYAKVGgAUAABQeGRZASUkk9RcEAAAKUyLhjAagJKjAAgAACpU6LIASIcACAAAAIGgCLAAAoIApwgIoBQIsAACgsMmwAIqelocAAFCKegQ+RXBaoKE7QBGryPcAAAAAMiCuwwoowyq+jBAgf0whBAAAioS5hADFSoAFAAAAQNAEWAAAQPFQhAVQlPTAAgCAUlTEHZmCa4YFwLD5tQ4AABQhGRZAMTGFEAAAKELmEgIUEwEWAAAAAEETYAEAAMVJERZA0RBgAQAARUuGBVAcBFgAAEAxk2EBFAEX5gAAAIpfQBcl7JGmBTIqgLCpwAIAAAAgaAIsAACg+JlICFDQBFgAAEBJkGEBFC4BFgAAUCpkWAAFKphGhgAAADkRUEN3ANKjAgsAAACAoAmwAACA0mIiIUDBUToLAAAMUY8UqLDOLUwkBCggKrAAAIBSpA4LoIAIsAAAgBIlwwIoFBX5HgAAAAAFPiETIMtUYAEAAKVLERZAQVCBBQAADFFxFAnFGZaG7gAhU4EFAACUOnVYAIETYAEAAMiwAIJmCiEAAEAAzGEE6JsKLAAAgChShAUQMAEWAADAeTIsgDAJsAAAAP5MhgUQIAEWAAAAAEETYAEAAHyBIiyA0CSSLnUBAABwkUQigNOlHjla3scDkCcqsAAAAHqhDgsgHAIsAAAAAIImwAIAAOidIiyAQAiwAAAA+iTDAghBAF0JAQAAwhZEQ3eAEua3MAAAkDcFdJE9GRZAHplCCAAAAEDQBFgAAAAD0wwLII8EWAAAAGmRYQHkiwALAAAgXTIsgLyoyPcAAACA0qUrOgDpcB0NAACAwcn/FQkL6PKNAJlgCiEAAMDgmEgIkGMCLAAAgEGTYQHkkgALAAAAgKAJsAAAAIZCERZAzuS79SAAAEAhy39Dd4ASoAILAAAAgKAJsAAAAIbOREKAHBBgAQAADIsMCyDbBFgAAADDJcMCyCoBFgAAAABBc70MAACAzMj/FQl7VIE53QOKhQosAACAzDCRECBLBFgAAAAZI8MCyAYBFgAAAABBE2ABAABkkiIsgIzLd4tBAACAoQq5ZXn+G7oDFBEVWAAAAJmnDgsggwRYAAAAAARNgAUAAJAVirAAMkWABQAAkC0yLICMqMj3AAAAAIZIk3SAEqECCwAAIIsUYQEMnwu7AgAAZF0ikb+Trx7xmXNAoACpwAIAAMg6dVgAwyHAAgAAACBoAiwAAIBcUIQFMGQCLAAAgByRYQEMTUW+BwAAAEA26doOFD4VWAAAALmjCAtgCARYAAAAOSXDAhgsARYAAECuybAABkWABQAAAEDQBFgAAAB5oAgLIH0CLAAAgPyQYQGkqSLfAwAAACAfemRnyWSexgEwMBVYAAAAeaMICyAdAiwAAIB8kmEBDMgUQgAAoBSZPwdQQFRgAQAA5JkiLID+qcACAADIvzjDSuayEkzVGVA4VGABAAAEQR0WQF8EWAAAAAAELbcVqgAAAPQr1xMJAQqBCiwAAICAmEgIcDEBFgAAAABBU5sKAAAQnHxOJOxR/+WcEQiACiwAAIDgmEgIcCEBFgAAAABBE2ABAACESBEWQIoACwAAIFAyLICYJu4AAABBy2dDd4AwqMACAAAAIGgCLAAAgKCZSAggwAIAAAidDAsocQIsAAAAAIImwAIAACgAirCAUibAAgAAKAwyLKBkVeR7AAAAAASvR3CWTOZpHECJUoEFAABQMBRhAaVJgAUAAFBIZFhACTKFEAAAYBDMpQPIPRVYAAAABUYRFlBqVGABAAAUnjjDSuasAEylGZBXKrAAAAAACJoACwAAoCCZSAiUjhxWnAIAAJBpOZ1ICJAnKrAAAAAKmDosoBQIsAAAAAAImgALAACgsCnCAoqeAAsAAKDgybCA4laR7wEAAABQsHqkZtrJA9mhAgsAAKAYKMICipgACwAAoEjIsIBiJcACAAAAIGgCLAAAgOKhCAsoSomkHnsAAADFJZFwrgcUFRVYAAAAAARNgAUAAFBsTCQEiowACwAAoAjJsIBiIsACAAAAIGgCLAAAgOKkCAsoGgIsAACAoiXDAopDRb4HAAAAQNHpkZolk3kaB1AkVGABAAAUM0VYQBFQgQUAAJBdea9GijOspDIooGCpwAIAAAAgaAIsAACA4mciIVDQTCEEAAAoCTmdSGi6IpBRKrAAAAAACJo2fgAAACVEN3egEKnAAgAAKCGaYQGFSIAFAAAAQNAEWAAAAKVFERZQcARYAAAAJUeGBRQWARYAAAAAQXP5CQAAgBKVhysS9ij7ckIKpEcFFgAAQIkykRAoFAIsAAAAAIImwAIAAChdirCAgiDAAgAAKGkyLCB8FfkeAAAAACVD13ZgSFRgAQAAlDpFWEDgBFgAAADIsICgCbAAAAAACJoACwAAgChShAUETIAFAADAeTIsIEwCLAAAAACCJsACAADgzxRhAQFKJJPJfI8BAACAnnqESDk+dUskcni2mN+XChQCFVgAAAAABE2ABQAAQE8mEgJBEWABAADQCxkWEA4BFgAAAABB08QdAACAPuW0mztAH1RgAQAA0CcTCYEQCLAAAAAACJoACwAAgP4owgLyToAFAADAAGRYQH4JsAAAAAAImgALAACAgSnCAvJIgAUAAEBaZFhAvlTkewAAAADQmx5hWTKZp3EA+acCCwAAgHQpwgLyQoAFAADAIMiwgNwTYAEAAAAQNAEWAAAAg6MIC8ixRFIbPAAAAAYvkXBGCeSICiwAAAAAgibAAgAAYChMJARyRoAFAADAEMmwgNwQYAEAAAAQNC33AAAAikGPQqhcnurp5g5kmwosAAAAAIImwAIAAGBYdMICsq0i3wMAAACg4MUZVo4mEuZxtiSQJyqwAAAAAAiaCiwAAIBikPc6pJwWYQElRgUWAAAAmaEZFpAlAiwAAAAAgqa8EwAAgEwykRDIOBVYAAAAZJKJhEDGCbAAAAAACJoACwAAgAxThAVklgALAACAzJNhARkkwAIAAAAgaAIsAAAAskIRFpApAiwAAAAAgpZIJpP5HgMAAABFK5HI1Ylnj2ovZ7tQRFRgAQAAkEUmEgLDJ8ACAAAAIGgCLAAAALJLERYwTAIsAAAAsk6GBQxHRb4HAAAAAJmgazsULxVYAAAA5IIiLGDIcnU1UwAAAELSI0rK2alhIuE8FBg0FVgAAAAABE2ABQAAQO6YSAgMgQALAAAAgKAJsAAAAMgpRVjAYGmeBwAAQB7o5g6kTwUWAAAAAEETeAMAAJAfOSrC6jFd0VkwFCAVWAAAAOSHZlhAmgRYAAAAAARNgAUAAEDeKMIC0iHAAgAAACBomrgDAACQZznq5g4ULBVYAAAA5JmJhED/BFgAAAAABE2ABQAAQP4pwgL6IcACAAAgCDIsoC8CLAAAAACCJsACAAAgFIqwgF4JsAAAAAAIWiKZTOZ7DAAAAPBniUROzlV7lHo5O4aAqcACAAAgLCYSAj0IsAAAAAAIWkW+BwAAAEAByPF8u7gIS9MbIKYCCwAAgBCZSAikqMACAACgJCnvgsKhAgsAAIBAKcICYgIsAAAAAIKmJR4AAABB080dUIEFAABA0EwkBARYAAAAAARNgAUAAEDoFGFBiRNgAQAAUABkWFDKBFgAAAAABM2lHAAAACgYubgiYY86L2fNEAAVWAAAAAAETYAFAABAwdAJC0qTAAsAAIBCIsOCEiTAAgAAACBomrgDAABQeHLRzR0IhgosAAAACo+JhFBSBFgAAAAABE2ABQAAQEFShAWlQ4AFAAAAQNAEWAAAABQqRVhQIgRYAAAAFDAZFpSCinwPAAAAgGLTI1BKJvM0DqBYqMACAACgsCnCgqKnAgsAAADSoK4M8kcFFgAAAAVPERYUNwEWAAAAxUCGBUXMFEIAAAAyzOw6ILNUYAEAAFAkFGFBsVKBBQAAAGlQVwb5owILAACA4qEIC4qSAAsAAICiIsOC4iPAAgAAACBoAiwAAACKjSIsKDICLAAAAACCJsACAACgCCnCgmIiwAIAAKA4ybCgaAiwAAAAAAhaIplM5nsMAAAAkC2JRDbPfHtUeDnFhuxQgQUAAABA0ARYAAAAFDOdsKAICLAAAAAocjIsKHQCLAAAAACCpok7AAAAJSG73dyBbFKBBQAAAEDQxM8AAADkU4/mVFk9SVWEBQVKBRYAAAClQjd3KFACLAAAAACCJsACAACghCjCgkIkwAIAAAAgaNrXAQAAUHJ0c4fCogILAACAkmMiIRSWinwPAAAAAIpOj3RMtRcMjwosAAAASpEiLCggAiwAAAAAgibAAgAAoEQpwoJCIcACAACgdMmwoCBo4g4AAACZpms7ZJQKLAAAAEqaIiwInwALAAAAgKAJsAAAACh1irAgcAIsAAAAkGFB0ARYAAAAAARNgAUAAABRpAgLAibAAgAAACBoiWQyme8xAAAAQCgSiaydKfco73I+DmlTgQUAAAB/ZiIhBKgi3wMAAACAdKlhgtKkAgsAAAC+QBEWhEaABQAAAEDQTCEEAACAnuIirAx3czfjEYZKBRYAAAAAQcvaxUEBAACgwGW+CAsYEhVYAAAA0Dvd3CEQAiwAAAAAgibAAgAAgD4pwoIQCLAAAAAACJoACwAAAPqjCAvyToAFAAAAA5BhQX5V5HsAAAAAUNp6RGPJZJ7GAeFSgQUAAAADU4QFeSTAAgAAACBoAiwAAABIiyIsyBcBFgAAAABBSyQ1hwMAAIC0JRJOpSHXVGABAADAIJhICLknwAIAAAAgaAIsAAAAGBxFWJBjFfkeAAAAAGRYj3BJxyoodCqwAAAAYNAUYUEuCbAAAAAACJoACwAAAIZCERbkjAALAAAAhkiGBbmhiTsAAADFphi6tmtEDxdQgQUAAABDpwgLckCABQAAAEDQBFgAAAAwLIqwINsEWAAAAAAELZHUBw4AAACGLZFwig3ZogILAAAAMsBEQsgeARYAAAAAQRNgAQAAQGYowoIsEWABAAAAEDQBFgAAAGSMIizIBgEWAAAAAEETYAEAAEAmKcKCjEskk8l8jwEAAACKTSKRhTPuHrmYM3pKhgosAAAAAIImwAIAAIDMM5EQMqgi3wMAAACA/DAhDwqFCiwAAADICkVYkCkqsAAAAKBAKBKjVKnAAgAAgGxRhAUZIcACAACALJJhwfCZQggAAECJMiEPCoUKLAAAAMguRVgwTAIsAAAAAIImwAIAAICsU4QFwyHAAgAAACBoiaSedQAAAJATiUQWTsN7FHY5zacYqcACAACAHDGREIZGgAUAAABA0ARYAAAAkDuKsGAIBFgAAAAABE0TdwAAAMi1rHRzh+KlAgsAAACAoAmwAAAAINd0woJBEWABAAAAEDQBFgAAAOSBIixInwALAAAA8kOGBWmqyPcAAAAAIGg9IiYXD4TcU4EFAAAAeaMIC9IhwAIAAAAgaKYQAgAAQD7FRVjJzE5NNO+R4qICCwAAAICgqcACAACA/uSgeikrRVhQRFRgAQAAABA0ARYAAADkn8sRQj8UKAIAAEAoTCSEXqnAAgAAACBoAiwAAAAIhYmE0CsBFgAAAABBE2ABAABAQBRhwcUEWAAAAAAETYAFAAAAYVGEBT1U5HsAAAAAQPb1SMSSyTyNA4ZCBRYAAAAERxEWXEiABQAAAEDQBFgAAAAQIkVYkKIHFgAAAAxXlhpMxRlWUr8qSp4ACwAAAEqAFIxCZgohAAAAhMtEQogEWAAAAAAEToAFAAAAQVOEBXpgAQAAwHBpMAVZpQILAAAAQqcIixInwAIAAAAgaAIsAAAAKACKsChlemABAABASeoRh+njRcBUYAEAAEBhUIRFyRJgAQAAQMGQYVGaBFgAAAAABE2ABQAAAIVEERYlSBN3AAAAKEm6tlM4VGABAABAgVGERakRYAEAAAAQNAEWAAAAFB5FWJQUARYAAAAAQUsk9WwDAACALOtRLJWpc/FEwnk9JUEFFgAAAABBq8j3AAAAAIAhijthZawIK0t1YjBsKrAAAAAACJoACwAAAAqYyxFSCkwhBAAAgKzL6my8DE8khPCowAIAAAAgaAJaAAAAKAaKsChiKrAAAAAACJoACwAAAIqBbu4UMQEWAAAAAEETYAEAAECRUIRFsRJgAQAAABA0ARYAAAAUD0VYFKWKfA8AAAAACFWPLCyZzNM4KHUqsAAAAKCoKMKi+AiwAOD/be9eQ6ys9wWOP2tmMDMV8VDalYiKTHPsAr6pXsShCxpl0ZTt7IpR7KDtIYIoO11eFNGxq1HZgRBCTWrTTrOyILA3SaSjRYRSgeax0u52X7POiyfXHteM48xaa9bzm+f5fF49z3Ipvw37TV9+//8CAABCE7AAAAAgbyxhkTPuwAIAAICMuWkKBiZgAQAAQA6lS1iVBmOYlkYMjhACAABAPjlISG4IWAAAAACEJmABAABAblnCIh/cgQUAAAAZc9MUDMwGFgAAAOSZJSxywAYWAAAAMDg1IczmGK1iAwsAAAByzhIWI52ABQAAAEBoAhYAAADknyUsRjQBCwAAAIDQShU3rgEAAEAxlEo6ACOSDSwAAAAAQhOwAAAAoCjchMUIJWABAAAAEJqzrwAAABBazcpU4/8d7yYsRhwbWAAAAACE1pH1AAAAAEBLpTdhNWEJq+m7YbAfNrAAAAAACE3AAgAAgMLxc4SMLI4QAgAAQGhO5oENLAAAACgiS1iMIDawAAAAgLrYDaNVbGABAABAQVnCYqQQsAAAAKC4NCxGBAELAAAAgNAELAAAACg0S1jE5xJ3AAAAoBlqKpgr3mkeG1gAAABQdJawCE7AAgAAACA0AQsAAACwhEVo7sACAACAEcmVUxSHgAUAAAAkyd4lrErdJUxCY9g4QggAAABAaAIWAAAA8Bc3YRGTgAUAAABAaA0cbQUAAADyqKGbsPb+E/u8ig80xgYWAAAAAKEJWAAAAMA+3IRFNAIWAAAAAKEJWAAAAEAtS1iE0pH1AAAAAEDuuLWdprKBBQAAAPTDEhZxCFgAAAAAhFaqWOoDAACAHKnZmmrwv/tLJemA7LkDCwAAABhOzS1qFJIjhAAAAMB+uQmLCAQsAAAAAEITsAAAAICBWMIic+7AAgAAgFxxxxT546cEAAAAgAPzc4RkyBFCAAAAAEJTTwEAAIBBacISVs1dWqIEg2MDCwAAAIDQBCwAAABgUPwcIVkRsAAAAAAITcACAAAABssSFpnoyHoAAAAAYNhFuTzdre3UxQYWAAAAMASWsGg9G1gAAABAy0VZCWNksIEFAAAADI0lLFpMwAIAAAAgNEcIAQAAIP+afkQvXcKqOPpHS9jAAgAAACA0rRQAAACoU6NLWK5yZ3BsYAEAAAAQmoAFAAAA1MnPEdIaLnEHAACAInJ6jxHEBhYAAABQP0tYtICABQAAAGSkUtln9atUql0MgyRJBCwAAACgQZawGG4CFgAAAAChlSpuaQMAAAAaVirVGxn63d7SK+jFBhYAAAAAoQlYAAAAQBPUfxNWzVXu0EdH1gMAAAAAGavpTiFqUqkUYw5CsIEFAAAANIefI2SYCFgAAABAAPat2D8BCwAAAGgaS1gMBwELAAAACKlUqr2di6IqVWzoAQAAAE1VKjUQHCJeKU/GbGABAAAAEJoNLAAAAODfmrX/VP8SVt9jg9pF4dnAAgAAACA0AQsAAABovvp/jtC+FX0IWAAAAACEJmABAAAA+1Uq9XMn1SDVv4QF+xKwAAAAgH+rVJzhIxwBCwAAABgulrBoCgELAAAAOAAHCcmWgAUAAABAaAIWAAAAUKu5N2FZwqJBAhYAAAAQidRFHwIWAAAAMChuwiIrAhYAAADQv+YeJBwUkYv+CFgAAADAELR6CavVCY2IBCwAAAAgButX7IeABQAAALTIQEtY/X5u/YokSQQsAAAAYGB9I1Lzb3O3e8WABCwAAAAgJOtX7CVgAQAAAAfQ788RNrKHVfsPwYAELAAAAKB+df2uYK9ThPv7+9av6KUj6wEAAACAQhogfalX7KtU8f8JAAAAYNCasDI18NaWUkEfNrAAAACAJqipUv1mqPQ7AhVDJWABAAAAQ1CpDOreqzpvZrd+RX9c4g4AAAAMTb8/Sticfxf6YwMLAAAAyJRuxYG4xB0AAACoX51HBfeSJRgMG1gAAABA/WoK1CB7lm7FkAhYAAAAQNMoUwwHl7gDAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAJW4ZTL5cMOO6y01/vvv9/v17Zs2TJmzJj0O4ceeuiXX37Z4jkBAAAAUgJW4bS3t19yySXV19dee63vdyqVyg033PDLL7+kr0uWLJk0aVKL5gMAAADYl4BVRJdddln1ud+AtXjx4nXr1qXP119//cUXX9yawQAAAAD6KlUqlaxnoNXK5fLhhx/+9ddfJ0nS1ta2c+fOQw89tPqnn3322SmnnLJnz54kSY499thNmzaNGzcus1kBAACAwrOBVUTt7e1z5sxJn3t6et54443efzp//vy0XrW1tS1dulS9AgAAALIlYBXU/k4RLlmy5O23306fb7/99rPOOqvVkwEAAADsyxHCgiqXy5MnT961a1eSJBMnTvzqq6/a29u3b98+derUH374IUmSzs7O9evXjxo1KutJAQAAgKKzgVVQvX+L8JtvvnnvvfeSJLnxxhvTenXQQQe98MIL6hUAAAAQgYBVXDWnCJcuXbpmzZr09YEHHpg6dWpGcwEAAADswxHC4up9ivCEE07YtWvXt99+myTJOeec89Zbb5VKpawHBAAAAEgSG1hF1vu3CLds2ZLWqwkTJjz//PPqFQAAABCHgFVovU8RphYvXnz00UdnMgwAAABAvxwhLLQ///xz8uTJu3fvTl+7urpWrFiR7UgAAAAANWxg5dmZ//rHmf/6xwBf6OjomDZtWvV10aJFwz4TAAAAwBAJWEX30UcfpQ+TJk068sgjsx0GAAAAoK+OrAdgGI36j7EDf+GLL75If4UwSZLOzs7hnwgAAABgyGxg5daMRXNrHvrq7u6uPgtYAAAAQEwCVm6NPX5SzUNfGzdurD4LWAAAAEBMAlY+1Wxd7W8JywYWAAAAEJ+AVWjVDaxRo0addNJJmc4CAAAA0D8BK59qjg32e4rw559/3rp1a/o8derUjg43+gMAAAARlSqVStYz0GQzFs0de/yk3j9B+Pvun37a+uXG/1qW4VQAAAAA9bGBBQAAAEBoAlbeHHvtmXX8EQAAAEBYrj3KmwnTj+73xqt+PwQAAACIzwYWAAAAAKEJWLkyY9HcBr8AAAAAEI2AlTfpUcHeP0FYfXWKEAAAABiJBKz8GOQd7a5yBwAAAEYWl7jnx687vtu547sk2Zz1IAAAAADNVKpUKlnPwHA5t/v+JEne7FyY9SAAAAAA9XOEEAAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAErCJasWJF6UDmzZuX9ZhDM3PmzOrwZ5111v6+tmnTpvHjx6dfa2tre+mll1o5JAAAAFAHAauINm3adMDvdHZ2tmCSJrr77rurz+++++66dev6fmfHjh2zZs368ccf09eHHnro0ksvbdF8AAAAQL0ErCLq7u4+4HdGXMCaNWvWaaedVn194IEHar6wZ8+eCy+8cPv27enrTTfddNttt7VuPgAAAKBeHVkPQAaOOOKI2bNn13zY3d29bdu29Hn8+PGnn356y+dq1MKFC+fMmZM+r1mzZuPGjTNmzEhfe3p65s6d+8EHH6Sv559//pNPPpnJkAAAAMBQCVhF9Oyzz9Z8snXr1t7rS0uWLJk4cWJrh2qCiy666JRTTtm8eXP6+uCDDy5fvjx9XrBgwauvvpo+T58+/cUXX2xvb89mSgAAAGCIHCEk+e2337q6uqo3Q918881dXV3ZjlSfUqm0cOHC6uvKlSu3bNmSJMkTTzzx+OOPpx8eccQRq1evHjduXDYjAgAAAEMnYJHcdtttGzZsSJ9nzJixaNGibOdpxKWXXjplypT0uaen56GHHlq1atWCBQvST8aOHbtq1aqjjjoquwEBAACAIROwiu7ll1+u3gY1duzYFStWjB49OtuRGtHW1nbXXXdVX5cuXXrFFVeUy+UkSdrb25cvX37qqadmNx0AAABQDwGr0D7//PMbbrih+vrMM8+ceOKJGc7TFJdffvkJJ5yQPv/+++979uxJnx999NFZs2ZlNxcAAABQJwGruP7444/LL7/8u+++S1/nz59/5ZVXZjpRc7S3t9955501Hy5YsOCWW27JZB4AAACgQQJWcd1xxx3r169Pn6dNm/bYY49lO08TXXLJJb0PQk6bNu3hhx/OcB4AAACgEQJWQa1evbp6Wfshhxzy4osvHnzwwdmO1CyVSuW666779ddfq598/PHHW7duzXAkAAAAoBECVhFt3779mmuuqVQq6etTTz1V/eW+HLj99ttfeuml3p+Uy+X7778/q3kAAACABglYhVMul+fOnbt79+709dprr7366quzHamJnn766eppwd47ZcuWLfvkk08yGgoAAABoiIBVOHffffe7776bPk+ZMmXx4sXZztNEr7/+evWm9oMOOujNN988/fTT09dyuXzfffdlNxoAAABQPwGrWNauXfvggw+mzwcffPDKlSvHjBmT7UjN0t3d3dXVVS6X09fnnnvuzDPPvOeee6pfWL58+ccff5zNcAAAAEADBKwC2blz57x583p6etLXJ598curUqdmO1Cw7duyYPXv2jz/+mL4uXLjwqquuSpJk9uzZZ5xxRvphT0+PJSwAAAAYiUrVm7zJn3O770+S5M3OhX+9nnvu2rVr0+fRo0efd955pVKp799atmzZ6NGjWzZk43766aezzz57w4YN6WtXV9fy5cur/9NWr149e/bs9LmtrW3z5s0nn3xyNoMCAAAAdRGw8qx3wPr+++8nTJhwwL9y1FFHbdu2bbgHa6JyuXzRRRetXr06fZ05c+Y777xTE+Bmzpy5fv369Lmrq2vFihWtnhIAAABogCOERbF58+bBfG369OnDPUlz3XrrrdV6dcwxx7zyyit918d634S1cuXKDz/8sGXjAQAAAI0TsIpikAGrs7NzuCdpokceeaT6K4rjxo1btWrVpEmT+n7tggsumDlzZvpcqVTuvffe1o0IAAAANMwRwnwqlT6t+aRSOS6TSQAAAAAaZAMrb0qlT/vWqwE+H4nuOe34f/7nqVlPAQAAALSIgJUrB0xUuWlYc46bnNx4QXLjBVkPAgAAAAw7ASs/BhmnctKwDp+YHD4xSZI0Y1nIAgAAgBzryHoAaEDasJJkTpL8tY317JoMxwEAAACGg4CVE0PaqyqVPh3xd7qPH5MkSfLDz3+97i1ZyX//Lfm/b5JEyQIAAID8ELAYydKM1dsPP/8Vs9KSJWMBAADAyCdgFdXiv2c9wfDonbTGj0n+Z/5fW1r3vpDVRAAAAECDXOIOAAAAQGg2sIrq74uznqAB/3v8fv+oeitWkjhCCAAAAPkgYDGS9c5VVS5xBwAAgHwRsHKiUjlu8D9EOOJ/gjDpk67SaJXoVgAAAJBDAhYj2d5u9c9Pd855a0O2swAAAADDRMDKj0EuYeVh/SqpXbmak+UoAAAAwPASsHLlgA0rJ/XKyhUAAAAUSalSqWQ9A83XN2PlJl0BAAAARSNgAQAAABBaW9YDAAAAAMBABCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACO3/AQLZRdxpIsGgAAAAAElFTkSuQmCC",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAZACAIAAACubhnwAAB/Q0lEQVR4nOz9aZRV9Z03fO9TAxRUFZNSYCKjMkgZERRBBCWIiRkc4pB0x06uHtL9rPTTb3r1WterXkt9cb/JWs/db667r6ufTifGVhONxikSo4iYKJMIDkCYZBKUQRBqouZzv9h4gkUNp6rO8D/nfD6LF7vO2Wef/9nnULX39/z+v51IJpMRAAAAAISqLN8DAAAAAID+CLAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgVeR7AAAAAOTHww8/nO8hAEP04IMP5nsIOaUCCwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgVeR7AAAAAFDqnnrq/p0750VRdM89v7nmmg8uXmHz5kWrV38ziqKFC7feeeeLuR5fYLKxN1555bb165dGUbRixboVK97IyDbJIBVYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0DRxBwAAgNB95Svbp08/GEXRqFGt+R5L/tkbJUiABQAAAKEbNercqFHn8j2KUNgbJUiABQAAQOFpbR25fv3SI0cuP3ZsckVF56RJJ2bM2L948aby8u4cj+TIkct375598OD0xsYxTU015eWd1dXNl132yRVX7L/mmvcrKjoz8iytrVVNTdVRFFVVtdXUNPWzZldX+f79M3fvnn306OVNTTUtLaNGjz5XU9N4+eVHZ8/ePXPmgfLyrkE9dXt75a5dV+3YUX/y5MTGxtqKio4xYxovu+yTefN2XnHFvgzu8PTf0/T3Rnd34tChaXv2zD58eGpjY21zc/WoUa21tQ2TJh2vr98xc+b+IYy/s7N8//6Zu3Zd9fHHlzU21ra1jRw37uz48afr6k4sWLDt0ktPDXaDpCORTCbzPQYAAADy4OGHH873EIboww+veP75OxsaxvS4va7uxL33/mbSpOMX3rh586LVq78ZRdHChVvvvPPFdLb/xBN/uWfP7CiK7rvv6auv3tHXavv3z1yz5taPP/5SXyvU1DQvWbLx+uvfrqpq63HX2rVf/cMfbh5wJN/+9m+vv/6dNF9FMpl4771rXn/9q2fPju1rg+PGnV25cu1XvvJBItF7GtDjifbsmfXSS9/qa4OXXHLqW99aPXPm/gFfyICy8Z7u3HnV2rW3fvrpJX2tUFPTdPvtv7/66u1RFL3yym3r1y+NomjFinUrVrzR6/rJZOL9969Zu3bl2bM9x5kyc+b+W255Y9q0w32tkCkPPvhgtp8iKJq4AwAAUEhOnx7/q199L5V0jBt3NlWDc+JE3ZNPfq+9vTLbY+jqKn/xxTseffQHF6ZXo0e31NWdrKlpSiTO39LUVL1mza3//u//35MnJ2Z7SOfOVT322F8999zdqbCprCxZW9s4adKJmpqmVFx15szY3/zmO7/61V+0t48YcJsbNy554onvxxtMJJK1tU11dSdqappTL/DUqUseffQHce4zHBl/T9vbK5988rtPPfXdVHqVSETV1c11dSdqaxvLys7vjaammqefvveJJ77f0THw9ltbRz7++APPPnt3Kr0qL+8aN+7MpEknamv/XAW2f//MX/zir99666ZBDZgBmUIIAABAIXnhhTvjuGHy5OP33vvMxIknoyg6fHjK00/f39BQe/r0+Ndf/+rXv/5K9gbQ0VHx2GN/dejQtPjH8ePP3Hjj+quu2lVb25ha4eDB6Zs337Bv36xkMmpoqP3Zz/7mgQeeuPzyI6mNjB9/Jm5DHjt5sq65eXQURRMnflpd/ec0JLXN/jU3V//sZ3976tSE+MfLLz+6ZMnGWbP2jhx5vvKrpWXUnj1z3npraRyl7d49+2c/+9u/+Zufp1a42N69s7duXRhFUW1t0/Llf6iv31Fd3RLf1dAwZvv2q//4x2Xnzo2KouiVV26rrOxYtOjtdIbaq8y+p62tIx955K+PHZsc/3jJJaeWLl0/d+6u1Pjb2kbs2zdr8+ZF8Zu4Z8+sxx57YOLET/vZZkvLqJ///G9SQeTkycdWrnx9xowDlZUd8S1NTTU7d171xhsrmptHd3cnXn111SefXHbvvU+nwj6GSYAFAABAwWhsrDl4cHoURZWVnd/73q/Gjz8T3z516kff+MbqJ5/8XhRFu3fPzWqA9fzzd6fSq+XL/3jLLW9UVHyhq1RlZeesWftmzdr34Yczn376/nPnqs6dG/WLX/zwRz/66aRJJ+J1FizYtmDBttRDnnrq/p0750VRtHz5H6655oNBjaerq+zJJ78bp1fl5V3f+tZLCxdu67HO6NHnrr323Wuuef/NN5e9/vpXk8no2LFJzz1393e/+2RfCUtjY00URVdcsf/++39dVfWFi/2NGdOwdOn6a69994knvn/kyJejKHr11dtmz949dmzDoEaeeqIMvqfJZOKZZ+6L06tEIlqx4vXly98sK/tCo6uRI9vr63fU1+/YsWPeCy/c1dY24tChaYcPT+1rm93diV//+v44vRo5sn3lyrWLFm1OlXHFamqabrjh7Wuu+WDduhUbNy6Oomj79vrLLvv4ppvWD2Jf0DdTCAEAACgYx4+fL6u5/PIjqaQjNnv23rg9+enT41taRmVpAFu2XLd9e328fNddL9x669oe6dWFrrhi/z/8w/8/rqLq6Kh8+eXbszGkP/5xeRy+lJd3/9VfPX5xepVSVtZ9881/uOOO802j/vSnue+9d20/W5448dPvfe9XPdKrlNGjW37wg/8ePboliqL29sqNG5cMbfyZfU83bly8d++VURQlEtF3vvObW275Q4/06kL19Tv/7u9+Gr+EZLLPWqn16286cGBGFEWJRPL++3+9ePGmHulVSlVV6+23v7x8+R/jH1977daPPro8nWEzIAEWAAAABePMmXHxwqhR53rcVV7e9Y//+L//8R///R//8d9HjOjIxrO3t1euW7ciXr7xxg0XllD1Zfz4z+655zdxC6oDB2bs2jU3s0Nqbh69YcP5FlS33fbKjBkHBnzIwoVbUyHXG2/c3N3dZzJw001v9r8nR45sW7x4U7z8wQdfSXfQX5TB97StbcQf/3i+Nf6yZW+mU8tWV3fy/vt/3VcgFUVRa2vVm2+eb2i1cuXaK6/cN+A2V65cO2fOniiKurvLXn995YDrkw4BFgAAAAXj0kvPNyo6dGjqxY23L7nkVF3dybq6kxUVndl49nffXdDUVBNFUU1N08qVr6f5qBkzDt5//9OrVq1ZtWpNZ2eGO/ls3XpdW9uIKIouvfTU4sWb03zUqlVr4uZNn302fvfuOb2uM2rUufjyfP274YbNcQ1aU1NNP9fm60cG39Nt2xbEhVpjxjTccsu6NAcwY8bBa6/tM4vcunVha2tVFEWTJx9btuzNdDaYSER33/1cvFsOHJjRz0UhSZ8ACwAAgIIxadKx8vLuKIqam6uffvq+traRuXz2VP3UkiWbUt270zFv3s5ly95atuytdCKhQdm9e/bnQ9qYutTggEaPbpk//714ed++K3tdZ/Lk4/3MjkwZNao1lUAN7WKLGXxPU2HcjTduTGfwKbfc8oe+eoGltjl//vvpd2QfNerc3Lm7oihKJqP33puf/kjoiwALAACAgjFqVOstt7wRL+/ePft//a9/2rhxSVyClG0dHRWp3u1xNpF3bW0jjh79crw8a9beQT121qzzU+H275/R6wo1NU293n6xcePOxAutrUNpPZap97Sjo+Lw4fNv0Jw5g3uDxo49+6UvfXzx7e3tlR99NCWKokQiWV8/uPAxNcN0374rBvVAeuUqhAAAABSSZcv+ePjw1DgUaGysefnlr7/++levvfbdRYs2X3rpqew9b2PjmK6usiiKqqraUjVH+dXYWBu3Hh89+tzYsWcH9dgvf/lovNDQMDaZjC6uLaqoSLfEbMSI9nihvb3nBMA0ZeQ9bWysjd+gUaNaJ0z4bLBjuPzyI0ePfunibXZ3J6IoKi/veu65uwe1wWTyfM3Q6dOXDHYwXEyABQAAQCEpK0t+//uPv/XWsvXrl547VxVFUVvbiE2bbti8+Yb5899dtWpNTU1zNp63sbEmXqipaczG9ocgbsgVRVF1dbrVUimjRzcnElEyGXV1lbW2jrq4gXr6ExJT3aku7PD16KM/2L9/Zj+Puvvu56699vw0xoy8p6m9kX7t2IVqaxv62WZnZ0X/L6cfLS2jh/ZALmQKIQAAAJn30EMPZm/jZWXJ5cv/+M///H9/61svTZx4vhgqmYzefffa//N/fnz69IRhbj8ua7r4SYe52YwrLz/f5qnXAfcvkUgmEt3xclxkNAwZ2DOZeE/Pv4qhvZxUwdQXR9U9hE310N2d6OoqH/52SpwKLAAAADIsTq8eeujBhx56OHvPMmJEx6JFW66/fsu+fbPeeOPmI0cuj6Koqan6scce+Kd/+n9S0UNqobMz3Qluva6ZKrxKVeXkXXX1+bqk5uZBD6m1dVR3d1kURWVlydGje5ZfDd/s2XsmTDjdzwq9zg1M8z3tVarwamhvUGNjbT/bnDTpxI9//L+HsFkyRYAFAABAtmQ7w4qiKJGIZs3aO2vW3nXrVqxbd0sURadPT9i5c17qen8jRpzv5dTcXJ3mNltbe7kQXm1tY0VFV2dneWtr1aefXpLVfltpqq1tLC/v7uoqO3eu6rPPxo0ffyb9x544URcv1NQ0pT9bMH1Llmwa8mMHfE97VVvbUFbW3d1d1tY28sSJiXV1Jwf1pIcPT+ltm+ff9FOnLunqKouvlkhemEIIAABAJmV18mA/VqxYd8UV++PlDz/8c7uiqqrz5UVNTekGWL123a6o6Jo+/UC8vGvXVUMfaOZUVnZOnXo4Xt63b9agHvvhh+cvjTd9+sHMjiqD+npPe1VZ2Tlt2qF4edeuuYN6os8+G3/s2OSLb0+96Z2d5Xv3Dm4Pt7WNbGkZ1dIy6sLWYAyZAAsAAICMuTi9ymCe1dpadfDgtIMHpx07NqnXFWbN2hsvnDkzPnVj6oqBn302oaNj4FmEhw9PbWsb0etdc+fuihc2bFgyqCvuffrppfHIjx79cvqPSsesWXvihY0bF6ffCauzs2Lr1gXx8pVX7svskAZlaO9pX+bO3R0vbNq0eFBv0B/+sDyNbS5Jf4PNzdX/9m///JOf/M+f/OR/njx5afoPpC8CLAAAALIrUxnW6dPjH3nkrx955K+ffPJ7va7Q6/UBx48/U1XVGkVRe3vlrl1zBnyWzZtv6Ouua699b8yYhiiKmpur16y5Lc1hf/zxl/7jP/4/8cj37BlcFc+AFi7cFr+6U6cu2bSpz5H3sH79jXGjqJqapquu2pnZIQ3K0N7TvixYsC3uC9bcXP3aa6vSfNTBg9Pfe+/avu6dP//d2trGKIoOHJj+/vvXpLnNNWtWxRNRZ83ad9llx9J8FP0QYAEAAJAZ2Z48OG7cmUQiiqLos8/G99qo+8SJ81U8Y8eeTd2YSCRTRTSbNy+OO5f35dixSX/6U5/TAysqOleufP3zTS3qJ+pKOXNm7C9/+ZcdHRVRFI0d23DTTesHfMigVFW1Ll16fpuvvvq1AwemD/iQAwemr1u3Il5etuzNysrOzA5pUIb2nvZlxIj2FSveiJc3bbphy5brB3zIqVOXPP30ff1cuLCysjO1zRdfvOPw4akDbnPz5kXvvnttFEVlZcmbb35jwPVJhwALAACADOg/vcpItjV69LnLLvskXn7ttVt73Hvu3Kh33rkuXp4xY/+Fdy1evClOST766PKXXvpmXxnW8eOTHnvsr7q6+jtTvvbad+fPfy9eXr36G7///df66XB04MD0//zPv29srImiqKys+667nh8xor2fjQ/NTTe9Ffd+6uoqe/zxv9q27dp+Vv7gg6sff/yBeA9Mn37whhs2Z3w8gzLk97Qv11//9rx5f4qXf/vbb7366qrOzvK+Vv7ww5n/9V9/FzdHmzixz6bv1133Tn39ziiKOjoqHn30B9u2Lehrza6usrVrv7p69TeTySiKoq997ZUpU46kM2wGpJEYAAAAw5VOPpWRKxKuWrXm0Ud/EEXRtm3XVlR0rFr12siRbVEUnTx56bPPfqe5eXQURXV1J3tcru6yyz5ZvHjTxo2Loyh6553rPv74S8uX/3H27L0VFeeLj06fnrB168ING5Z0dZWPG3dm7NiGQ4f6LLS5444Xm5pq457iGzbcuGNH/dKl66+66k9jxzak1vnoo8u3bLn+gw+uiUt7ysqS99zz7MyZaUUwg1Ve3v3d7z7185//7aefXtLZWf7883e98871S5ZsuPLKfVVVbfE6nZ0V+/fP2Ljxxv37Z8S3jB//2f33P11WlvnrDw7W0N7TviQS0Xe+82xTU3VcKvXWWzdt33710qXrr7pqVzz9M4qi7u6yAwemb9my6E9/Ot/rfcWKN9rbK0+enNjXZu+667nGxtrDh6d0dlY8//ydW7Zct3Tphiuv3BcPNYqi5ubqnTvnvfXWTWfOjI1vWbBg25IlG4e2T7iYAAsAAIAcGX6GNXPm/gUL3o2LjN5+e9GWLdePH3+mq6v87Nkx8QqJRHTHHS+Wl3f3eODXv/77pqaa7dvroyj65JPLnnrquxUVXbW1DSNHtjU11aYuUFhe3nXPPc+++eZN/YyhoqLrgQcef+WV2zZuXBJFUUPDmJdfvv3ll2+vqWmuqWlqb69saBhzYVnWyJFtd975Yn39juG88P5VV7f86Ec/ffrp+/btuyKKoiNHvvz00/eVlSVraxtHj25paxvZ0DDmwkKkKVOO/MVf/LK6uiV7Q0rfkN/TvlRWdvyP//Ho6tXffOedhVEUnT079ne/+8bvfveN+A3q6KhoaBhzYTv/665755Zb1r36an9NzUaM6PjhD3/xwgt3xm2wjh798q9/fV9ZWfeYMQ1VVW1nzoxtba26cP2lSzesWrVmEHuBgQiwAAAAGJZst77q4ZvffGn06OYNG27s7i5LJhOnT//54nS1tY133PHbKVM+uvhRiUTy3nufmTLlo7VrV8YXGezsLP/ssy9c2K62tvG7331qypQjUdRfgBVFUVlZ9+23//6qq/60du2tqVqtpqbqVBCWWq2+fudtt72aqv3Jnqqq1gceePyDD77y+usr4tfV3Z04e3ZMKgaKjR597uab/7Bo0dvl5V3ZHlL6hvae9qO8vOuOO16sr9+xdu3KI0fOX/nx4jdo5Mj2b33rpWuueT+dbVZUdN1zz7P19TvWrLktvrBgd3fZmTPjeqw2efLxW29dM2tWPq/tWJQSyWT+ywUBAADIvYcfHu6EvmhI6dXwJxJGUXTs2OQNG5YcPjytqakmkegeN+7MrFl7ly17c9So1v4f2NIyateuq3btmnPq1CVNTTXd3WU1NU0TJnxWX7+9vn5nPCNs5855cYYyZ87uiRM/7X+Dn3wyec+e2fv3z2xoGNPUVJNIRKNHt9TVnZg+/WB9/fYL5xXmRldX2cGDM/bunfXRR1MaG2taWqorK9tra5smTTo+Z87uWbP2jByZ+T5cGTHk97R/R49+ae/e2QcOzIjfoLKyrtrapvHjP5s3b8e8eTtTe+PAgelHj345iqKpUw9PndpfXtbdnTh0aNru3XMPH57S2Fjb0jK6qqq1trZx2rTDs2fvnjlzf6LPjvCZ9OCDOQ2O806ABQAAUKLyFWBFGcqwoJSVWoDlKoQAAAAMUY4nDwIlS4AFAADAUAwnvZJ8AYMiwAIAAGDQhp9AybCA9AmwAAAAyA8ZFpAmARYAAACDI3gCckyABQAAwCBkNr2ShQHpEGABAACQTzIsYEAV+R4AAAAAheShhx7O9xCAkqMCCwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACFpFvgcAAAAAkDuLNm/+5urVURRtXbjwxTvvzMg2b3vllaXr10dRtG7FijdWrMjINrmQCiwAAAAAgibAAgAAACBoAiwAAAAAgibAAgAAACBomrgDAAAAJWT7V75ycPr0KIpaR43K91hIlwALAAAAKCHnRo06J7oqNAIsAAAACsnkY8dm7N8fRdGJSZM+vOKK+May7u6Z+/dfvX37xBMnxjQ2jmppaamubqytPTxlyu65cw9NnZosG1wLnUnHjy/cuvXLR46MbWj4//3Lv/S6Tnln58z9+6/ateuyjz+ubWwc2dZ2dty40+PHn6ir27ZgwalLL03niUa2ti5dv/7yI0cmHzvWWVFxYtKk/TNmbFq8uLu8PCPrZ0nO9k/60t8zVa2t1U1NURS1VVU11dT0s81Ed/e0Q4dm79kz9fDh2sbG6ubm1lGjGmprj0+atKO+fv/MmUPY7TneLUUjkUwm8z0GAAAA8uDhhx/O9xCGYtHmzd9cvTqKoq0LF754551RFF31pz99c/XqmsbGvh7y6cSJa1at2j1nTjrb/O23v/21V19dsmFDfFdnRcX/9a//2mP9RDJ5zfvvr1y7dszZs31tc//MmW/ccsvhadP6eS1XfPjhnc8/P6ahocftJ+rqfnPvvccnTRrO+hfvqAH95RNPzN6zJ4qip++7b8fVV/e6qVzun/RlY89ctXPnrWvXXvLpp32t0FRT8/vbb99+9dVRFN32yitL16+PomjdihVvrFjR6/qZ3S0PPvjggOsUE03cAQAAKFSJ7u67n3vuu08+mUqvusrLz44bd6KurmX06NRql548+Re//OU9zzxT0dk54DZvf/nlVDrTq5GtrQ88/vjdzz6biiG6ysvPjBt3YtKkptra1Goz9+//61/84qa33uprO+NPn/7er36VylzOjhuXqgaqO3Hie08+WdnePpz1syRn+yd9Gd8zle3t333yye8+9dSf06tEorm6+kRdXWNtbaqar6ap6d6nn/7+E09UdnQMuM3c75YiYwohAAAABSkRRd/83e/mv/tu/OOuuXO3Xnfd/hkzuirOn+rWNjbO2bVr6YYN40+fjqLoKx98MP6zzx794Q87Rozoa5uXHzlSd/JkFEVdFRXvzZ9/cPr0Q1+shRnV0vI3P//5xJMn4x+PTZ78+sqVB2bM6KisjG+paWq6aufOFW+8Mbq5OdHdverVVy/75JOn7703SiR6PNedL7wQBx/HJ09+5t57T06cGEXRlMOH73/66dqGhvGnT3/19ddf+frXh7x+NuRy/6Qvs3tmZGvrXz/yyORjx+IfT11yyfqlS3fNndtSXR3fMqKtbda+fYs2b5526FAURbP27Hngscc+nTixn23mZbcUGQEWAAAABWnO7t2jm5ujKGqqrX36vvsOXTTrqrG2dsuiRdsWLrz5D3+4+Y03oii6/MiRu55//un77+9rm3UnTkRRdGzy5GfvuedEXV2PexPd3ff/+tdxDNE+cuTalSs3L1rUo7tWU03N2zfc8ME116xYt27xxo1RFNVv3/7xZZetv+mmC1eraWycfvBgFEWdlZW/+t73zowfH9/+0dSpq7/xje89+WQURXN3707FLoNdP0tytn/Sl9k9k0gm73vmmfPpVSLx+ooVby5f3v3Fl9A+cuSO+vod9fXzduy464UXRrS1TTt0aOrhw31uMx+7pfiYQggAAEBBitOrM+PH/+ff//3F6VVKV3n561/96vN33RX/WL9jx4Jt2/rZbOOYMT/727+9OJ2Jouim9etnHDgQRVEykfj1/fdvWry4r97wrVVVL99++x+XL49/vPW11y7/6KMLV5h8/Hi8cOTyy1OZS2zv7Nld5eVRFI0/fXpUS8vQ1s+e3Oyf9GV2zyzeuPHKvXujKIoSid985zt/uOWW7r7b/++sr//p3/1dPFk10XeH8bzsluKjAgsAAIBC1VlZ+au/+IuGMWMGXPPdBQsmHzu2eNOmKIpWrFv3/le+kppp2MOrq1b1OsewqrX1pjffjJfXrly578orB3zStStXTjpxYvbu3WXd3Stff/3RH/4wdde4M2fihXOjRvV4VFd5+f/+x38s6+qKoig1ksGunz252T/py+CeGdHWdvMf/xgvv7ls2QfXXDPgQ07W1f36/vt/+N//neju7nWFfO2W4qMCCwAAgEK1cfHiiy/V15e1t94aF8uMOXv2K9u397pO+8iRH3zlK73etXDr1qrW1iiKjk2e/OayZWk9ZSLx3N13x0nZjAMHxl5w7blPL700Xph66NDFLcBPXXLJybq6k3V1nZ+nbINdP0tytn/Sl8E9s2DbtrhQq2HMmHW33JLmAA7OmLHt2mv7ujdfu6X4CLAAAAAoSN1lZeuXLk1//fYRI95etChenrN7d6/rnJ4woa+22amHvD9/fvqttc+NGrVr7twoiqJkcv5776VuPzZpUnd5eRRF1c3N9z399Mi2tv63M9j1syRn+yd9GdwzqZew8cYb+yrQ69UfbrkltN1SfARYAAAAFKTD06adGz16UA/ZM2dOvDDzww+j3poWnZ4wodcHVra3T/nooyiKkonE9vr6QT3ptgUL4oUr9u1L3dg6atQbn9f4zN69+5/+1/9asnHjiL7Dl8GunyU52z/py9SeqejomPZ5I/Zdn39O0nR27NiPv/Sli2/P424pPnpgAQAAUJCO9hYZ9O+Tyy7rLisr6+4e0d4+uqWlpbq6xwqtI0f2+sDaxsa4yVFXefndzz03qCct+zwpu+T06Qtv/+OyZVMPH47jiZrGxq+//PJXX3/93Wuv3bxo0anPp8UNZ/1syOX+SV9G9kxtY2PcLat11KjP+sjp+nHk8su/dPToxdvM424pMgIsAAAAClJTTc1gH5JMJJqrq2sbG6MoqmlqujjA6ktNU1O8UNHZOXP//sE+b2z0Fy+Elywre/z731/21ltL16+vOncuiqIRbW03bNp0w+bN786fv2bVquYvvsDBrp9LGd8/P3j00f6389zdd7/3eeepjOyZ1EsYwucqiqKG2tp+tpnBj03JMoUQAACAzHvwoYey/RRlvc0BHFCy7PyJcFkfl43rVXdZBk6fE93d5V1dPQbzx+XL/+9//ueXvvWtTydO/PzW5LXvvvvj//N/JlxUejPY9Qc9wiHt0ihr+yd9w98zqfZUfV1PsH+9fhrzvluKiQosAAAAMixOrx586KGHsxljpcpbBqU6VWjTW8lMX1JVOScmTfrfP/7xEJ63Hx0jRmxZtGjL9dfP2rfv5jfeuPzIkXicDzz22P/zT/90cQiS5vqphcrOzjRHkv6aPWR8/+yZPbuvfluxXucGDnZPXij1Eob2uYrL+vraZjY+NqVGgAUAAEC2ZDXD+vKRI4N9SN3x43ExS2dlZXPa8wejKGqsre2qqCjv7Lzk1Kmyrq74sncZlkjsnTVr76xZK9atu2XduiiKJpw+PW/nzu1XXz209TtGjIgXqpub0xzCyNbWoY094/tn05IlQ3/wYPdkFEVR1FBbG/dHG9nWNvHEiZN1dYN6zimfN4C/UC4+NiXDFEIAAAAyKQeTB2NTjhwZnXY0E5u9Z0+8sH/GjGQi0f/KF+qqqDgwfXoUReWdnbP27h3Uk45saxvV0jKqpaUivfqmdStW7L/iinh55ocfDnn9c1VV8UJ12iVFQ+4Xnsv9k75B7cnOyspD06bFy3N37RrUE43/7LPJx45dfHuYu6VACbAAAADImIvTq+zlWYnu7hs3bEh//YqOjsWbN8fLu+fMGezT7Z47N15YsmlT+o+qbm7+53/7t//5k5/8z5/85NKTJ+Mbq1pbpx08OO3gwUm9pR5RFO2dNSteGH/mzBDWj336+SS7CZ99VtnRMeBQpx4+PKKtLY3X1LsM7p/0DW3P9CX1EhZv2lTZ3p7+MJb/4Q8DbjOXu6UoCbAAAADIruxlWIs3bZp44kSaK9/yhz/UNDZGUdRYW/v+NdcM9rnenT+/sbY2iqLpBw5c8/77aT5q1Zo18by8fbNmHbvssvjG8adP//Ujj/z1I49878kne31U4xcvhDfY9WNnxo9vraqKoqiyvX1OGiVFN3ye7g1NBvdP+oa2Z/qybcGCeGJpdXPzqtdeS/NR0w8evPa99/q6Ny+7pSgJsAAAAMiMnE0eTKns6PiLJ59Mp+t2/fbty958M15e99WvdlZWDva5Oisr31ixIl6+48UXp/bW86iHRZs3X/vuu1EUJcvK3rj55tTtZ8aNixKJKIrGf/ZZr4Of9Hkqd3bs2CGsH0smEn8uKdq8uf+rLk46duyqP/1pwFfUjwzun/QNbc/0pX3EiNRLuGHTpuu3bBnwIZecOnXf00/3c+HCvOyWoiTAAgAAIAP6T6+ykW2dGz06iqIJp0796D//80tHj/a1WqK7+6Y337z3mWeiZDKKop319VsXLhzaM75z3XU76+ujKKro6PjBo48u2LatrzXLurq+unbtN1evjp/0la997ciUKReO/JPPy2puvajSZ9S5c9e98068vH/GjCGsn7Jp8eI437n8o4+++dJLfWVYk44f/6vHHivr6ur7paclU/snfUPeM315+/rr/zRvXrz8rd/+dtWrr5b33YJq5ocf/t1//VfcYuzkxIl9rZb73VKUXIUQAACA4Uonn8r4FQl3zZ3bVV5+/dtvjz179u9/+tPtV1+9dcGCQ9Ompa71NrqlZfbu3UvXr5/4eRehj6ZMee7uu4fzpM/ddVdtY+OUw4crOjvvfP7567Zs2bB06b4rr2wbOTJeobq5ed7OnTe99dbYz5subVuwYONF19Rbs2rVDx59NIqia7dt66ioeG3VqngLl548+Z1nn42b05+sq0tdOG+w68c+ueyyTYsXL964MYqi695550sff/zH5cv3zp7dWXE+DZhw+vTCrVuXbNhQ3tV1Zty4hrFjpx46FML+Sd/Q9kyfEolnv/Od6qamuFTqprfeunr79vVLl+666qqGMWPiVcq6u6cfOLBoy5a5n9esvbFiRWV7+8S+m1XlfrcUHwEWAAAAOZLZDCsZRau/8Y3K9vb5770XJZNXf/DB1R980FlZ2Vhb2zZyZHVzc01jYyKZTK3/3vz5L95xR1fFsE6EO0aM+MUPf3jnCy/E/Yy+fPTofb/+dXdZWcOYMW1VVWPPnKlqbb1w/Q1Ll65Zteri7eyfOfPdBQuu3bYtiqJFb799/ZYtZ8aPL+/qGnP27Pk1EokX77gjFcYNdv2U33/96zVNTfXbt0dRdNknn3z3qae6KioaamvbRo6sbWpKXaCwq7z82XvuuenzWZZ53z/pG/Ke6fMlVFY++j/+xzdXr174zjtRFI09e/Ybv/vdN373u+aamqaamoqOjjENDRc2xX/nuuvW3XLLba++2t82c75bio8ACwAAgGHJfeurlGRZ2XPf+c6eOXO+uXp1nMVUdHSMP326x2onJk167dZb98yenZEn7aqoePaee3bU19+2Zk18hbiy7u5xF13k7vjkyWtuvXXf51fBu9hL3/xm8+jRN27YUNbdnUgmLxx2Y23tb++446MvTh8b7PqxZCLxzL33fjRlysq1a+OLDJZ3do7/7LML12msrX3qu989MmXKTenvhb5lav+kb2h7ph9d5eUv3nHHjvr6lWvXfvnIkfjG6gvyvlj7yJEvfetbaV4QIPe7pcgkkhek0QAAAJSOhx9+ePgbGUJ6NcwirEWbN39z9eooirYuXPjinXfGN5Z1dV25b9/VO3ZMPHmytqGhqrW1ubq6sbb20LRpe+bMOTx1ajKRGM6T9irR3T3t0KG5u3dPOXy4trFxdEtLa1VVY23t4WnTds+evX/mzCiNJ5187NiSDRumHT5c09TUnUicGTdu76xZby5b1jpqVEbWTxnV0nLVrl1zdu265NSpmqamsu7uppqazyZM2F5fv7O+Pp7LNm/nzjj92T1nzqd9N3VKU0b2T/qGvGf696WjR2fv3TvjwIExDQ01TU1dZWVNtbWfjR+/Y968nfPmtX8+B3D6gQNfPno0iqLDU6d+NHVqPxvM1G558MEHh/O6Co4ACwAAoETlK8CKhpdh9RpgQakptQDLVQgBAAAYojxOHgRKigALAACAoRhOeiX5AgZFgAUAAMCgDT+BkmEB6RNgAQAAkB8yLCBNAiwAAAAGR/AE5JgACwAAgEHIbHolCwPSUZHvAQAAAFDSHnzooYcHE2O9fcMNb99wQ9aGA4RIgAUAAMAgDCpsAsgIUwgBAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgVeR7AAAAAMBwbd68efXq1VEULVy48M4778z3cCDDVGABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAAABBq8j3AAAAAGC4jhw5snv37oMHDzY2NjY1NZWXl1dXV1922WVXXHHFNddcU1ExuJPfrq6uAwcO7N69+8iRI01NTS0tLaNHj66trZ00adL8+fOnTZuWSCQGO8Jdu3Z98MEHR48ebW5urqioGDNmzOTJk6+77rqpU6f2WLO7u3vv3r3vvffep59+2tDQ0N3dHT/1vHnz5s6dO6jX0t3dfeDAge3bt584caKhoaGlpaW6urq2tnbq1Klz5swZwgvp7Ozcv3//rl27Pv7448bGxra2tnHjxo0fP76urm7BggWXXnrpoLYWRdHx48e3bt165MiRhoaGf/mXfxnswykdiWQyme8xAAAAkAcPP/xwvoeQAfv371+zZs3HH3/c1wo1NTVLliy5/vrrq6qqBtxaMpn84IMP1q5de+bMmb7WmThx4n333Tdp0qQoip577rl33303iqJvf/vb119/fWqdzZs3r169OoqihQsX3nbbbc8+++yePXt63dqcOXPuueeekSNHxj8eP378qaeeOnXqVK8rjx8//lvf+taVV1558V0XPuOdd94ZRdHu3btfeumlhoaGvl5IXV3dqlWrZs+e3dcKF0omk++///7atWvPnj3b1zozZ8685ZZbpk2b1tcKFw7y29/+9quvvrphw4b4roqKin/9139NZyTEHnzwwXwPIadMIQQAAKAgdXV1vfjii48++uiF6dXo0aPr6upqampStUVNTU1r1qz593//95MnT/a/wba2tieeeOI3v/lNKr1KJBLV1dV1dXVjxowpKzt/Bn3y5Mmf/vSn77//fjqD7OjoePzxx1PpVVlZ2aWXXjp27NjU8Hbv3v1f//VfbW1tURTt27fvpz/9aSq9GjFixKWXXjphwoRU1dVnn332+OOPx5FZP5LJ5AsvvPDLX/4ylV6Vl5ePHTu2rq6uuro69dQnTpx44oknnn322c7Ozv432Nra+vjjjz/77LOp9Kq8vHzcuHGTJk2qra1NrbZ///5f/OIXb731Vjp75uWXX06lVzAgUwgBAAAoPB0dHY899tihQ4fiH8ePH3/jjTdeddVVqTylo6Pj4MGDmzdv3rdvXzKZbGho+NnPfvbAAw9cfvnlvW6wpaXl5z//eSrkmjBhwtKlS+fOnVtTUxPf0t7evm/fvs2bNx88eLCjo+O5554bO3bsgOPcvn17PPPpyiuvXLlyZV1dXZxGNTY2bt68+c0330wmkydOnHjppZe++tWvPvPMMx0dHVEUTZs27eabb545c2YcNnV0dPzpT3/63e9+d+7cuWQy+fzzz48dO3bGjBl9Penvfve7rVu3xstz5sy57rrrZs6cmUrBmpubd+/evWHDhvjFvvfee6dPn/7hD39YWVmZzp6ZPHnyypUrZ8yYkVq/qalp586db7zxRnNzc3d396uvvvrJJ5/ce++9/cxPPHLkSLzBioqK+fPnT58+vZ+6LYhMIQQAAChZBT2F8Omnn96+fXu8vHz58ltuuaWv5lAffvjh008/fe7cuSiKKisrf/SjH8Wz/y7U3d392GOP7d+/P4qiRCJxyy23LF++vLy8vNcN7tix4/nnn29vb6+pqZk8efK+ffuivqcQxm699dZly5ZdHOgcOHDgmWeeaWpqiqKopqYmXrjxxhu/9rWvXbzyZ5999tRTT33yySdRFF1yySX/9E//dOE6qWesrq5ubm6ON3jfffdNnz6911fR3d29YcOGNWvWxLHA1Vdffd999/W62n//938fOHAgiqKRI0euXLly0aJFqWK0C7W2tq5bt27jxo3xj7fddttNN93UY50eu2Xy5Mn33HNPXV1dryOkf6YQAgAAQNC2bNmSSq/uuuuuW2+9tZ/W5ldcccU//MM/xJVZHR0dL7/88sXrbNiwIU6voii6++67V6xY0Vd6FUVRfX393/zN34wcObKpqSlOr/o3derU5cuX91qONGPGjK9//evxcpxeTZ8+vdf0Koqi8ePH33ffffFdp06dSg24hzi9Gjdu3N///d/3lV5FUVRWVnbTTTfdf//98Qa3b9++bdu2i1dbv359nF4lEon7779/8eLFvaZXURRVVVXdfvvty5cvj3987bXXPvroo76ePYqiMWPG/O3f/q30ijQJsAAAACgk7e3t69ati5dvvPHGBQsWDPiQ8ePH33PPPXFSc+DAgV27dl14b1tb25tvvhkvL1u2bP78+QNu8LLLLrvrrrvSHPCqVav6uffqq6+eOHFi6scbb7yxn5l3l1xyyRVXXBEvf/jhh32tVllZ+Zd/+ZfpzHCcN2/ezTffHC+//vrrPZphtba2pvbMypUre20e38PKlSvnzJkTRVF3d/frr7/ez5qrVq0aMWLEgBuEmAALAACAQvLuu++m5tytXLkyzUfNmDHj/vvvX7Vq1apVq3rENFu3bo0nGI4ZM2bFihVpbnDevHmpLKkfVVVVU6dO7WeFRCIxd+7ceHnkyJEDXhNw1qxZ8cLx48f7Wmfx4sUXT5Psy/Lly8eMGRNFUUNDwwcffHDhXVu3bm1tbY2iaPLkycuWLUtna4lE4u67744L4g4cONDXJQtHjhz5la98Jc0RQiTAAgAAoLCk6qeWLFnSV9/xXs2bN2/ZsmXLli27+uqrL7w9dYnAG2+8sZ+piBe7uMfTxSZMmDDgOpdcckm8MH78+H7Kr2KpLvXxVMGLlZWVLV26dMAnTamoqFi8eHG8vHv37gvvSv04f/78AQeWMmrUqDiSSyaT7733Xq/rTJgwIf0NQiTAAgAAoIB0dHSkrjyYKlwajs7OzsOHDw9tg9OnTx85cmT/64wfP37A7aQ2UlVVNeDKqQCrvb291xWmTZs2evToAbdzoVRV1/79+1OXemtvb4+bWCUSifr6+kFtMDWvs68eYenkenChQUTLAAAAkF+NjY1dXV1RFFVVVV166aXD32BDQ0O8wVGjRqUTNl2orKxs8uTJqUCtVwMmXFEUpRrG99UfvdcNdnd397rCl770pQE30kNdXV15eXlXV1d7e3tLS0t1dXUURY2NjfFTlJeXP/fcc4PaYCoFO336dK8rpLNb4EICLAAAAApGY2NjvFBTU5ORDaYm4g1tg5kaRgYN+YXE/aoaGxvjACtuNBZFUWdnZ19XPBxQS0vL0B4IPZhCCAAAQOY99NBD2dhsOjVKg5KqY+qroCnNh4cjVf00KKkXkmpNlZFd3d3dHRe4wTCpwAIgr3o07+z1eGvAdYa/QprrAADpidOrhx56KOMxVqq8KFUflN8NZmoYGdRXc/d+JJPJiyvRUguTJk368Y9/nKnhwdCowAIgmxKJL/wraMX0WgAgVzIeYNXW1sYXCmxtbf30008zssG45qitre348eODemxnZ+exY8eGP4bMOnLkyGAf8vHHH8cVWJWVlakG8KldferUKVVU5J0AC4BhkOlcyN4AgCiKsjZ5MFZRUTF9+vR4edeuXcPf4IgRIy6//PKhbfDAgQMdHR3DH0NmffTRR4MtwtqzZ0+8MGPGjNQUwtSu7uzs3Lt376A22NbW1tLS0tLS0tnZOagHQl8EWAD0TSKTWfYnACXg4vQq43nW3Llz44UNGza0t7en/8BPP/304MGDBw8ePHr06IW3z5kzJ17YtGnToDb41ltvpb9yznR3d7/55pvpr9/e3v7222/Hy7Nnz77wrtSu3rRpU/obbG5u/rd/+7ef/OQnP/nJT06ePJn+A6EfAiwACImQC4BilNkM69prrx0zZkwURc3NzWvWrEnzUR9//PF//Md/PPLII4888kiq4Ci2cOHCkSNHRlHU0tKS/ga3b99+8ODBQYw7hzZv3vzRRx+lufJrr70WXyuwurr6mmuuufCu+fPn19bWRlF04MCB999/P80NrlmzprW1NYqiWbNmXXbZZYMYN/RNgAVQqgIJSpLJL/wb2jrDXyHNdQCAfmV18mBKRUXFypUr4+XNmzdv3rx5wIecOXPml7/8ZTzdb+zYsTfddNOF944ePXrp0qWpDW7ZsmXADX7yyScvvvjioIeeK11dXU899dTp06cHXHPbtm2p6qqbb755xIgRF95bWVm5YsWKePnFF188fPjwgBvcvHnzu+++G0VRWVnZzTffPMiBQ58EWABkUzGlQoG8lkCSRwC4SP/pVcaLsObPnx8vr169+ve//30/vZYOHDjwn//5n42NjVEUlZWV3XXXXT1imiiKli1bNm3atHj5t7/97Zo1a/rZ4O7dux955JG2trYoiuJasKDEXdgbGxt/+tOf9lMj1tXVtW7duhdeeCH+8corr7zhhhsuXu26666rr6+Poqijo+PRRx/dtm1bPxtcu3bt6tWrk8lkFEVf+9rXpkyZMryXAn9Wke8BAJAdPaKNLAUuhZ5JZZa9AUAJSyefeuihhzIYY91xxx1NTU0ffvhhFEUbNmzYsWPH0qVLr7rqqrFjx6bW+eijj7Zs2fLBBx/El9grKyu75557Zs6cefHWysvLv/e97/3sZz+Lr2z45ptvbt++/aabbpo7d248hy6Koq6urgMHDmzevDk1A3HlypWnT5+OC47CMXfu3PLy8rfffrulpeWRRx6pr6+//vrrp02bVlZ2voSlubl5165d69evP3XqVHzLpEmT7rvvvkQf343dddddjY2Nhw8f7uzsfP7557ds2bJ06dIrr7wynncZb3Dnzp1vvfXWmTNn4lsWLFiwZMmS7L5OSowAC4C+SWQyKzf7MzfZJQAMSQYzrIqKigceeOCVV17ZuHFjFEUNDQ0vv/zyyy+/XFNTU1NT097e3tDQcGEV1ciRI++88864mKhXo0eP/tGPfvTMM8/EV9w7c+bMSy+9tHr16urq6l43uGTJkptvvvm5557LyMvJrG984xtdXV1bt26NomjHjh07duyorKwcM2ZMZWVlc3NzU1NT8oIjhDlz5tx7770XV6WljBgx4oc//OELL7wQt8E6evTor3/967KysjFjxlRVVZ05cybueJWydOnSVatWZe3FUaIEWACFSUhRrLyVABSg3LS+ulhZWdntt99+1VVXrV279tChQ/GNTU1NTU1NPVarr6+/7bbbBpzuV1VV9f3vf3/79u2vv/563EAqmUxevMHRo0ffeeedqSv0BaisrOzOO++cM2fOSy+91NDQEEVRR0dHqt4qZcKECStXrqyvr++r9iqloqLinnvuqa+vX7NmTXxhwe7u7lS9VcrkyZNvvfXWWbNmZeyVwOcSSQfKAIVowABLwlWshv/W+2wA8LmHH354+BsZQnqVjcDrk08+2bNnz/79+xsaGpqamhKJxOjRo+vq6qZPn15fX3/hvMJ0dHd3Hzx4cO/evYcPH25sbGxpaamsrKypqbnkkkvq6+vnzp1bWVkZr7l3797jx49HUXTllVdOnjw5468rfZ988kk8oXLSpEmpCKm7u/vAgQPbt28/ceLE2bNnz507N3r06Nra2ilTpsyePXvGjBmpeYVp6u7uPnTo0O7du1N7pqqqqra2dtq0abNnz545c+aAWRiZ8uCDD+Z7CDklwAIIkpCCIfPZACBt+QqwhvwoIKXUAixTCAGKlFQCAMg+ORSQG4OrFQQAQpdMfuHfECQSX/gHAH0YTnol+QIGRYAFkA/DDwiGH1IAAAzD8BMoGRaQPgEWAJQYJVoABEOGBaRJDyyAICmqAgACJngCckwFFkAWqE8BAIpXZtMrWRiQDgEWAPBFw5xjKMAFYJBkWMCATCEEyAczBAGAgiVvAnJPgAUweD2KSqRRlBqfeQAAcssUQgAAAACCpgILIAvUp0A/1DACADBIAiyA3jjBhiHz/wUAgEwzhRAAAACAoKnAAhg8BSaQVUogAQD4IhVYAAAAAARNBRZQktR3QB75HwcAwCAJsAB64wQbAAAgGAIsAKCgqKAEACg9AiwAIDAyKQAAvkiABRQpNRoAAADFQoAFlCR5FgAAQOEQYAEAxUUBJgBA0RFgAQAFRSAFAFB6BFhAYVJhAQAAUDIEWECREmkBAAAUCwEWAFBK1G8CABQgARYAUFxkUgAARUeABYRKlQQAAABRFAmwgEIlzwIAACgZZfkeAAAAAAD0RwUWAFBK+q/fNHkZACBIKrAAAAAACJoKLCB/+q90UPgAAABAFEUqsAAAAAAInAosAID06JAFAJAnAiwAgM/JpAAAgiTAArJJtQIAAADDJsAC8keeBQAAQBo0cQcAAAAgaCqwAADS03/dqEnTAABZowILAAAAgKCpwAKGp/+KAwUIAAAADJsKLAAAAACCJsACAAAAIGiJpAk+wHBoWgyQDr8tAQCGQQUWAAAAAEHTxB0YHkUEAAAAZJkACxiIaS8AAADklSmEAAAAAARNBRYAQPYpXwUAGAYBFgBAvpmsDQDQL1MIAQAAAAiaCiwgiqJ+v/xXCAAAAEBeqcACAAAAIGgCLAAAAACCZgohAEC+9TNZW393AAAVWAAAAAAETgUWEEWRr/QBAAAIlwALSoZJKAAAABQmUwgBAAAACJoKLACAgCmYBQAQYAEAFDDTwwGA0mAKIQAAAABBU4EFxaWfr+J9LQ8AAEBhUoEFAAAAQNAEWAAAAAAEzRRCAICCZXo4AFAaBFgAAMXIBQoBgCIiwILi4vwEAACAoiPAggLkS3UAAABKiSbuAAAAAARNgAUAAABA0EwhBAAoRiaYAwBFRIAFAFBi9FIEAAqNAAsKkDMNAAAASokAC0Ll63EAAACIokgTdwAAAAACJ8ACAAAAIGimEAIAlBjT0gGAQiPAAgDgApowAgDhEWBBqJwwAAAAQBRFemABAAAAEDgVWJBvZmoAAABAv1RgAQAAABA0FVgAAFxALTAAEB4BFgAA6THtHQDIE1MIAQAAAAiaCizIN19fAwAAQL8EWJAT5lwAAADAUJlCCAAAAEDQVGABAJAeFcQAQJ6owAIAAAAgaCqwAAAYNt0eAYBsEmBBTjiOBwAAgKEyhRAAAACAoKnAgowygQIAAAAyTQUWAAAAAEFTgQUAwLApOgYAskmABQBANplfDwAMmymEAAAAAARNBRZklG+VKSWJHlUVhSzpPy8AAARMgAVDZUIERSr9WKqYQp/SfNUAAFAoBFgApWXApKY0A5r0X7UdCAAAuSfAAihC/YQs4pVhGnAH2vnQk08+ADBsAiyAAtZXViIoyaN+dr73CwAAhkaABVAYes0+BB+Fpa/3y5tL6dJQEgBIjwALhspBNlkjzig1vb65F38MfAYAAChZAixIg++HySY5Bb26+GMg2QQAoGQJsAByrUcMIYAgTekUavk4AQBQlARYANmlwIqs6vFx8nkDAKAoCbAAMkxFDHk04MRDH0jC4gMJAKRHgAUwXAICQtZ/iZaPKwAABSHhyBVgsEQAFA0fZsLlCioAwAVUYAGk5cLzfCf5FI1+6rN8zgEACIcAC77I971cwMk8pebCz7niLAAAwiHAAvgzZ+yQojgLAIBwCLCAUue0HNLRV3GW/zUAAOSAAAsoRU6/YTiEWeSCjxMAcAEBFlAqnGZDNgizyAMNKwGg9Aiw4IscBBed1Bm102nItl7DLP/1AAAYPgEWJcz3t8VLGQjkXeq/nv+PAAAMnwALKBJOkiFM5hgCADB8AiygsJmmBAXEHEMAAIZGgAUUJKe+UOjMMWTofE4AoPQIsIBCIreC4qMsCwCAASUcIAKBU50BJUiSxVC4PAsAFC8VWJQGR7QFyOkrlLKLJxj6VQAAUMoEWEBYnKwCF5JkAQAQCbCAQDg1BfonyQIAKGUCLCCfnIgCgyXJAgAoQQIsIA+cdgLDJ8miJx8AACherkII5I6TTCCr/JIBAChWAiwg65xSAjnm1w4AQJERYFGMPj9vOc+HPH/ic0i/Z4B8kWRxnmMDAChwemABmeeMEQiEPlkAAMVBgAVkjPNDIFg9kiy/pgAACosACxguuRVQQOLfVH5xAQAUFgEWMHQKGYACZWohAEBh0cQdGDTne0DxkcgDAIRMgAUMghM8oLgJ6AEAwiTAosC5KnZOOKMDSo28voQ4lgCAQqAHFtAfp3BAadLrHQAgKAIsoBfO2QCii3q9+5UIAJAvAizgC5ykAVxMQRYAQH4JsIAoclYGkAYFWQAA+aKJO5Q6p2EAQyP6BwDIGQEWlC7RFUBG+HUKAJBtAiwoRc61ADLOr9Zi83mF3XneWQDIKz2wKCgOJYfHbBeA7Lmw0btfswAAmSXAgpLghAogN1yvEAAgGwRYUOREVwC553qFAACZJcCCouWsCSDvzCsEAMgIARYUIWdKAEERYxUk7xQAhMRVCKF4aLkCED4xFgDAEAiwoBg4HQIoLH5vAwAMigALCptTIIDCpXK2IH3+rp3nvQOAnNADi1A5OhyI6Aqg0LlYIQBAmgRYUHic5wAUGV3eAQD6J8CCQuLcBqCIibEAAPoiwILC4HwGoESIsQAALibAgtA5hwEoQWKscHk7ACAfXIUQwuW8BYDInwMAAAEWhMm5CgA9+NNQAFxDGQCyxhRCCIvzEwB6ZVIhAFDKBFgEwNeVURQ5JwEgDWIsAKA0CbAg/5yHADAoYiwAoNQIsCDPEgmt6AAYCjEWAFA6BFiQN045ABg+MVZA7H8AyBoBFuSB0wwAMkuMBQAUN3OXIKecWgCQbSanAwDFx/EN5IjoCoCc8UcnLC64DADDZgohZJ2zCAByzIxCAKDICLDIuRL7EtI8DgDyRYwFABQNARZkixMGAEIgxgIAioAACzLPSQIAoRFjAQAFTYAFmeTEAICQibHyw64GgGETYEHGaHcFQEFIxVj+bAEAhcKBC2SAr7IBKET+fgEAhUKABcPi0B+AQudvWd6U2KWZAWA4TCGEoTP5AoAioDEWABA+ARYMhaN8AIqMGAsACJkAi2wqxsJ4R/YAFDH93QGAMAmwYBAc0ANQCpLJpC9sAICgCLAgLY7jASgpZhTmgh0LAGkTYMEAHLsDULLEWABAIARY0B9zBgFAYywAIO8ciEDvfNsMAD3445gjxXgZHAAYJhVY0AtfMgPAxcwoBADyRYAFX+CgHAD6Z0YhAJB7Aiwyp/DL3R2LA0Caksmkb30AgJwRYEEUKbwCgMEzoxAAyBkBFqXOYTcADIcYK/PsRgC4iACLkmbOIABkhMZYAEBWCbAoUb4oBoCM0xgLAMgS35JRinw/DABZJcbKisK/YA4ADJkKLEqL42kAyAEzCgGAzBJgMQyF9jWgw2gAyCUzCgGATCnL9wAgR6RXAJB7yWQyFWMBAAyZCiyKn+9+ASC/lGIBAMMkwKLIKbwCgBCkumJFYqwhs98AKGECLIqWQ2QACI3m7gDA0Dh6oDg5MgaAkPmeCQAYFCf5FBsHxABQKHzhlBmFdmFoABgCUwgZpLCPkBwHQw8Z/y8b9u8AoMBo7g4ApEmARfGQXlEESjMeKs1XDcQ0dwcA0iHAohg46iWPhC8Aw6e5OwDQPwEWBc/BLnAxwSIUIjMKAYC+CLAoYI5xGTLpBkCYlGINhX0FQAkQYDFIwRwhObSFdGT8f4n/dkAOKMUCAHoQYJGG8IpVpFcUq9L8XBfQqw7v1yEULaVYAMCFBFgUGN/HlrIws4NAhgFQlJRiAQAxARaFxNewQJr8qoCioRRr6ML85gcAhkSARcFw5EoG+SgBFBalWABQ4gRY9K3Ht3b544C1CPgOGPrifwekSSkWAJQyARZpy9PBouNUIBx+G0HeKcUCgNIkwCJo0isu5LMAQKQUCwBKkgCLQPlyFQDoh1KsgdkzABQRARa9yXf3K9+pBkWDHgDCpBQLAEqHAIs05Pag0GFoUfKWQl+y9L9D9EzpUIoFAKVAgEVYpFcAwGApxRocCTcABUiARSh8dwoADIdSLAAoYgIsvihP3a98ZZpVvmcFoEQoxQKAYiXAol85OfhzlBk4bw4AhUUpFgAUHwEWeSa9AsgGv1kpcUqxAKDICLDIG1+NAhQcU5IpLEqxemdvAFCABFh8Lrfdr3wjCgDkgFIsACgOAiz6kM2DPAeRQzCcqgc7G4ASF5diOfwAgMJVlu8BUHIcPgIAuRdnWIk8XXAZABgmFVhEUZSj+YOaUAAAeWQ6YX+0uAMgbAIscsTBIkAR8IucIqCzOwAUIlMI6U2mj+ekVwBAOJLJZCrGAgAKggossk56daEhl+fbhUARM3WJvNDZHQAKiAosstsAy3EhABAsnd0BoFCowOIimcubpFcAQOB0dj+vxF8+AMETYJEVeqMCAAVEZ3cACJwAi8wrne8wNW0BgKKhFAsAQibAIsMc9vXPvgG4mN+NhENndwAIkwCLTHLABwAUOtMJv0DBOQBhcBVCMkZ6BQAUh2QymYqxAIAQCLDIgPj609IrAKCYyLAAIBymEHKRRGJQxeHFFF0Ntka+WF43QHEy84nhM50QAAKhAothKab0CgDgYqYTAkAIVGARRclkzy+p0yO9AgBKROlenbAEXzIAQRJgMRRq6QGAUmM6IQDkkQCL3vTbBqvgvn7UAwUAyIj4EKjgjoUAoAgIsBic4j5iK95XBlCK/FYnS0p3OiEA5I8Aiz5cVISlZh4AIGY6oRJ3AHJMgEUURQP3cfc1IwDAhUwnBIBcEmDRt8+LsAI/MvP9HwCQL6YTAkBuCLD4XB9FWEVwTFbgwwcgIL414WIyLADIgbJ8D4CwORoDABhInGEl+m3IAAAMhwosLjBQJ6x88XU3ABC4kmuJVSIvE4BgqMBiAIlEmKEWAEBwUlcnBAAySwUWX9RnJ6zzdwYozFEBAKVJSywAyAYBFmExWxCAkPnDRDpSdVhiLADIFAEWFznfwaGXexIJB+4AAAMruZZYAJBl/qbSu/67N2TwU5OzJwIAyL3SyrDU0gOQNSqw6F18vNFXupS6fQiHJRqbAgClw3RCAMgIVyGkPw60AACGKZlMujohAAyTCiyGJc068fQP2ERmAJQg865KgasTAsBwCLAYQP9zCXvwzSIAQF9kWAAwZP6CMjgZj6h8AAFABVZJkWEBwBCowGJwBlWQ1f9GAABKkLbuADAEmrgDAEBOaesOAIOlgJnMSOcAzGcNAOBCphMCQJr8yQQAgLwpiQxLmzcAhs0UQgAAyBtzCQEgHQIsAADIpzjDEmMBQD8EWAAAkGfaugNA/wRYAAAQBBkWAPSlBHpGAgCUHl2zC1dJtHUHgEFSgQUAAAFRhwUAFxNgAQBAWLR1B4AeBFgAABAcbd0B4EICLAAACJQMCwBiOkQCAEDQirOtuwsNADAYKrAAACBo6rAAQIAFAAChk2EBUOIEWAAAUABkWACUMgEWAAAUhjjDEmMBUIKKsR8kAAAUteJs6w4AfVOBBQAABcZ0QgBKjQALAAAKjwwLgJKi9hgAgLT0SEscRYbAXEIASoQKLAAAKFTqsAAoERX5HgAAADB0cYZVPHVYKv0A6I0KLAAAKGzqsAAoegIsAAAoeDIsAIqbKYQAAKTFXK7ApTKs4plOCACfU4EFAABFIplMKsUCoCgVUbtHAAAgiqIoKqq27gCgAgsAAIqPOiwAiowACwAAipAMC4BiIsACAIDiJMMCoGgIsAAAoGjJsAAoDpo7AgBAkSuGnu49YrhCfzkADFJFvgcAAECJkkjkTFyHVfAZFgAlzBRCAAAofuYSAlDQBFgAAFASZFgAFC4BFgAAlAoZFgAFSg8sAAAoIYXaD6vgBgxARhXgny4AAGB4CjLDAqCEmUIIAAAlx1xCAAqLAAsAAEqRDAuAAiLAAgCAEhVnWGIsAMJn6jsAAJS6Qm2J1SN6K8SXAEB6VGABAECpM50QgMAJsAAAABkWAEETYAEAAFEkwwIgYAIsAADgPBkWAGEqzGaNAABwER29M6VQe7oDULxUYAEAAF+gDguA0AiwAACAnmRYAARFgAUAAPRChgVAOARYAAAAAARNd0YAAKBPBdnQXT9/gKKjAgsAAOiTiYQAhECABQAA9EeGBUDeCbAAAIAByLAAyC8BFgAAMDAZFgB5VIAdGQEAgDwpyJ7uABQ+FVgAAEC61GEBkBcCLAAAYBBkWADkngALAAAYHBkWADkmwAIAAAZNhgVALgmwAACAoZBhAZAzriECAAC96JHMOGruS8Fcl9A7ClDIVGABAABDpw4LgBwQYAEAAMMiwwIg2wRYAADAcMmwAMgqARYAAJABMiwAsqdAGi4CAACFoGB6ugNQUFRgAQAAGaMOC4BsEGABAACZJMMCIOMEWAAAQIbJsADILAEWAAAAAEHTYREAAMiKwmjo3qNSLPwBA5QkFVgAAEBWmEgIQKYIsAAAgGyRYQGQEQIsAAAgi2RYAAyfAAsAAMguGRYAw1QIXRUBAIDCVxg93QEIkj8hAACQda50F5NhATA0phACAAA5Yi4hAEMjwAIAAHJHhgXAEAiwAACAnJJhATBYAiwAAAAAgqaHIgAAkAehN3TXeB8gJCqwAACAPDCREID0CbAAAID8kGEBkCYBFgAAkDcyLADSIcACAADySYYFwIDC7psIAACUhtB7ugOQVyqwAACA/FOHBUA/BFgAAEAQZFgA9EWABQAAAEDQBFgAAEAoFGEB0CuNEgEAgLCE29C9R7gW5iABipEKLAAAICzqsADooSLfAwAAAAahRGqA4gwr0DosAHJOBRYAABAidVgApAiwAACAQMmwAIiZQggAAJAeUxoB8kQFFgAAEC5FWABEUaQtIgAAEDoN3QFKnAosAAAgdOqwAEqcAAsAACgAMiyAUibAAgAACoMMC6BkuQohAADA8PSI1bTrAsg0FVgAAEDBUIQFUJoEWAAAQCGRYQGUIAEWAABQYGRYAKVGgAUAABQeGRZASUkk9RcEAAAKUyLhjAagJKjAAgAACpU6LIASIcACAAAAIGgCLAAAoIApwgIoBQIsAACgsMmwAIqelocAAFCKegQ+RXBaoKE7QBGryPcAAAAAMiCuwwoowyq+jBAgf0whBAAAioS5hADFSoAFAAAAQNAEWAAAQPFQhAVQlPTAAgCAUlTEHZmCa4YFwLD5tQ4AABQhGRZAMTGFEAAAKELmEgIUEwEWAAAAAEETYAEAAMVJERZA0RBgAQAARUuGBVAcBFgAAEAxk2EBFAEX5gAAAIpfQBcl7JGmBTIqgLCpwAIAAAAgaAIsAACg+JlICFDQBFgAAEBJkGEBFC4BFgAAUCpkWAAFKphGhgAAADkRUEN3ANKjAgsAAACAoAmwAACA0mIiIUDBUToLAAAMUY8UqLDOLUwkBCggKrAAAIBSpA4LoIAIsAAAgBIlwwIoFBX5HgAAAAAFPiETIMtUYAEAAKVLERZAQVCBBQAADFFxFAnFGZaG7gAhU4EFAACUOnVYAIETYAEAAMiwAIJmCiEAAEAAzGEE6JsKLAAAgChShAUQMAEWAADAeTIsgDAJsAAAAP5MhgUQIAEWAAAAAEETYAEAAHyBIiyA0CSSLnUBAABwkUQigNOlHjla3scDkCcqsAAAAHqhDgsgHAIsAAAAAIImwAIAAOidIiyAQAiwAAAA+iTDAghBAF0JAQAAwhZEQ3eAEua3MAAAkDcFdJE9GRZAHplCCAAAAEDQBFgAAAAD0wwLII8EWAAAAGmRYQHkiwALAAAgXTIsgLyoyPcAAACA0qUrOgDpcB0NAACAwcn/FQkL6PKNAJlgCiEAAMDgmEgIkGMCLAAAgEGTYQHkkgALAAAAgKAJsAAAAIZCERZAzuS79SAAAEAhy39Dd4ASoAILAAAAgKAJsAAAAIbOREKAHBBgAQAADIsMCyDbBFgAAADDJcMCyCoBFgAAAABBc70MAACAzMj/FQl7VIE53QOKhQosAACAzDCRECBLBFgAAAAZI8MCyAYBFgAAAABBE2ABAABkkiIsgIzLd4tBAACAoQq5ZXn+G7oDFBEVWAAAAJmnDgsggwRYAAAAAARNgAUAAJAVirAAMkWABQAAkC0yLICMqMj3AAAAAIZIk3SAEqECCwAAIIsUYQEMnwu7AgAAZF0ikb+Trx7xmXNAoACpwAIAAMg6dVgAwyHAAgAAACBoAiwAAIBcUIQFMGQCLAAAgByRYQEMTUW+BwAAAEA26doOFD4VWAAAALmjCAtgCARYAAAAOSXDAhgsARYAAECuybAABkWABQAAAEDQBFgAAAB5oAgLIH0CLAAAgPyQYQGkqSLfAwAAACAfemRnyWSexgEwMBVYAAAAeaMICyAdAiwAAIB8kmEBDMgUQgAAoBSZPwdQQFRgAQAA5JkiLID+qcACAADIvzjDSuayEkzVGVA4VGABAAAEQR0WQF8EWAAAAAAELbcVqgAAAPQr1xMJAQqBCiwAAICAmEgIcDEBFgAAAABBU5sKAAAQnHxOJOxR/+WcEQiACiwAAIDgmEgIcCEBFgAAAABBE2ABAACESBEWQIoACwAAIFAyLICYJu4AAABBy2dDd4AwqMACAAAAIGgCLAAAgKCZSAggwAIAAAidDAsocQIsAAAAAIImwAIAACgAirCAUibAAgAAKAwyLKBkVeR7AAAAAASvR3CWTOZpHECJUoEFAABQMBRhAaVJgAUAAFBIZFhACTKFEAAAYBDMpQPIPRVYAAAABUYRFlBqVGABAAAUnjjDSuasAEylGZBXKrAAAAAACJoACwAAoCCZSAiUjhxWnAIAAJBpOZ1ICJAnKrAAAAAKmDosoBQIsAAAAAAImgALAACgsCnCAoqeAAsAAKDgybCA4laR7wEAAABQsHqkZtrJA9mhAgsAAKAYKMICipgACwAAoEjIsIBiJcACAAAAIGgCLAAAgOKhCAsoSomkHnsAAADFJZFwrgcUFRVYAAAAAARNgAUAAFBsTCQEiowACwAAoAjJsIBiIsACAAAAIGgCLAAAgOKkCAsoGgIsAACAoiXDAopDRb4HAAAAQNHpkZolk3kaB1AkVGABAAAUM0VYQBFQgQUAAJBdea9GijOspDIooGCpwAIAAAAgaAIsAACA4mciIVDQTCEEAAAoCTmdSGi6IpBRKrAAAAAACJo2fgAAACVEN3egEKnAAgAAKCGaYQGFSIAFAAAAQNAEWAAAAKVFERZQcARYAAAAJUeGBRQWARYAAAAAQXP5CQAAgBKVhysS9ij7ckIKpEcFFgAAQIkykRAoFAIsAAAAAIImwAIAAChdirCAgiDAAgAAKGkyLCB8FfkeAAAAACVD13ZgSFRgAQAAlDpFWEDgBFgAAADIsICgCbAAAAAACJoACwAAgChShAUETIAFAADAeTIsIEwCLAAAAACCJsACAADgzxRhAQFKJJPJfI8BAACAnnqESDk+dUskcni2mN+XChQCFVgAAAAABE2ABQAAQE8mEgJBEWABAADQCxkWEA4BFgAAAABB08QdAACAPuW0mztAH1RgAQAA0CcTCYEQCLAAAAAACJoACwAAgP4owgLyToAFAADAAGRYQH4JsAAAAAAImgALAACAgSnCAvJIgAUAAEBaZFhAvlTkewAAAADQmx5hWTKZp3EA+acCCwAAgHQpwgLyQoAFAADAIMiwgNwTYAEAAAAQNAEWAAAAg6MIC8ixRFIbPAAAAAYvkXBGCeSICiwAAAAAgibAAgAAYChMJARyRoAFAADAEMmwgNwQYAEAAAAQNC33AAAAikGPQqhcnurp5g5kmwosAAAAAIImwAIAAGBYdMICsq0i3wMAAACg4MUZVo4mEuZxtiSQJyqwAAAAAAiaCiwAAIBikPc6pJwWYQElRgUWAAAAmaEZFpAlAiwAAAAAgqa8EwAAgEwykRDIOBVYAAAAZJKJhEDGCbAAAAAACJoACwAAgAxThAVklgALAACAzJNhARkkwAIAAAAgaAIsAAAAskIRFpApAiwAAAAAgpZIJpP5HgMAAABFK5HI1Ylnj2ovZ7tQRFRgAQAAkEUmEgLDJ8ACAAAAIGgCLAAAALJLERYwTAIsAAAAsk6GBQxHRb4HAAAAAJmgazsULxVYAAAA5IIiLGDIcnU1UwAAAELSI0rK2alhIuE8FBg0FVgAAAAABE2ABQAAQO6YSAgMgQALAAAAgKAJsAAAAMgpRVjAYGmeBwAAQB7o5g6kTwUWAAAAAEETeAMAAJAfOSrC6jFd0VkwFCAVWAAAAOSHZlhAmgRYAAAAAARNgAUAAEDeKMIC0iHAAgAAACBomrgDAACQZznq5g4ULBVYAAAA5JmJhED/BFgAAAAABE2ABQAAQP4pwgL6IcACAAAgCDIsoC8CLAAAAACCJsACAAAgFIqwgF4JsAAAAAAIWiKZTOZ7DAAAAPBniUROzlV7lHo5O4aAqcACAAAgLCYSAj0IsAAAAAAIWkW+BwAAAEAByPF8u7gIS9MbIKYCCwAAgBCZSAikqMACAACgJCnvgsKhAgsAAIBAKcICYgIsAAAAAIKmJR4AAABB080dUIEFAABA0EwkBARYAAAAAARNgAUAAEDoFGFBiRNgAQAAUABkWFDKBFgAAAAABM2lHAAAACgYubgiYY86L2fNEAAVWAAAAAAETYAFAABAwdAJC0qTAAsAAIBCIsOCEiTAAgAAACBomrgDAABQeHLRzR0IhgosAAAACo+JhFBSBFgAAAAABE2ABQAAQEFShAWlQ4AFAAAAQNAEWAAAABQqRVhQIgRYAAAAFDAZFpSCinwPAAAAgGLTI1BKJvM0DqBYqMACAACgsCnCgqKnAgsAAADSoK4M8kcFFgAAAAVPERYUNwEWAAAAxUCGBUXMFEIAAAAyzOw6ILNUYAEAAFAkFGFBsVKBBQAAAGlQVwb5owILAACA4qEIC4qSAAsAAICiIsOC4iPAAgAAACBoAiwAAACKjSIsKDICLAAAAACCJsACAACgCCnCgmIiwAIAAKA4ybCgaAiwAAAAAAhaIplM5nsMAAAAkC2JRDbPfHtUeDnFhuxQgQUAAABA0ARYAAAAFDOdsKAICLAAAAAocjIsKHQCLAAAAACCpok7AAAAJSG73dyBbFKBBQAAAEDQxM8AAADkU4/mVFk9SVWEBQVKBRYAAAClQjd3KFACLAAAAACCJsACAACghCjCgkIkwAIAAAAgaNrXAQAAUHJ0c4fCogILAACAkmMiIRSWinwPAAAAAIpOj3RMtRcMjwosAAAASpEiLCggAiwAAAAAgibAAgAAoEQpwoJCIcACAACgdMmwoCBo4g4AAACZpms7ZJQKLAAAAEqaIiwInwALAAAAgKAJsAAAACh1irAgcAIsAAAAkGFB0ARYAAAAAARNgAUAAABRpAgLAibAAgAAACBoiWQyme8xAAAAQCgSiaydKfco73I+DmlTgQUAAAB/ZiIhBKgi3wMAAACAdKlhgtKkAgsAAAC+QBEWhEaABQAAAEDQTCEEAACAnuIirAx3czfjEYZKBRYAAAAAQcvaxUEBAACgwGW+CAsYEhVYAAAA0Dvd3CEQAiwAAAAAgibAAgAAgD4pwoIQCLAAAAAACJoACwAAAPqjCAvyToAFAAAAA5BhQX5V5HsAAAAAUNp6RGPJZJ7GAeFSgQUAAAADU4QFeSTAAgAAACBoAiwAAABIiyIsyBcBFgAAAABBSyQ1hwMAAIC0JRJOpSHXVGABAADAIJhICLknwAIAAAAgaAIsAAAAGBxFWJBjFfkeAAAAAGRYj3BJxyoodCqwAAAAYNAUYUEuCbAAAAAACJoACwAAAIZCERbkjAALAAAAhkiGBbmhiTsAAADFphi6tmtEDxdQgQUAAABDpwgLckCABQAAAEDQBFgAAAAwLIqwINsEWAAAAAAELZHUBw4AAACGLZFwig3ZogILAAAAMsBEQsgeARYAAAAAQRNgAQAAQGYowoIsEWABAAAAEDQBFgAAAGSMIizIBgEWAAAAAEETYAEAAEAmKcKCjEskk8l8jwEAAACKTSKRhTPuHrmYM3pKhgosAAAAAIImwAIAAIDMM5EQMqgi3wMAAACA/DAhDwqFCiwAAADICkVYkCkqsAAAAKBAKBKjVKnAAgAAgGxRhAUZIcACAACALJJhwfCZQggAAECJMiEPCoUKLAAAAMguRVgwTAIsAAAAAIImwAIAAICsU4QFwyHAAgAAACBoiaSedQAAAJATiUQWTsN7FHY5zacYqcACAACAHDGREIZGgAUAAABA0ARYAAAAkDuKsGAIBFgAAAAABE0TdwAAAMi1rHRzh+KlAgsAAACAoAmwAAAAINd0woJBEWABAAAAEDQBFgAAAOSBIixInwALAAAA8kOGBWmqyPcAAAAAIGg9IiYXD4TcU4EFAAAAeaMIC9IhwAIAAAAgaKYQAgAAQD7FRVjJzE5NNO+R4qICCwAAAICgqcACAACA/uSgeikrRVhQRFRgAQAAABA0ARYAAADkn8sRQj8UKAIAAEAoTCSEXqnAAgAAACBoAiwAAAAIhYmE0CsBFgAAAABBE2ABAABAQBRhwcUEWAAAAAAETYAFAAAAYVGEBT1U5HsAAAAAQPb1SMSSyTyNA4ZCBRYAAAAERxEWXEiABQAAAEDQBFgAAAAQIkVYkKIHFgAAAAxXlhpMxRlWUr8qSp4ACwAAAEqAFIxCZgohAAAAhMtEQogEWAAAAAAEToAFAAAAQVOEBXpgAQAAwHBpMAVZpQILAAAAQqcIixInwAIAAAAgaAIsAAAAKACKsChlemABAABASeoRh+njRcBUYAEAAEBhUIRFyRJgAQAAQMGQYVGaBFgAAAAABE2ABQAAAIVEERYlSBN3AAAAKEm6tlM4VGABAABAgVGERakRYAEAAAAQNAEWAAAAFB5FWJQUARYAAAAAQUsk9WwDAACALOtRLJWpc/FEwnk9JUEFFgAAAABBq8j3AAAAAIAhijthZawIK0t1YjBsKrAAAAAACJoACwAAAAqYyxFSCkwhBAAAgKzL6my8DE8khPCowAIAAAAgaAJaAAAAKAaKsChiKrAAAAAACJoACwAAAIqBbu4UMQEWAAAAAEETYAEAAECRUIRFsRJgAQAAABA0ARYAAAAUD0VYFKWKfA8AAAAACFWPLCyZzNM4KHUqsAAAAKCoKMKi+AiwAOD/be9eQ6ys9wWOP2tGzExFPJhmFyIqKi9jF/BN9iIOXdAoi6Zsdw+j2EHbQwhRerq8UKJjV6OyAyGEmtSmnWZXCOpNEuloIaFUoHmstLvd16zz4tG1x5lxnFlrzXp+8zyfz6vnWS7lt2G/6cvv/18AAEBoAhYAAADkjSUscsYdWAAAAJAxN01B3wQsAAAAyKF0CatSZwzT0ojBEUIAAADIJwcJyQ0BCwAAAIDQBCwAAADILUtY5IM7sAAAACBjbpqCvtnAAgAAgDyzhEUO2MACAAAA+qdbCLM5RrPYwAIAAICcs4TFUCdgAQAAABCagAUAAAD5ZwmLIU3AAgAAACC0UsWNawAAAFAMpZIOwJBkAwsAAACA0AQsAAAAKAo3YTFECVgAAAAAhObsKwAAAITWbWWq/v+OdxMWQ44NLAAAAABCG5b1AAAAAEBTpTdhNWAJq+G7YXAINrAAAAAACE3AAgAAgMLxc4QMLY4QAgAAQGhO5oENLAAAACgiS1gMITawAAAAgJrYDaNZbGABAABAQVnCYqgQsAAAAKC4NCyGBAELAAAAgNAELAAAACg0S1jE5xJ3AAAAoBG6VTBXvNM4NrAAAACg6CxhEZyABQAAAEBoAhYAAABgCYvQ3IEFAAAAQ5IrpygOAQsAAABIkgNLWJWaS5iExqBxhBAAAACA0AQsAAAAYD83YRGTgAUAAABAaHUcbQUAAADyqK6bsA78Ewe9ig/UxwYWAAAAAKEJWAAAAMBB3IRFNAIWAAAAAKEJWAAAAEB3lrAIZVjWAwAAAAC549Z2GsoGFgAAANALS1jEIWABAAAAEFqpYqkPAAAAcqTb1lSd/91fKkkHZM8dWAAAAMBgamxRo5AcIQQAAAAOyU1YRCBgAQAAABCagAUAAAD0xRIWmXMHFgAAAOSKO6bIHz8lAAAAAByenyMkQ44QAgAAABCaegoAAAD0SwOWsLrdpSVK0D82sAAAAAAITcACAAAA+sXPEZIVAQsAAACA0AQsAAAAoL8sYZGJYVkPAAAAAAy6KJenu7WdmtjAAgAAAAbAEhbNZwMLAAAAaLooK2EMDTawAAAAgIGxhEWTCVgAAAAAhOYIIQAAAORfw4/opUtYFUf/aAobWAAAAACEppUCAAAANap3CctV7vSPDSwAAAAAQhOwAAAAgBr5OUKawyXuAAAAUERO7zGE2MACAAAAamcJiyawgQUAAABkxN4X/WMDCwAAAKiLJSwGm4AFAAAAQGilim09AAAAoG6lUn2Rwa3yHJoNLAAAAABCE7AAAACABnATFoPHrxACAABA0UU8vVcqxZiDEGxgAQAAAI1hCYtBImABAAAAAdi34tAELAAAAKBhLGExGAQsAAAAIKRSqfvtXBRVqWJDDwAAAGioUqmO4BDxSnkyZgMLAAAAgNBsYAEAAAD/1qj9p9qXsHoeG9QuCs8GFgAAAAChCVgAAABA49X+c4T2rehBwAIAAAAgNAELAAAAOKRSqZc7qfqp9iUsOJiABQAAAPxbpeIMH+EIWAAAAMBgsYRFQwhYAAAAwGE4SEi2BCwAAAAAQhOwAAAAgO4aexOWJSzqJGABAAAAkUhd9CBgAQAAAP3iJiyyImABAAAAvWvsQcJ+EbnojYAFAAAADECzl7CandCISMACAAAAYrB+xSEIWAAAAECT9LWE1evn1q9IkkTAAgAAAPrWMyI1/jZ3u1f0ScACAAAAQrJ+xQECFgAAAHAYvf4cYT17WN3/IeiTgAUAAADUrqbfFexyivBQf9/6FV0My3oAAAAAoJD6SF/qFQcrVfx/AgAAAOi3BqxM9b21pVTQgw0sAAAAoAG6ValeM1T6HYGKgRKwAAAAgAGoVPp171WNN7Nbv6I3LnEHAAAABqbXHyVszL8LvbGBBQAAAGRKt+JwXOIOAAAA1K7Go4IHyBL0hw0sAAAAoHbdClQ/e5ZuxYAIWAAAAEDDKFMMBpe4AwAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCVuGUy+Wjjz66dMCHH37Y69e2bds2cuTI9Dvjx4//6quvmjwnAAAAQErAKpzW1tbLL7+8+vraa6/1/E6lUrnlllt+/fXX9HX58uUTJkxo0nwAAAAABxOwiujKK6+sPvcasJYtW/bee++lzzfffPNll13WnMEAAAAAeipVKpWsZ6DZyuXyMccc88033yRJ0tLSsnv37vHjx1f/9PPPP586deq+ffuSJDnxxBM3b948evTozGYFAAAACs8GVhG1trbOmTMnfe7s7HzjjTe6/um8efPSetXS0rJixQr1CgAAAMiWgFVQhzpFuHz58nfeeSd9XrBgwcyZM5s9GQAAAMDBHCEsqHK5PHHixD179iRJMm7cuK+//rq1tXXnzp2TJ0/+8ccfkyRpa2vbsGHD8OHDs54UAAAAKDobWAXV9bcIv/322w8++CBJkltvvTWtV0ccccQLL7ygXgEAAAARCFjF1e0U4YoVK9avX5++Ll68ePLkyRnNBQAAAHAQRwiLq+spwlNOOWXPnj3fffddkiTnn3/+22+/XSqVsh4QAAAAIElsYBVZ198i3LZtW1qvxo4d+/zzz6tXAAAAQBwCVqF1PUWYWrZs2fHHH5/JMAAAAAC9coSw0P7666+JEyfu3bs3fW1vb1+9enW2IwEAAAB0YwMrz8791z/O/dc/+vjCsGHDpkyZUn1dunTpoM8EAAAAMEACVtF98skn6cOECROOPfbYbIcBAAAA6GlY1gMwiIb/x6i+v/Dll1+mv0KYJElbW9vgTwQAAAAwYDawcmv60rndHnrq6OioPgtYAAAAQEwCVm6NOnlCt4eeNm3aVH0WsAAAAICYBKx86rZ1daglLBtYAAAAQHwCVqFVN7CGDx9+2mmnZToLAAAAQO8ErHzqdmyw11OEv/zyy/bt29PnyZMnDxvmRn8AAAAgolKlUsl6Bhps+tK5o06e0PUnCP/Y+/PP27/a9F8rM5wKAAAAoDY2sAAAAAAITcDKmxNvPLeGPwIAAAAIy7VHeTN22vG93njV64cAAAAA8dnAAgAAACA0AStXpi+dW+cXAAAAAKIRsPImPSrY9ScIq69OEQIAAABDkYCVH/28o91V7gAAAMDQ4hL3/Pht1/e7d32fJFuyHgQAAACgkUqVSiXrGRgsF3Q8mCTJm20Lsx4EAAAAoHaOEAIAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagFVEq1evLh3Oddddl/WYAzNjxozq8DNnzjzU1zZv3jxmzJj0ay0tLS+99FIzhwQAAABqIGAV0ebNmw/7nba2tiZM0kCLFi2qPr///vvvvfdez+/s2rVr1qxZP/30U/r60EMPXXHFFU2aDwAAAKiVgFVEHR0dh/3OkAtYs2bNOuuss6qvixcv7vaFffv2XXLJJTt37kxfb7vttrvuuqt58wEAAAC1Gpb1AGRg0qRJs2fP7vZhR0fHjh070ucxY8acffbZTZ+rXgsXLpwzZ076vH79+k2bNk2fPj197ezsnDt37kcffZS+XnTRRU8++WQmQwIAAAADJWAV0bPPPtvtk+3bt3ddX1q+fPm4ceOaO1QDXHrppVOnTt2yZUv6umTJklWrVqXP8+fPf/XVV9PnadOmvfjii62trdlMCQAAAAyQI4Qkv//+e3t7e/VmqNtvv729vT3bkWpTKpUWLlxYfV2zZs22bduSJHniiScef/zx9MNJkyatW7du9OjR2YwIAAAADJyARXLXXXdt3LgxfZ4+ffrSpUuznaceV1xxxemnn54+d3Z2PvTQQ2vXrp0/f376yahRo9auXXvcccdlNyAAAAAwYAJW0b388svV26BGjRq1evXqESNGZDtSPVpaWu69997q64oVK66++upyuZwkSWtr66pVq84888zspgMAAABqIWAV2hdffHHLLbdUX5955plTTz01w3ka4qqrrjrllFPS5z/++GPfvn3p86OPPjpr1qzs5gIAAABqJGAV159//nnVVVd9//336eu8efOuueaaTCdqjNbW1nvuuafbh/Pnz7/jjjsymQcAAACok4BVXHffffeGDRvS5ylTpjz22GPZztNAl19+edeDkFOmTHn44YcznAcAAACoh4BVUOvWrate1n7UUUe9+OKLRx55ZLYjNUqlUrnpppt+++236idbt27dvn17hiMBAAAA9RCwimjnzp033HBDpVJJX5966qnqL/flwIIFC1566aWun5TL5QcffDCreQAAAIA6CViFUy6X586du3fv3vT1xhtvvP7667MdqYGefvrp6mnBrjtlK1eu/PTTTzMaCgAAAKiLgFU4ixYtev/999Pn008/fdmyZdnO00Cvv/569ab2I4444s033zz77LPT13K5/MADD2Q3GgAAAFA7AatY3nrrrSVLlqTPRx555Jo1a0aOHJntSI3S0dHR3t5eLpfT1+eee+7cc8+97777ql9YtWrV1q1bsxkOAAAAqIOAVSC7d+++7rrrOjs709cnn3xy8uTJ2Y7UKLt27Zo9e/ZPP/2Uvi5cuPDaa69NkmT27NnnnHNO+mFnZ6clLAAAABiKStWbvMmfCzoeTJLkzbaF+18vuOCtt95Kn0eMGHHhhReWSqWef2vlypUjRoxo2pD1+/nnn88777yNGzemr+3t7atWrar+T1u3bt3s2bPT55aWli1btpxxxhnZDAoAAADURMDKs64B64cffhg7duxh/8pxxx23Y8eOwR6sgcrl8qWXXrpu3br0dcaMGe+++263ADdjxowNGzakz+3t7atXr272lAAAAEAdHCEsii1btvTna9OmTRvsSRrrzjvvrNarE0444ZVXXum5Ptb1Jqw1a9Z8/PHHTRsPAAAAqJ+AVRT9DFhtbW2DPUkDPfLII9VfURw9evTatWsnTJjQ82sXX3zxjBkz0udKpXL//fc3b0QAAACgbo4Q5lOp9Fm3TyqVkzKZBAAAAKBONrDyplT6rGe96uPzoei+s07+53+emfUUAAAAQJMIWLly2ESVm4Y156SJya0XJ7denPUgAAAAwKATsPKjn3EqJw3rmHHJMeOSJEkzloUsAAAAyLFhWQ8AdUgbVpLMSZL921jPrs9wHAAAAGAwCFg5MaC9qlLpsyF/p/uYkUmSJD/+sv/1QMlK/vtvyf99myRKFgAAAOSHgMVQlmasrn78ZX/MSkuWjAUAAABDn4BVVMv+nvUEg6Nr0hozMvmfefu3tO5/IauJAAAAgDq5xB0AAACA0GxgFdXfl2U9QR3+9+RD/lH1VqwkcYQQAAAA8kHAYijrmquqXOIOAAAA+SJg5USlclL/f4hwyP8EYdIjXaXRKtGtAAAAIIcELIayA93qn5/tnvP2xmxnAQAAAAaJgJUf/VzCysP6VdJ95WpOlqMAAAAAg0vAypXDNqyc1CsrVwAAAFAkpUqlkvUMNF7PjJWbdAUAAAAUjYAFAAAAQGgtWQ8AAAAAAH0RsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgtP8HsgY/4IfLSIcAAAAASUVORK5CYII=",
       "text/plain": "<IPython.core.display.Image object>"
      },
      "execution_count": 1,
@@ -85,7 +85,7 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAZACAIAAACubhnwAAB7+ElEQVR4nOz9WZSV9Z03fF+7BqqogUkpMJFRGaSMCIogghLExAwOcUi6Yyd3D+l+V/rtk1691n3Ua6kHz0nWep8+uZ++7347nRhbTTQap0iMImKiTCI4AGGSSVAGQaiJmq/n4MIdLGrYVbWr9n/v+nwWB1dV/fe1//vaLNl+6/f7Xak4jiMAAAAACFVRrjcAAAAAAL0RYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQtJJcbwAA6Fkq9YUv47iP7wMAQCESYAFArmU3jZJtAQBQcLQQAgAAABA0FVgAMIyURwEAQP8JsABgJJGgAQCQhwRYADAEspUT9fRAwRMAACOJAAsAci27aZRsCwCAgiPAAgA+p8EQYIR5+OGHc70FYIAefPDBXG9hWAmwAGDQMs99REIAANB/AiwAGEkkaAAA5CEBFgAMATkRAABkjwALAPrDlCgAABh2AiwA4HO95HGSOwAAckeABQCDJs0BAIChJMACgJ4pOwIAgAAU5XoDAAAAANAbFVgA0B+KsAAAYNgJsACADPSe3Om1BABgKAmwAOBzUhgAAAiSAAsAeibDAgCAABjiDgAAAEDQBFgAAAAABE0LIQAjWJehVwyYXksAAIaSAAsAPieFAQCAIAmwAICh5N6OAAAMmhlYAAAAAARNBRYAI4mhVwAAkIcEWACMYNrZAAAgH2ghBAAAACBoKrAAgKGkzA0AgEFTgQUAAABA0FRgAVDougxuVxAUFO8OAAAZUIEFAAAAQNAEWAAAAAAETYAFAAAAQNDMwAKg4HQZqwQAAOQ5ARYAhc5c8JB5dwAAyIAWQgAAAACCJsACAAAAIGhaCAEoCOZeAQBA4RJgAVCITFYqAF1CSe8pAMAIpoUQAAAAgKAJsAAAAAAImhZCAAAAyLGnnrp/5855URTdc89vrrnmg4sXbN68aPXqb0ZRtHDh1jvvfHG49xeYobgar7xy2/r1S6MoWrFi3YoVb2TlnGSRAAuAvGVGEgAAjAwCLAAgSBJJAAA+ZwYWAAAAAEETYAEAAAAQNC2EAOSbLqOvAABGgK98Zfv06QejKBo9ujnXe8k9V2MEEmABkOdMShqBzO8HYOQZPfrc6NHncr2LULgaI5AACwAAgPzT3Fy2fv3SI0cuP3ZscklJ+6RJJ2bM2L948abi4s5h3smRI5fv3j374MHp9fVjGhqqiovbKysbL7vskyuu2H/NNe+XlLRn5Vmam8sbGiqjKCovb6mqauhlZUdH8f79M3fvnn306OUNDVVNTaMrKs5VVdVffvnR2bN3z5x5oLi4o19P3dpaumvXVTt21J48ObG+vrqkpG3MmPrLLvtk3rydV1yxL4sXPPP3NPOr0dmZOnRo2p49sw8fnlpfX93YWDl6dHN1dd2kScdra3fMnLl/APtvby/ev3/mrl1XffzxZfX11S0tZePGnR0//nRNzYkFC7Zdeump/p6QTKRiv7QEIL+ovsHfAYAsefjhh3O9hQH68MMrnn/+zrq6MV2+X1Nz4t57fzNp0vELv7l586LVq78ZRdHChVvvvPPFTM7/xBN/uWfP7CiK7rvv6auv3tHTsv37Z65Zc+vHH3+ppwVVVY1Llmy8/vq3y8tbuvxo7dqv/uEPN/e5k29/+7fXX/9Ohq8ijlPvvXfN669/9ezZsT2dcNy4sytXrv3KVz5Ipbr/B7TLE+3ZM+ull77V0wkvueTUt761eubM/X2+kD4NxXu6c+dVa9fe+umnl/S0oKqq4fbbf3/11dujKHrlldvWr18aRdGKFetWrHij2/VxnHr//WvWrl159mzXfabNnLn/llvemDbtcE8LsuXBBx8c6qcIiiHuAAAA5JPTp8f/6lffSycd48adTdfgnDhR8+ST32ttLR3qPXR0FL/44h2PPvqDC9OrioqmmpqTVVUN6V+1NDRUrllz67//+//35MmJQ72lc+fKH3vsr5577u502FRUFFdX10+adKKqqiEdV505M/Y3v/nOr371F62to/o858aNS5544vvJCVOpuLq6oabmRFVVY/oFnjp1yaOP/iDJfQYj6+9pa2vpk09+96mnvptOr1KpqLKysabmRHV1fVHR+avR0FD19NP3PvHE99va+j5/c3PZ448/8Oyzd6fTq+LijnHjzkyadKK6+s9VYPv3z/zFL/76rbdu6teG6ZMWQgDyhKIbACCKoih64YU7k7hh8uTj9977zMSJJ6MoOnx4ytNP319XV3369PjXX//q17/+ytBtoK2t5LHH/urQoWnJl+PHn7nxxvVXXbWruro+veDgwembN9+wb9+sOI7q6qp/9rO/eeCBJy6//Ej6JOPHn0nGkCdOnqxpbKyIomjixE8rK/+chqTP2bvGxsqf/exvT52akHx5+eVHlyzZOGvW3rKy85VfTU2j9+yZ89ZbS5Mobffu2T/72d/+zd/8PL3gYnv3zt66dWEURdXVDcuX/6G2dkdlZVPyo7q6Mdu3X/3HPy47d250FEWvvHJbaWnbokVvZ7LVbmX3PW1uLnvkkb8+dmxy8uUll5xaunT93Lm70vtvaRm1b9+szZsXJW/inj2zHnvsgYkTP+3lnE1No3/+879JB5GTJx9bufL1GTMOlJa2Jd9paKjaufOqN95Y0dhY0dmZevXVVZ98ctm99z7t/kPZIsACAPKN+BJgBKuvrzp4cHoURaWl7d/73q/Gjz+TfH/q1I++8Y3VTz75vSiKdu+eO6QB1vPP351Or5Yv/+Mtt7xRUvKFqVKlpe2zZu2bNWvfhx/OfPrp+8+dKz93bvQvfvHDH/3op5MmnUjWLFiwbcGCbemHPPXU/Tt3zouiaPnyP1xzzQf92k9HR9GTT343Sa+Kizu+9a2XFi7c1mVNRcW5a69995pr3n/zzWWvv/7VOI6OHZv03HN3f/e7T/aUsNTXV0VRdMUV+++//9fl5V+42d+YMXVLl66/9tp3n3ji+0eOfDmKoldfvW327N1jx9b1a+fpJ8riexrHqWeeuS9Jr1KpaMWK15cvf7Oo6AuDrsrKWmtrd9TW7tixY94LL9zV0jLq0KFphw9P7emcnZ2pX//6/iS9KitrXbly7aJFm9NlXImqqoYbbnj7mms+WLduxcaNi6Mo2r699rLLPr7ppvX9uBb0TAshAAAAeeP48fNlNZdffiSddCRmz96bjCc/fXp8U9PoIdrAli3Xbd9emxzfddcLt966tkt6daErrtj/D//w/0+qqNraSl9++fah2NIf/7g8CV+Kizv/6q8evzi9Sisq6rz55j/cccf5oVF/+tPc9967tpczT5z46fe+96su6VVaRUXTD37w3xUVTVEUtbaWbty4ZGD7z+57unHj4r17r4yiKJWKvvOd39xyyx+6pFcXqq3d+Xd/99PkJcRxj7VS69ffdODAjCiKUqn4/vt/vXjxpi7pVVp5efPtt7+8fPkfky9fe+3Wjz66PJNt0ycBFgAAAHnjzJlxycHo0ee6/Ki4uOMf//F//+M//vs//uO/jxrVNhTP3tpaum7diuT4xhs3XFhC1ZPx4z+7557fJCOoDhyYsWvX3OxuqbGxYsOG8yOobrvtlRkzDvT5kIULt6ZDrjfeuLmzs8dk4Kab3uz9SpaVtSxevCk5/uCDr2S66S/K4nva0jLqj388Pxp/2bI3M6llq6k5ef/9v+4pkIqiqLm5/M03zw+0Wrly7ZVX7uvznCtXrp0zZ08URZ2dRa+/vrLP9WRCgAVAwFKpP/8BAIiiSy89P6jo0KGpFw/evuSSUzU1J2tqTpaUtA/Fs7/77oKGhqooiqqqGlaufD3DR82YcfD++59etWrNqlVr2tuzPMln69brWlpGRVF06aWnFi/enOGjVq1akwxv+uyz8bt3z+l2zejR55Lb8/Xuhhs2JzVoDQ1VvdybrxdZfE+3bVuQFGqNGVN3yy3rMtzAjBkHr722xyxy69aFzc3lURRNnnxs2bI3MzlhKhXdffdzyWU5cGBGLzeFJHMCLADyRxz/+Q8AMCJNmnSsuLgziqLGxsqnn76vpaVsOJ89XT+1ZMmm9PTuTMybt3PZsreWLXsrk0ioX3bvnv35ljambzXYp4qKpvnz30uO9+27sts1kycf76U7Mm306OZ0AjWwmy1m8T1Nh3E33rgxk82n3XLLH3r6hWn6nPPnv5/5L1VHjz43d+6uKIriOHrvvfmZ74SeCLAAAADIG6NHN99yyxvJ8e7ds//X//qnjRuXJCVIQ62trSQ9uz3JJnKupWXU0aNfTo5nzdrbr8fOmnW+FW7//hndLqiqauj2+xcbN+5MctDcPJDRY9l6T9vaSg4fPv8GzZnTvzdo7NizX/rSxxd/v7W19KOPpkRRlErFtbX9Cx/THab79l3RrwfSLXchBAAKRZffiqrUAyhQy5b98fDhqUkoUF9f9fLLX3/99a9ee+27ixZtvvTSU0P3vPX1Yzo6iqIoKi9vSdcc5VZ9fXUyeryi4tzYsWf79dgvf/loclBXNzaOuxnYUFKSaYnZqFGtyUFra9cGwAxl5T2tr69O3qDRo5snTPisv3u4/PIjR49+6eJzdnamoigqLu547rm7+3XCOD5fM3T69CX93QwXE2ABECRDrwCAHhQVxd///uNvvbVs/fql586VR1HU0jJq06YbNm++Yf78d1etWlNV1TgUz1tfX5UcVFXVD8X5ByAZyBVFUWVlptVSaRUVjalUFMdRR0dRc/PoiweoZ96QmJ5OdeGEr0cf/cH+/TN7edTddz937bXn2xiz8p6mr0bmtWMXqq6u6+Wc7e0lvb+cXjQ1VQzsgVxICyEA+cDcKwDINw899ODQnbyoKF6+/I///M//97e+9dLEieeLoeI4evfda//P//nx6dMTBnn+pKzp4icd5Gmzrrj4/Jinbjfcu1QqTqU6k+OkyGgQsnBlsvGenn8VA3s56YKpL+6qcwCn6qKzM9XRUTz484xwKrAAAADIsiS9euihBx966OGhe5ZRo9oWLdpy/fVb9u2b9cYbNx85cnkURQ0NlY899sA//dP/k44e0gft7Zk2uHW7Ml14la7KybnKyvN1SY2N/d5Sc/Pozs6iKIqKiuKKiq7lV4M3e/aeCRNO97Kg297ADN/TbqULrwb2BtXXV/dyzkmTTvz4x/97AKclWwRYAAAADJWhzrCiKEqlolmz9s6atXfduhXr1t0SRdHp0xN27pyXvt/fqFHnZzk1NlZmeM7m5m5uhFddXV9S0tHeXtzcXP7pp5cM6bytDFVX1xcXd3Z0FJ07V/7ZZ+PGjz+T+WNPnKhJDqqqGjLvFszckiWbBvzYPt/TblVX1xUVdXZ2FrW0lJ04MbGm5mS/nvTw4SndnfP8m37q1CUdHUXJ3RLJCS2EAIQklTr/BwYgaTVN/wEgR4a0ebAXK1asu+KK/cnxhx/+eVxRefn58qKGhkwDrG6nbpeUdEyffiA53rXrqoFvNHtKS9unTj2cHO/bN6tfj/3ww/O3xps+/WB2d5VFPb2n3SotbZ827VByvGvX3H490WefjT92bPLF30+/6e3txXv39u8Kt7SUNTWNbmoafeFoMAZMgAVAwCQRAJBvLk6vsphnNTeXHzw47eDBaceOTep2waxZe5ODM2fGp7+ZvmPgZ59NaGvru4vw8OGpLS2juv3R3Lm7koMNG5b06457n356abLzo0e/nPmjMjFr1p7kYOPGxZlPwmpvL9m6dUFyfOWV+7K7pX4Z2Hvak7lzdycHmzYt7tcb9Ic/LM/gnEsyP2FjY+W//ds//+Qn//MnP/mfJ09emvkD6YkACwAAgKGVrQzr9Onxjzzy14888tdPPvm9bhd0e3/A8ePPlJc3R1HU2lq6a9ecPp9l8+YbevrRtde+N2ZMXRRFjY2Va9bcluG2P/74S//xH/+fZOd79vSviqdPCxduS17dqVOXbNrU4867WL/+xmRQVFVVw1VX7czulvplYO9pTxYs2JbMBWtsrHzttVUZPurgwenvvXdtTz+dP//d6ur6KIoOHJj+/vvXZHjONWtWJY2os2btu+yyYxk+il4IsAAAAMiOoW4eHDfuTDJp4LPPxnc7qPvEifNVPGPHnk1/M5WK00U0mzcvTiaX9+TYsUl/+lOP7YElJe0rV77++akW9RJ1pZ05M/aXv/zLtraSKIrGjq276ab1fT6kX8rLm5cuPX/OV1/92oED0/t8yIED09etW5EcL1v2Zmlpe3a31C8De097MmpU64oVbyTHmzbdsGXL9X0+5NSpS55++r5eblxYWtqePueLL95x+PDUPs+5efOid9+9NoqioqL45pvf6HM9mRBgARAAo68AIP/1nl5lJduqqDh32WWfJMevvXZrl5+eOzf6nXeuS45nzNh/4Y8WL96UfND46KPLX3rpmz1lWMePT3rssb/q6Ojt/5Svvfbd+fPfS45Xr/7G73//tV4mHB04MP0///Pv6+uroigqKuq8667nR41q7eXkA3PTTW8ls586Oooef/yvtm27tpfFH3xw9eOPP5BcgenTD95ww+as76dfBvye9uT669+eN+9PyfFvf/utV19d1d5e3NPiDz+c+V//9XfJcLSJE3sc+n7dde/U1u6MoqitreTRR3+wbduCnlZ2dBStXfvV1au/mczA+NrXXpky5Ugm26ZPBokBEB5Dr8i6LvGov2MA2ZZJPpWVOxKuWrXm0Ud/EEXRtm3XlpS0rVr1WllZSxRFJ09e+uyz32lsrIiiqKbmZJfb1V122SeLF2/auHFxFEXvvHPdxx9/afnyP86evbek5Hzx0enTE7ZuXbhhw5KOjuJx486MHVt36FCPhTZ33PFiQ0N1MlN8w4Ybd+yoXbp0/VVX/Wns2Lr0mo8+unzLlus/+OCapLSnqCi+555nZ87MKILpr+Lizu9+96mf//xvP/30kvb24uefv+udd65fsmTDlVfuKy9vSda0t5fs3z9j48Yb9++fkXxn/PjP7r//6aKi3P+bOLD3tCepVPSd7zzb0FCZlEq99dZN27dfvXTp+quu2pW0f0ZR1NlZdODA9C1bFv3pT+dnva9Y8UZra+nJkxN7Ou1ddz1XX199+PCU9vaS55+/c8uW65Yu3XDllfuSrUZR1NhYuXPnvLfeuunMmbHJdxYs2LZkycaBXRMuJsACAABgmAw+w5o5c/+CBe8mRUZvv71oy5brx48/09FRfPbsmGRBKhXdcceLxcWdXR749a//vqGhavv22iiKPvnksqee+m5JSUd1dV1ZWUtDQ3X6BoXFxR333PPsm2/e1MseSko6Hnjg8VdeuW3jxiVRFNXVjXn55dtffvn2qqrGqqqG1tbSuroxF5ZllZW13Hnni7W1OwbzwntXWdn0ox/99Omn79u374ooio4c+fLTT99XVBRXV9dXVDS1tJTV1Y25sBBpypQjf/EXv6ysbBq6LWVuwO9pT0pL2/7H/3h09epvvvPOwiiKzp4d+7vffeN3v/tG8ga1tZXU1Y25cJz/dde9c8st6159tbehZqNGtf3wh7944YU7kzFYR49++de/vq+oqHPMmLry8pYzZ8Y2N5dfuH7p0g2rVq3px1WgLwIsAAAABmWoR1918c1vvlRR0bhhw42dnUVxnDp9+s83p6uurr/jjt9OmfLRxY9KpeJ7731mypSP1q5dmdxksL29+LPPvnBju+rq+u9+96kpU45EUW8BVhRFRUWdt9/++6uu+tPatbema7UaGirTQVh6WW3tzttuezVd+zN0ysubH3jg8Q8++Mrrr69IXldnZ+rs2THpGChRUXHu5pv/sGjR28XFHUO9pcwN7D3tRXFxxx13vFhbu2Pt2pVHjpy/8+PFb1BZWeu3vvXSNde8n8k5S0o67rnn2draHWvW3JbcWLCzs+jMmXFdlk2efPzWW9fMmpXLezsWpFSshB6AHOp27pV/m8g6LYQA3Xn44cE29EUDSq8G30gYRdGxY5M3bFhy+PC0hoaqVKpz3Lgzs2btXbbszdGjm3t/YFPT6F27rtq1a86pU5c0NFR1dhZVVTVMmPBZbe322tqdSUfYzp3zkgxlzpzdEyd+2vsJP/lk8p49s/fvn1lXN6ahoSqViioqmmpqTkyffrC2dvuFfYXDo6Oj6ODBGXv3zvrooyn19VVNTZWlpa3V1Q2TJh2fM2f3rFl7ysqyP4crKwb8nvbu6NEv7d07+8CBGckbVFTUUV3dMH78Z/Pm7Zg3b2f6ahw4MP3o0S9HUTR16uGpU3vLyzo7U4cOTdu9e+7hw1Pq66ubmirKy5urq+unTTs8e/bumTP3D89k1wcfHNbgOOcEWADklFiB4eFvGkB3chVgRVnKsGAkG2kBlhZCAGAEkFgBDI1hbh4ERqzebg4KAAAAPRlMeiX5AvpFgAVAjqRS3Q/AAgDyweATKBkWkDkBFgBhiGNNXgAw0siwgAwJsAAAAOgfwRMwzARYAAAA9EN20ytZGJAJARYAw870KwDgAjIsoE8lud4AACOe0VfkUJcs1d9GgAw89NDDud4CMOKowAIAAAAgaCqwABhGOgcBAID+U4EFAAAAQNBUYAGQO+YNAQAAGRBgAQAjmBQVACAfCLAAGBamXwEAAAMlwAIgF5S9AAAAGTPEHQAAAICgqcACYIhpHgQAAAZHBRYAAAAAQVOBBcDwMv0KAADoJwEWAENJ/yB5qstfXcErAEBOaSEEAAAAIGgCLACGkTIWAACg/7QQAjA0NA8CAABZogILAAAAgKCpwAJgWGgeJL/4GwsAEBIVWAAMAf2DAABA9giwAAAAAAiaAAuAoacbCwAAGAQBFgDZpn8QAADIKgEWAAAAAEETYAEwxPQPAgAAgyPAAiCr9A8CAADZVpLrDQAA5I8uEa0CQwCAYSHAAiBLuq298r/3AADAoGkhBAAAACBoAiwAAAAAgqaFEIBsuLh/UPMgAACQJQIsAICMSWYBAHJBgAXAoCm/GqhUt5PvByF25QEAKEQCLAAYDt1mVVnPm4bnWQAAYJgJsAAgy3KYInX7LOn9SLIAAMhTAiwABkf/YBRFXwytQsuJ0vsJeZMAANALARYADFDe5UEXbjLvNg8AwEgmwAJgEEZY+VWX3sC8zn0uDrPy+uUAAFDYBFgA0IeCnyGVvC4xFgAAwRJgAUA3RmCHnRhr4LqUIrp6AADZJsACYKAKsX+w4Iut+iTGAgAgQAIsAJBbdZWOsVwQAABCIMACIEvyMOmQW/UujmOlWAAAhECABcCII7fKnI5CAABCIMACYKSQWw2YGKsPrgkAwBATYAEwIBdPcA+Y5CUrDMYCACBXBFgAFCwlV0MhGYzlkgIAMJwEWAD038XlV4HFGUquhpTh7gAADDMBFgCFQ8nVsNFOCADAcBJgAVAIFATlhHZCAACGhwALgH4KqX9QyVXOaScEAGAYCLAAyEtCk3BoJwQAYKgJsADojwDKr0RXYdJOCADA0BFgAZA3RFeB0074BV3SXtcEAGAQBFgAhM6gqzyinRAAgKEgwAIgY8PeP6icJ09pJwQAILuKcr0BAOhekoAIQfJUup0QAAAGT4AFwEANWbSUSqXU7xQAGRYAANmihRCAgOgZLDAjupdwZL5qAIChIcACIAiiq0I1ojMsAACyRAshALln3FVh00sIAMAgqcACIDNDE0AovBoh0hmW9xoAgAEQYAGQMzrLRpTkvfamAwAwAFoIARiQQWcQgoyRSTshAAADIMACYLilUinp1UgmwwIAoL8EWAAMK/PaiWRYAAD0kxlYAAwfhVekJRmWvw8AwPBbtHnzN1evjqJo68KFL955Z1bOedsrryxdvz6KonUrVryxYkVWzsmFBFgADBNpBV2MxAyrS93ZiHrtAACDoIUQgCFn6BU90UsIAEAmVGABMLREVwAAwCCpwAJgCEmv6JMiLAAA+qQCC4ChIr0iQyNxGBYAkDvbv/KVg9OnR1HUPHp0rvdCpgRYAAwJeQT9MlIyrIJ/gQCQD86NHn1OdJVvBFgAZN+ISCLItpGSYQEwaJOPHZuxf38URScmTfrwiiuSbxZ1ds7cv//q7dsnnjgxpr5+dFNTU2VlfXX14SlTds+de2jq1LiofyN0Jh0/vnDr1i8fOTK2ru7/9y//0u2a4vb2mfv3X7Vr12Uff1xdX1/W0nJ23LjT48efqKnZtmDBqUsvzeSJypqbl65ff/mRI5OPHWsvKTkxadL+GTM2LV7cWVyclfVDZNiuT+YyvzLlzc2VDQ1RFLWUlzdUVfVyzlRn57RDh2bv2TP18OHq+vrKxsbm0aPrqquPT5q0o7Z2/8yZA7jsw3xZCoaPiQBkpsuUop7/+ZBBMBj+/gAMp4cffjjXWxiIRZs3f3P16iiKti5c+OKdd0ZRdNWf/vTN1aur6ut7esinEyeuWbVq95w5mZzzt9/+9tdefXXJhg3Jj9pLSv6vf/3XLutTcXzN+++vXLt2zNmzPZ1z/8yZb9xyy+Fp03p5LVd8+OGdzz8/pq6uy/dP1NT85t57j0+aNJj1F1+oPv3lE0/M3rMniqKn77tvx9VXd3uq4bw+mRuKK3PVzp23rl17yaef9rSgoarq97ffvv3qq6Mouu2VV5auXx9F0boVK95YsaLb9dm9LA8++GCfawqJIe4AZJP0gUEy0x2Afkl1dt793HPfffLJdHrVUVx8dty4EzU1TRUV6WWXnjz5F7/85T3PPFPS3t7nOW9/+eV0OtOtsubmBx5//O5nn03HEB3FxWfGjTsxaVJDdXV62cz9+//6F7+46a23ejrP+NOnv/erX6Uzl7PjxqWrgWpOnPjek0+WtrYOZv0QGbbrk7msX5nS1tbvPvnkd5966s/pVSrVWFl5oqamvro6Xc1X1dBw79NPf/+JJ0rb2vo85/BflgKjhRCAAUmlLi7Ckl6RFXoJAchQKoq++bvfzX/33eTLXXPnbr3uuv0zZnSUnP9f3er6+jm7di3dsGH86dNRFH3lgw/Gf/bZoz/8YduoUT2d8/IjR2pOnoyiqKOk5L358w9On37oi7Uwo5ua/ubnP5948mTy5bHJk19fufLAjBltpaXJd6oaGq7auXPFG29UNDamOjtXvfrqZZ988vS993atZ4+iO194IQk+jk+e/My9956cODGKoimHD9//9NPVdXXjT5/+6uuvv/L1rw94/VAYzuuTuexembLm5r9+5JHJx44lX5665JL1S5fumju3qbIy+c6olpZZ+/Yt2rx52qFDURTN2rPngcce+3TixF7OmZPLUmAEWABkh8SBLJJhAZCJObt3VzQ2RlHUUF399H33Hbqo66q+unrLokXbFi68+Q9/uPmNN6IouvzIkbuef/7p++/v6Zw1J05EUXRs8uRn77nnRE1Nl5+mOjvv//Wvkxiitaxs7cqVmxct6jJdq6Gq6u0bbvjgmmtWrFu3eOPGKIpqt2//+LLL1t9004XLqurrpx88GEVRe2npr773vTPjxyff/2jq1NXf+Mb3nnwyiqK5u3enY5f+rh8iw3Z9MpfdK5OK4/ueeeZ8epVKvb5ixZvLl3d+8SW0lpXtqK3dUVs7b8eOu154YVRLy7RDh6YePtzjOXNxWQqPFkIAMtNrlCBrIOv0EgLQpyS9OjN+/H/+/d9fnF6ldRQXv/7Vrz5/113Jl7U7dizYtq2X09aPGfOzv/3bi9OZKIpuWr9+xoEDURTFqdSv779/0+LFPc2Gby4vf/n22/+4fHny5a2vvXb5Rx9duGDy8ePJwZHLL09nLom9s2d3FBdHUTT+9OnRTU0DWz90huf6ZC67V2bxxo1X7t0bRVGUSv3mO9/5wy23dPY8/n9nbe1P/+7vkmbVVM8fhnNyWQqPCiwABkt6BQDkSntp6a/+4i/qxozpc+W7CxZMPnZs8aZNURStWLfu/a98Jd1p2MWrq1Z122NY3tx805tvJsdrV67cd+WVfT7p2pUrJ504MXv37qLOzpWvv/7oD3+Y/tG4M2eSg3OjR3d5VEdx8f/+x38s6uiIoii9k/6uHzrDc30yl8UrM6ql5eY//jE5fnPZsg+uuabPh5ysqfn1/ff/8L//O9XZ2e2CXF2WwqMCC4BBkV4xdBRhAdCnjYsXX3yrvp6svfXWpFhmzNmzX9m+vds1rWVlH3zlK93+aOHWreXNzVEUHZs8+c1lyzJ6ylTqubvvTpKyGQcOjL3g3nOfXnppcjD10KGLR4CfuuSSkzU1J2tq2j9P2fq7fogM2/XJXBavzIJt25JCrboxY9bdckuGGzg4Y8a2a6/t6ae5uiyFR4AFwMBJrxhqMiwAetFZVLR+6dLM17eOGvX2okXJ8Zzdu7tdc3rChJ7GZqcf8v78+ZmP1j43evSuuXOjKIrieP5776W/f2zSpM7i4iiKKhsb73v66bKWlt7P09/1Q2TYrk/msnhl0i9h44039lSg160/3HJLaJel8AiwABgo6RXDovAzrFTqC38AyNjhadPOVVT06yF75sxJDmZ++GG3Iz5PT5jQ7QNLW1unfPRRFEVxKrW9trZfT7ptwYLk4Ip9+9LfbB49+o3Pa3xm7979T//rfy3ZuHFUz+FLf9cPkWG7PpnL1pUpaWub9vkg9l2f/z3J0NmxYz/+0pcu/n4OL0vhMQMLAAidmxIC0K2j3UUGvfvksss6i4qKOjtHtbZWNDU1VVZ2WdBcVtbtA6vr65MhRx3FxXc/91y/nrTo83/CLjl9+sLv/3HZsqmHDyfxRFV9/ddffvmrr7/+7rXXbl606NTnbXGDWT8UhvP6ZC4rV6a6vj6ZltU8evRnPeR0vThy+eVfOnr04nPm8LIUGAEWABmL4y7lIclXUgUAICcaqqr6+5A4lWqsrKyur4+iqKqh4eIAqydVDQ3JQUl7+8z9+/v7vImKL94ILy4qevz731/21ltL168vP3cuiqJRLS03bNp0w+bN786fv2bVqsYvvsD+rh9OWb8+P3j00d7P89zdd7/3+eSprFyZ9EsYwN+rKIrqqqt7OWcW/9qMWFoIAYA8UPiNhAAF58GHHhrqpyga0K/R4qLz/yNc1MNt47rVWZSF/31OdXYWd3R02cwfly//v//5n1/61rc+nTjx8+/G17777o//z/+ZcFHpTX/X93uHA/3N5BBdn8wN/sqkP2f0dD/B3nX7tzHnl6WQqMACYLBSKUVYDAeNhAB5JEmvHnzooYeHMsZKl7f0S2W60Ka7kpmepKtyTkya9L9//OMBPG8v2kaN2rJo0Zbrr5+1b9/Nb7xx+ZEjyT4feOyx/+ef/uniECTD9emD0vb2DHeS+cousn599sye3dO8rUS3vYH9vZIXSr+Egf29Ssr6ejrnUPy1GWkEWAD0RxxHUTdjpmVYDI/CzLAK7OUAfNGQZlhfPnKkvw+pOX48KWZpLy1tzLh/MIqi+urqjpKS4vb2S06dKuroSG57l2Wp1N5Zs/bOmrVi3bpb1q2LomjC6dPzdu7cfvXVA1vfNmpUclDZ2JjhFsqamwe296xfn01Llgz8wf29klEURVFddXUyH62spWXiiRMna2r69ZxTPh8Af6Hh+GszYmghBCA73D+N4aGXECB8w9A8mJhy5EhFxtFMYvaePcnB/hkz4v78g9JRUnJg+vQoiorb22ft3duvJy1raRnd1DS6qakks/qmdStW7L/iiuR45ocfDnj9ufLy5KAy45KiAc8LH87rk7l+Xcn20tJD06Ylx3N37erXE43/7LPJx45d/P0wL0ueEmAB0G+91Itk+DkwSbuy+AcACMTF6dXQ5Vmpzs4bN2zIfH1JW9vizZuT491z5vT36XbPnZscLNm0KfNHVTY2/vO//dv//MlP/udPfnLpyZPJN8ubm6cdPDjt4MFJ3aUeURTtnTUrORh/5swA1ic+/bzJbsJnn5W2tfW51amHD49qacngNXUvi9cncwO7Mj1Jv4TFmzaVtrZmvo3lf/hDn+cczstSkARYAGSZvImhpggLIO8MXYa1eNOmiSdOZLj4lj/8oaq+Poqi+urq96+5pr/P9e78+fXV1VEUTT9w4Jr338/wUavWrEn68vbNmnXsssuSb44/ffqvH3nkrx955HtPPtnto+q/eCO8/q5PnBk/vrm8PIqi0tbWORmUFN3webo3MFm8Ppkb2JXpybYFC5LG0srGxlWvvZbho6YfPHjte+/19NOcXJaCJMACYCAM7SG3ZFgAYRq25sG00ra2v3jyyUymbtdu377szTeT43Vf/Wp7aWl/n6u9tPSNFSuS4ztefHFqdzOPuli0efO1774bRVFcVPTGzTenv39m3Ljkd3rjP/us281P+jyVOzt27ADWJ+JU6s8lRZs3937XxUnHjl31pz/1+Yp6kcXrk7mBXZmetI4alX4JN2zadP2WLX0+5JJTp+57+uleblyYk8tSkARYAAxQHIuxyCUZFkBoek+vhiLbOldREUXRhFOnfvSf//mlo0d7Wpbq7LzpzTfvfeaZ5LPLztrarQsXDuwZ37nuup21tVEUlbS1/eDRRxds29bTyqKOjq+uXfvN1auTJ33la187MmXKhTv/5POymlsvqvQZfe7cde+8kxzvnzFjAOvTNi1enOQ7l3/00TdfeqmnDGvS8eN/9dhjRR0dPb/0jGTr+mRuwFemJ29ff/2f5s1Ljr/129+uevXV4p5HUM388MO/+6//SkaMnZw4sadlw39ZCpK7EAIwKHGsJRAAyCifyvodCXfNndtRXHz922+PPXv273/60+1XX711wYJD06al7/VW0dQ0e/fupevXT/x8itBHU6Y8d/fdg3nS5+66q7q+fsrhwyXt7Xc+//x1W7ZsWLp035VXtpSVJQsqGxvn7dx501tvjf186NK2BQs2XnRPvTWrVv3g0UejKLp227a2kpLXVq1KznDpyZPfefbZZDj9yZqa9I3z+rs+8clll21avHjxxo1RFF33zjtf+vjjPy5fvnf27PaS82nAhNOnF27dumTDhuKOjjPjxtWNHTv10KEQrk/mBnZlepRKPfud71Q2NCSlUje99dbV27evX7p011VX1Y0Zkywp6uycfuDAoi1b5n5es/bGihWlra0Tex5WNfyXpfAIsAAYrKQOa8AxljIuBiwpwor9HQLIH9nNsOIoWv2Nb5S2ts5/770ojq/+4IOrP/igvbS0vrq6payssrGxqr4+dcE/E+/Nn//iHXd0lAzqf4TbRo36xQ9/eOcLLyTzjL589Oh9v/51Z1FR3ZgxLeXlY8+cKW9uvnD9hqVL16xadfF59s+c+e6CBddu2xZF0aK3375+y5Yz48cXd3SMOXv2/IpU6sU77kiHcf1dn/b7r3+9qqGhdvv2KIou++ST7z71VEdJSV11dUtZWXVDQ/oGhR3Fxc/ec89Nn3dZ5vz6ZG7AV6bHl1Ba+uj/+B/fXL164TvvRFE09uzZb/zud9/43e8aq6oaqqpK2trG1NVdOBT/neuuW3fLLbe9+mpv5xz2y1J4BFgAZIcMgZyQYQGEYPhHX6XFRUXPfec7e+bM+ebq1UkWU9LWNv706S7LTkya9Nqtt+6ZPTsrT9pRUvLsPffsqK29bc2a5A5xRZ2d4y66yd3xyZPX3Hrrvs/vgnexl775zcaKihs3bCjq7EzF8YXbrq+u/u0dd3z0xfax/q5PxKnUM/fe+9GUKSvXrk1uMljc3j7+s88uXFNfXf3Ud797ZMqUmzK/Cj3L1vXJ3MCuTC86iotfvOOOHbW1K9eu/fKRI8k3Ky/I+xKtZWUvfetbGd4QYPgvS4HxgQ8AyG8CLIABe/jhhwd/kgGkV4Mswlq0efM3V6+OomjrwoUv3nln8s2ijo4r9+27eseOiSdPVtfVlTc3N1ZW1ldXH5o2bc+cOYenTo2HYOpBqrNz2qFDc3fvnnL4cHV9fUVTU3N5eX119eFp03bPnr1/5sxMatQnHzu2ZMOGaYcPVzU0dKZSZ8aN2ztr1pvLljWPHp2V9Wmjm5qu2rVrzq5dl5w6VdXQUNTZ2VBV9dmECdtra3fW1ia9bPN27kzSn91z5nza81CnDGXl+mRuwFemd186enT23r0zDhwYU1dX1dDQUVTUUF392fjxO+bN2zlvXuvnPYDTDxz48tGjURQdnjr1o6lTezlhti7Lgw8+OJjXlXd84AMA8l4BZlhdPrkW2KsDgpGrACsaXIbVbYAFI81IC7DchRAAyHvuSAiQKzlsHgRGFAEWAFAIZFgAw28w6ZXkC+gXARYAAAD9NvgESoYFZE6ABQAUCEVYAHlHhgVkqCTXGwAAyJokwyqEge4F8BKAgiZ4AoaZCiwAAAD6IbvplSwMyIQKLACgoBROERbAiPHgQw893J8Y6+0bbnj7hhuGbDtAiARYAEChkWEBDKl+hU0AWaGFEAAAAICgCbAAgALkjoQAAIVEgAUAFCYZFgBAwRBgAQAAABA0ARYAULAUYQEAFAYBFgBQyGRYAAAFoCTXGwAAIANdYrg4ztE+AAByQAUWAFDgFGEBAOQ7ARYAUPhkWAAAeU2ABQAAAEDQBFgAwIigCAsAIH8Z4g4AjBRJhhXn6fjzPN02AEA2qMACAAAAIGgCLABgBNFICACQjwRYAAAAAARNgAUAjCyKsAAA8o4ACwAYcWRYAAD5RYAFAAAAQNAEWADASKQICwAgjwiwAAAAAAiaAAsAGKEUYQEA5AsBFgAwcsmwAADyQkmuNwAAwEB1Sd/iOEf7AAAYWiqwAIARTREWAED4BFgAAAAABE2ABQCMdIqwAAACJ8ACAAAAIGiGuAMAnC/CivNuCHrebRgAYEBUYAEARJFGQgCAgAmwAAAAAAiaAAsA4DxFWAAAYRJgAQAAABA0ARYAwJ8pwgIACJAACwAAAICgCbAAAL5AERYAQGgEWAAAAAAETYAFANCVIiwAgKAIsAAAuiHDAgAIR0muNwAAQPZ0Cd3iOEf7AADIJhVYAADdU4QFABAIFVgAQP8o8QEAYJipwAIA6JEiLACAEAiwAAAAAAiaFkIAgN4kRVhxvrRK5ss+AQD6QwUWAAAAAEFTgQUA9M8ILPHJsyIsAICCowILAAAAgKAJsAAA+uZ2hAAAOSTAAgAAACBoAiwAgIwowgIAyBUBFgAAAABBE2ABAGRKERYAQE4IsAAAAAAImgALAKAfFGEBAAy/klxvAACAodQlbovjHO0DAGDgVGABAPSPIiwAgGEmwAIAAAAgaAIsAIB+U4QFADCczMACAIaQ+UsAAAyeAAsAYCCSIqw4/Ewu/B0CAPRFCyEAAAAAQRNgAQAMkElYAADDQ4AFAAAAQNDMwAIAhlDBz1/Km0lYAAD5TIAFAAAAeW/z5s2rV6+OomjhwoV33nlnrrcDWaaFEABgUEzCAgAYagIsAAAAAIImwAIAGCxFWAAAQ0qABQAAAEDQBFgAAFmgCAsAYOgIsAAAAAAIWkmuNwAAUCCSIqw4jnO9kV51KRMLfLcAGTty5Mju3bsPHjxYX1/f0NBQXFxcWVl52WWXXXHFFddcc01JSf/+57ejo+PAgQO7d+8+cuRIQ0NDU1NTRUVFdXX1pEmT5s+fP23atAFU3e7ateuDDz44evRoY2NjSUnJmDFjJk+efN11102dOrXLys7Ozr1797733nuffvppXV1dZ2dn8tTz5s2bO3duv15LZ2fngQMHtm/ffuLEibq6uqampsrKyurq6qlTp86ZM2cAL6S9vX3//v27du36+OOP6+vrW1paxo0bN378+JqamgULFlx66aX9OlsURcePH9+6deuRI0fq6ur+5V/+pb8PZ+QI/jMWAED+EGAB+eXhhx/O9RayYP/+/WvWrPn44497WlBVVbVkyZLrr7++vLy8z7PFcfzBBx+sXbv2zJkzPa2ZOHHifffdN2nSpCiKnnvuuXfffTeKom9/+9vXX399es3mzZtXr14dRdHChQtvu+22Z599ds+ePd2ebc6cOffcc09ZWVny5fHjx5966qlTp051u3j8+PHf+ta3rrzyyot/dOEz3nnnnVEU7d69+6WXXqqrq+vphdTU1KxatWr27Nk9LbhQHMfvv//+2rVrz54929OamTNn3nLLLdOmTetpwYWb/Pa3v/3qq69u2LAh+VFJScm//uu/ZrITEg8++GCutzCstBACAACQlzo6Ol588cVHH330wvSqoqKipqamqqoqXVvU0NCwZs2af//3fz958mTvJ2xpaXniiSd+85vfpNOrVCpVWVlZU1MzZsyYoqLz/wd98uTJn/70p++//34mm2xra3v88cfT6VVRUdGll146duzY9PZ27979X//1Xy0tLVEU7du376c//Wk6vRo1atSll146YcKEdNXVZ5999vjjjyeRWS/iOH7hhRd++ctfptOr4uLisWPH1tTUVFZWpp/6xIkTTzzxxLPPPtve3t77CZubmx9//PFnn302nV4VFxePGzdu0qRJ1dXV6WX79+//xS9+8dZbb2VyZV5++eV0egV90kIIAJA1+dFFCFAQ2traHnvssUOHDiVfjh8//sYbb7zqqqvSeUpbW9vBgwc3b968b9++OI7r6up+9rOfPfDAA5dffnm3J2xqavr5z3+eDrkmTJiwdOnSuXPnVlVVJd9pbW3dt2/f5s2bDx482NbW9txzz40dO7bPfW7fvj35d+HKK69cuXJlTU1NkkbV19dv3rz5zTffjOP4xIkTL7300le/+tVnnnmmra0tiqJp06bdfPPNM2fOTMKmtra2P/3pT7/73e/OnTsXx/Hzzz8/duzYGTNm9PSkv/vd77Zu3Zocz5kz57rrrps5c2Y6BWtsbNy9e/eGDRuSF/vee++dPn36hz/8YWlpaSZXZvLkyStXrpwxY0Z6fUNDw86dO994443GxsbOzs5XX331k08+uffee3vpTzxy5EhywpKSkvnz50+fPr2Xui2ItBACAGRX6AGWFkLgAnndQvj0009v3749OV6+fPktt9zS03CoDz/88Omnnz537lwURaWlpT/60Y+S7r8LdXZ2PvbYY/v374+iKJVK3XLLLcuXLy8uLu72hDt27Hj++edbW1urqqomT568b9++qOcWwsStt966bNmyiwOdAwcOPPPMMw0NDVEUVVVVJQc33njj1772tYsXf/bZZ0899dQnn3wSRdEll1zyT//0TxeuST9jZWVlY2NjcsL77rtv+vTp3b6Kzs7ODRs2rFmzJvln6+qrr77vvvu6Xfbf//3fBw4ciKKorKxs5cqVixYtShejXai5uXndunUbN25MvrzttttuuummLmu6XJbJkyffc889NTU13e6Q3mkhBABg4JIirFzvomdx/IU/APlpy5Yt6fTqrrvuuvXWW3sZbX7FFVf8wz/8Q1KZ1dbW9vLLL1+8ZsOGDUl6FUXR3XffvWLFip7SqyiKamtr/+Zv/qasrKyhoSFJr3o3derU5cuXd/uvw4wZM77+9a8nx0l6NX369G7TqyiKxo8ff9999yU/OnXqVHrDXSTp1bhx4/7+7/++p/QqiqKioqKbbrrp/vvvT064ffv2bdu2Xbxs/fr1SXqVSqXuv//+xYsXd5teRVFUXl5+++23L1++PPnytdde++ijj3p69iiKxowZ87d/+7fSKzIkwAIAACCftLa2rlu3Ljm+8cYbFyxY0OdDxo8ff8899yRJzYEDB3bt2nXhT1taWt58883keNmyZfPnz+/zhJdddtldd92V4YZXrVrVy0+vvvrqiRMnpr+88cYbe/lFyCWXXHLFFVckxx9++GFPy0pLS//yL/8ykw7HefPm3Xzzzcnx66+/3mUYVnNzc/rKrFy5stvh8V2sXLlyzpw5URR1dna+/vrrvaxctWrVqFGj+jwhJARYAABZFnoRFkCee/fdd9M9dytXrszwUTNmzLj//vtXrVq1atWqLjHN1q1bkwbDMWPGrFixIsMTzps3L50l9aK8vHzq1Km9LEilUnPnzk2Oy8rK+rwn4KxZs5KD48eP97Rm8eLFF7dJ9mT58uVjxoyJoqiuru6DDz648Edbt25tbm6Oomjy5MnLli3L5GypVOruu+9OCuIOHDjQ0y0Ly8rKvvKVr2S4Q4gEWABAOFKpL/wBgG6l66eWLFnS09zxbs2bN2/ZsmXLli27+uqrL/x++haBN954Yy+tiBe7eMbTxSZMmNDnmksuuSQ5GD9+fJ+/AklPqU9aBS9WVFS0dOnSPp80raSkZPHixcnx7t27L/xR+sv58+dn/ruZ0aNHJ5FcHMfvvfdet2smTJjglz30iwALACD7FGEBDJG2trb0nQfThUuD0d7efvjw4YGdcPr06WVlZb2vGT9+fJ/nSZ+kvLy8z8XpAKu1tbXbBdOmTauoqOjzPBdKV3Xt378/fSuS1tbWZIhVKpWqra3t1wnTfZ09zQjLJNeDC/UjWgYAAIDcqq+v7+joiKKovLz80ksvHfwJ6+rqkhOOHj06k7DpQkVFRZMnT04Hat3qM+GKoig9ML6n+ejdnrCzs7PbBV/60pf6PEkXNTU1xcXFHR0dra2tTU1NlZWVURTV19cnT1FcXPzcc8/164TpFOz06dPdLsjkssCFBFgAAEMiKcKK3ekPIKvq6+uTg6qqqqycMN2IN7ATZmsbWTTgF5LMq6qvr08CrGTQWBRF7e3tPd3xsE9NTU0DeyB0oYUQAACA7HvooYeG4rSZ1Cj1S7qOqaeCpgwfHo6B/e4k/ULSLfBZudSdnZ1JgRsMkgosACAUapUACkaSXj300ENZj7HS5UXp+qDcnjBb28iinoa79yKO44sr0dIHkyZN+vGPf5yt7cHAqMACABgqRrkDZD3Aqq6uTm4U2Nzc/Omnn2blhMl/q1taWo4fP96vx7a3tx87dmzwe8iuI0eO9PchH3/8cVKBVVpamh4An77Up06dUkVFzgmwAAAAyKYhah5MlJSUTJ8+PTnetWvX4E84atSoyy+/fGAnPHDgQFtb2+D3kF0fffRRf4uw9uzZkxzMmDEj/auX9KVub2/fu3dvv07Y0tLS1NTU1NTU3t7erwdCTwRYAABDKA+KsFKpL/wBGJyL06us51lz585NDjZs2NDa2pr5Az/99NODBw8ePHjw6NGjF35/zpw5ycGmTZv6dcK33nor88XDprOz880338x8fWtr69tvv50cz549+8IfpS/1pk2bMj9hY2Pjv/3bv/3kJz/5yU9+cvLkycwfCL0QYAEAADC0spthXXvttWPGjImiqLGxcc2aNRk+6uOPP/6P//iPRx555JFHHkkXHCUWLlxYVlYWRVFTU1PmJ9y+ffvBgwf7se9htHnz5o8++ijDxa+99lpyr8DKysprrrnmwh/Nnz+/uro6iqIDBw68//77GZ5wzZo1zc3NURTNmjXrsssu68e+oWcCLACAoZUHRVgAWTKkzYNpJSUlK1euTI43b968efPmPh9y5syZX/7yl0m739ixY2+66aYLf1pRUbF06dL0Cbds2dLnCT/55JMXX3yx31sfLh0dHU899dTp06f7XLlt27Z0ddXNN988atSoC39aWlq6YsWK5PjFF188fPhwnyfcvHnzu+++G0VRUVHRzTff3M+NQ48EWAAAAGRB7+lV1ouw5s+fnxyvXr3697//fS+zlg4cOPCf//mf9fX1URQVFRXdddddXWKaKIqWLVs2bdq05Pi3v/3tmjVrejnh7t27H3nkkZaWliiKklqwoCRT2Ovr63/605/2UiPW0dGxbt26F154IfnyyiuvvOGGGy5edt1119XW1kZR1NbW9uijj27btq2XE65du3b16tVxHEdR9LWvfW3KlCmDeynwZyW53gAAQOFLirCSD/QABSmTfOqhhx7KYox1xx13NDQ0fPjhh1EUbdiwYceOHUuXLr3qqqvGjh2bXvPRRx9t2bLlgw8+SG6xV1RUdM8998ycOfPisxUXF3/ve9/72c9+ltzZ8M0339y+fftNN900d+7cpIcuiqKOjo4DBw5s3rw53YG4cuXK06dPJwVH4Zg7d25xcfHbb7/d1NT0yCOP1NbWXn/99dOmTSsqOl/C0tjYuGvXrvXr1586dSr5zqRJk+67776e6oXvuuuu+vr6w4cPt7e3P//881u2bFm6dOmVV16Z9F0mJ9y5c+dbb7115syZ5DsLFixYsmTJ0L5ORhgBFgDAyCZWA4ZRFjOskpKSBx544JVXXtm4cWMURXV1dS+//PLLL79cVVVVVVXV2tpaV1d3YRVVWVnZnXfemRQTdauiouJHP/rRM888k9xx78yZMy+99NLq1asrKyu7PeGSJUtuvvnm5557LisvJ7u+8Y1vdHR0bN26NYqiHTt27Nixo7S0dMyYMaWlpY2NjQ0NDRf+TmXOnDn33nvvxVVpaaNGjfrhD3/4wgsvJGOwjh49+utf/7qoqGjMmDHl5eVnzpxJJl6lLV26dNWqVUP24hihBFgAAAAMyvCMvrpYUVHR7bffftVVV61du/bQoUPJNxsaGhoaGrosq62tve222/ps9ysvL//+97+/ffv2119/PRkgFcfxxSesqKi4884703foC1BRUdGdd945Z86cl156qa6uLoqitra2dL1V2oQJE1auXFlbW9vnrMaSkpJ77rmntrZ2zZo1yY0FOzs70/VWaZMnT7711ltnzZqVtVcCn1PKDgAwTHQRAqF5+OGHB3+SAaRXQxF4ffLJJ3v27Nm/f39dXV1DQ0MqlaqoqKipqZk+fXptbe2FfYWZ6OzsPHjw4N69ew8fPlxfX9/U1FRaWlpVVXXJJZfU1tbOnTu3tLQ0Wbl3797jx49HUXTllVdOnjw5668rc5988knSUDlp0qR0hNTZ2XngwIHt27efOHHi7Nmz586dq6ioqK6unjJlyuzZs2fMmJHuK8xQZ2fnoUOHdu/enb4y5eXl1dXV06ZNmz179syZM923ZNg8+OCDud7CsPIpCgBgmAiwgNDkKsAa8KOAtJEWYLkLIQDAMElGued6FwDZJIcChocACwAAgIEYTHol+QL6RYAFADB8FGEBBWPwCZQMC8icAAsAAIDckGEBGRJgAQAA0D+CJ2CYCbAAAIaVLkIg32U3vZKFAZkQYAEA+SeV+sIfAPKaDAvoU0muNwAAMOIkRVhxHOd6IwADIW8Chp8ACwCAC3QpaZOyAQAB0EIIAAAAQNAEWAAAOWCUOwBA5rQQAgD5R1sbAMCIogILACA3FGEBAGRIBRYAABdQ3gYAhEcFFgBAzijCAgDIhAALAAAAgKAJsAAAAAAImgALACCXdBECAPRJgAUAAABA0ARYAAA5pggLAKB3AiwAAAAAgibAAgAAACBoAiwAgNzTRQgA0AsBFgAAAABBE2ABAARBERYAQE9Kcr0BAADC1iVWi+Mc7QMAGLlUYAEAAAAQNAEWAEAodBECAHRLgAUAAABA0ARYAAABUYQFAHAxQ9wBAOiVqe0AQK4JsACAguXueQAAhUELIQBAWHQRAgB0IcACAAAAIGgCLAAAAACCJsACAAiOLkIAgAsZ4g4AFCxT2wEACoMKLACAECnCAgBIE2ABAAAAEDQBFgAAAABBE2ABAARKFyEAQEKABQAAAEDQBFgAAOFShAUAEEVRSa43AABAXukSqMVxjvYBAIwgqdhnDgCAgKVSgX1gE2ABAMNOCyEAQNB0EQIACLAAAAAACJoACwAAAICgBTZSAQCA7gQ3CQsAYBipwAIAAAAgaAIsAAAAAIImwAIAyAPuRQgAjGQCLAAAAACCJsACAMgPirAAgBFLgAUAAABA0ARYAAAAAARNgAUAkDd0EQIAI1NJrjcAAJBjXRKhOM7RPgAA6IEKLAAAAACCJsACAMgnuggBgBFICyEAAIOgAxMAGHoqsAAA8owiLABgpFGBBQCMdGqGAAACpwILAAAAgKAJsAAA8o8uQgBgRNFCCADAIOjABACGngosAAAAAIImwAIAyEu6CAGAkUOABQAAAEDQBFgAAAAABE2ABQCQr3QRAgAjhAALAAAAgKAJsAAAAAAImgALACCP6SIEAEYCARYAAAAAQRNgAQAAABA0ARYAQH7TRQgAFDwBFgAAAABBK8n1BgAAKBRdCsHiOEf7AAAKjQosAIC8p4sQAChsAiwAAAAAgibAAgAAACBoAiwAgEKgixAAKGCGuAMAkCWmtgMAQyMV+5wBANCXfLm9Xirl0x0AUIC0EAIAAAAQNAEWAAAAAEETYAEAFA6j3AGAgiTAAgAAACBo7kIIANA3g9EBAHJIBRYAQEHRRQgAFB4BFgAAAABBE2ABAAAAEDQBFgBAodFFCAAUGAEWAAAAAEFzF0IAAIZGlyowt3IEAAZKBRYAQAHSRQgAFBIBFgAAAABBE2ABAAAAEDQBFgBAYdJFCAAUDEPcAQAYGqa2AwBZogILAAAAgKAJsAAACpYuQgCgMAiwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAoJAZgwUAFAABFgAAAABBE2ABAAAAEDQBFgBAgdNFCADkOwEWAAAAAEETYAEAAAAQtFQcx7neAwBA3uvSohfgJ6xUygc/ACBfleR6AwAAjAzhh3wAQKi0EAIAAAAQNAEWAMCI4F6EAED+EmABAAAAEDQzsAAAssBAJwCAoeNmNAAAI4h7EQIA+UgLIQAAAABBE2ABAAAAEDQBFgDACOJehABAPhJgAQAAABA0ARYAAAAAQRNgAQCMLLoIAYC8I8ACAAAAIGgCLAAAAACCJsACAAAAIGgCLACAEccYLAAgvwiwAAAAAAiaAAsAAACAoKXiOM71HgAAyIFUKncfBbs0MPpECgD0SgUWAAAAAEETYAEAAAAQNAEWAMAI5V6EAEC+EGABAAAAELSSXG8AAICRx9R2AKA/VGABAIxcuggBgLwgwAIAAAAgaAIsAAAAAIJmBhYAwHDo0qhnBhQAQOZUYAEAjGjGYAEA4RNgAQAAABA0ARYAAAAAQRNgAQCMdLoIAYDAGeIOADAcTG0HABgwFVgAAAAABE2ABQCALkIAIGgCLAAAAACCZgYWAAC51qX4y8AwAOCLVGABAAAAEDQBFgAAUWQMFgAQMAEWAAAAAEETYAEAAAAQtFRsRiYAAJ9LpXw+BACCowILAAAAgKAJsAAAAAAImgALAAAAgKAJsAAA+LM4jlOpVK53AQDwBQIsAAAAAIImwAIAAAAgaAIsAAC+QBchABAaARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQDQlTFYAEBQBFgAAAAABK0k1xsAAIALdKn8iuMc7QMACIgKLAAAuqGLEAAIhwALAAAAgKBpIQQACILOOQCAnqjAAgCge7oIAYBAqMACACAkas8AgIuowAIAAAAgaAIsAAAAAIKWihVpAwDQs1TKJ0YAIMdUYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAC9ieM4lUrlehcAwIgmwAIAAAAgaAIsAAAAAIImwAIAoA+6CAGA3BJgAQAAABA0ARYAAAAAQSvJ9QYAAKAHXfoW4zhH+wAAckwFFgAAfTMGCwDIIQEWAAAAAEETYAEAAAAQNAEWAAAZ0UUIAOSKIe4AAITK1HYAIIoiFVgAAAAABE6ABQAAAEDQBFgAAGTKGCwAICcEWAAAAAAETYAFAAAAQNAEWAAAAAAETYAFAEA/GIMFAAw/ARYAAAAAQSvJ9QYAAOhbl5qnOM7RPgAAckEFFgAA/aOLEAAYZgIsAAAAAIImwAIAAAAgaAIsAAAAAIKWio0ABQCg/1Kp4f0kaY49AIxgKrAAAAAACJoACwAAAICgCbAAAAAACJoACwCAgYjjONVlLhUAwNAoyfUGAAAgA6a2A8AIpgILAAAAgKAJsAAAGCBdhADA8BBgAQAAABA0ARYAAAAAQRNgAQAAABA0ARYAAANnDBYAMAwEWAAAAAAETYAFAAAAQNAEWAAAAAAETYAFAMCgGIMFAAw1ARYAAAAAQRNgAQAAABC0klxvAAAA+qlLx2Ic52gfAMAwUYEFAMBgGYMFAAwpARYAAAAAQRNgAQAAABA0ARYAAFmgixAAGDqGuAMAkG9MbQeAEUYFFgAAAABBE2ABAAAAELRUrAAbACDPdZk9lcPPd6mUj5cAQPapwAIAAAAgaAIsAAAAAIImwAIAAAAgaAIsAACyJo7jVJeJXAAAg1aS6w0AADBYxqYDAIVNBRYAAAAAQRNgAQAAABA0ARYAANlkDBYAkHUCLAAAAACCJsACAAAAIGjuQggAQD7r0q7ojowAUIhUYAEAkGXGYAEA2SXAAgAAACBoAiwAAAAAgibAAgAAACBoqdicSwAAhkAq5aMmAJAdKrAAAAAACJoACwAAAICgCbAAAAAACJoACwCAIRHHcSqVyvUuAIBCIMACAAAAIGgCLAAAAACCJsACAAAAIGgCLAAAhooxWABAVgiwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAgCFkDBYAMHglud4AAABkSZekLI5ztA8AIMtUYAEAAAAQNBVYAACFTE0SAFAAVGABADC0jMECAAZJgAUAAABA0LQQAgBQKHRIAkCBUoEFAAAAQNBSsd9TAQAw9FIpnzwBgAFSgQUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAMhziOU6lUrncBAOQlARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAwTIzBAgAGRoAFAAAAQNAEWAAAAAAETYAFAAAAQNBScRzneg8AAIwgqdTQfwTtMmnLJ14AyHMqsAAAAAAImgALAAAAgKAJsAAAAAAImgALAIBhFcdxqsuMKgCAXpXkegMAAJBtprYDQGFRgQUAAABA0ARYAAAAAARNgAUAwHAzBgsA6BcBFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAJADxmABAJkTYAEAAAAQtJJcbwAAgJzpUgIVxznaBwBAr1RgAQAAABA0ARYAAAAAQRNgAQCQG+a4AwAZMgMLAICCZtAXAOQ/ARYAwMglzAEA8oIWQgAAAACCJsACACBnjMECADIhwAIAAAAgaGZgAQBQ0Az6AoD8pwILAAAAgKAJsAAAyCVjsACAPgmwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAgBwzBgsA6J0ACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwCA3DPHHQDohQALAAAAgKAJsAAAAAAIWkmuNwAAAMOlS5diHOdoHwBA/6jAAgAgCMZgAQA9EWABAAAAEDQBFgAAAABBE2ABAAAAELRUbHQlAADBSKV8QAUAulKBBQAAAEDQBFgAAAAABK0k1xsAACBEqdQXvtTVBwDkkAosAAAAAIImwAIAICBxHKe6VH8BACOeAAsAAACAoAmwAAAAAAiaIe4AAHTD1HYAIBwqsAAACIsxWABAFwIsAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAIDjGYAEAF3IXQgAARp4u6Zh7LgJA2FRgAQAAABA0ARYAAAAAQRNgAQAAABA0ARYAACEyxx0ASDPEHQCAkcfUdgDIKyqwAAAAAAiaAAsAAACAoAmwAAAIlDFYAEBCgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAQLjMcQcAIgEWAAAAAIETYAEAAAAQNAEWAAAAAEETYAEAEDRjsAAAARYAAAAAQSvJ9QYAACCnupR3xXGO9gEA9EgFFgAAAABBU4EFAEA/KFcCAIafCiwAAEJnjjsAjHACLAAAAACCpoUQAICRTRskAARPBRYAAAAAQUvFfuMEAEA+SKV8dgWAEUoFFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAA+SGO41QqletdAAA5IMACAAAAIGgCLAAAAACCJsACAAAAIGgCLAAA8oYxWAAwMgmwAAAAAAhaSa43AAAAYehS2xXHOdoHANCVCiwAAAAAgibAAgAAACBoAiwAAPKJOe4AMAIJsAAAAAAImiHuAAAQRZGp7QAQLhVYAAAAAARNgAUAQJ4xBgsARhoBFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAA+cccdwAYUQRYAAAAAARNgAUAAABA0ARYAAAAAAStJNcbAACgQHSZSRXHOdoHAFBwVGABAJCXzHEHgJFDgAUAAABA0LQQAgDARfRDAkBIVGABAAAAEDQVWAAAZMfwVyklY7Bi5VEAUOhUYAEAAAAQNAEWAAAAAEHTQggAABfRlggAIVGBBQAAAEDQBFgAAOSxZI57rncBAAwtARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAAABA0ARYAAPnNHHcAKHgCLAAAAACCJsACAAAAIGgCLAAAAACCJsACACDvGYMFAIVNgAUAAABA0ARYAAAAAAStJNcbAACAgHXpTIzjHO0DAEY0FVgAAAAABE2ABQBAITDHHQAKmAALAAAAgKAJsAAAAAAImiHuAADQM1PbASAAKrAAAAAACJoACwCAAmGOOwAUKgEWAAAAAEETYAEAAAAQNEPcAQAYWl26+kxFBwD6SwUWAACFwxgsAChIAiwAAAAAgibAAgAAACBoAiwAAAAAgmaIOwAAQ8vUdgBgkFRgAQBQUMxxB4DCI8ACAAAAIGgCLAAAAACCZgYWAABkoEtbosleADCMVGABAAAAEDQBFgAAhcYcdwAoMAIsAAAAAIImwAIAAAAgaIa4AwBABkxtB4DcUYEFAAAAQNAEWAAAFCBz3AGgkAiwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAAACAoAmwAAAoTOa4A0DBEGABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAFCwzHEHgMIgwAIAAAAgaCW53gAAAOSVLiVdcZyjfQDACKICCwAAAICgCbAAAChkxmABQAEQYAEAAAAQNDOwAADIDbOkAIAMCbAAAKA/JG0AMOy0EAIAAAAQNAEWAAAFzhx3AMh3AiwAAAAAgmYGFgAAuWGWFACQIRVYAAAAAARNgAUAAABA0ARYAAAUPnPcASCvCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAABgRzHEHgPwlwAIAAAAgaCW53gAAAOStLiVdcZyjfQBAgVOBBQAAAEDQBFgAAAAABE2ABQDASGGOOwDkKQEWAAAAAEEzxB0AAAbK1HYAGBYqsAAAAAAImgALAAAAgKAJsAAAGEHMcQeAfCTAAgAAACBoAiwAAAAAgibAAgAAACBoAiwAAAAAgibAAgBgZDHHHQDyjgALAAAAgKAJsAAAAAAImgALAAAAgKAJsAAAAAAIWiqO41zvAQAA/qzLgPUh+riaSvkkDAB5oyTXGwAAgPw3PKkbAIxUWggBAAAACJoACwAAAICgCbAAAAAACJoZWAAAhGV45kfFcWyOOwDkCwEWAAAMmiAMAIaSFkIAAAAAgibAAgAAACBoAiwAAAAAgibAAgBghErmuOd6FwBA3wRYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAACMXOa4A0BeEGABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAAABBS8VxnOs9AABALqVS2ftU3GUkvA/bAJANKrAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgleR6AwAAUEBMbQeAIaACCwCAkS6O41SXuwcCACERYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAgDnuABC0klxvAAAA+tYlXIrjHO0DAMgFFVgAAAAABE2ABQAAAEDQBFgAAAAABE2ABQAAUWSOOwAEzBB3AADygKntADCSqcACAAAAIGgqsAAAYAh06UZUQgYAg6ACCwAAAICgCbAAAOA8c9wBIEwCLAAAAACCJsACAAAAIGiGuAMAwBAwtR0AskcFFgAAAABBE2ABAMCfmeMOAAESYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAwBeY4w4AoRFgAQAAABA0ARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQBAV+a4A0BQBFgAAAAABK0k1xsAAICC1qWSK45ztA8AyGMqsAAAAAAImgALAAAAgKAJsAAAAAAImgALAAC64UaEABAOQ9wBAGAomdoOAIOmAgsAAACAoKnAAgAgj3Vp8lPtBAAFSQUWAAAAAEETYAEAQPfMcQeAQAiwAAAAAAiaAAsAAACAoBniDgBAHjO1HQBGAhVYAAAAAARNgAUAAD0yxx0AQiDAAgAAACBoAiwAAAAAgibAAgAAACBoAiwAAAAAgpaK3XkYAAB6lUpl42Nzl2HwPocDQMZUYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEEryfUGAABgZDC1HQAGSgUWAAD0IY7jVJd7CAIAw0iABQAAAEDQBFgAAAAABE2ABQAAAEDQBFgAAAAABE2ABQAAfTPHHQBySIAFAAAAQNAEWAAAAAAETYAFAAAAQNAEWAAAAAAETYAFAAAZMccdAHJFgAUAAABA0ARYAAAAAAStJNcbAACAEaZLH2Ic52gfAJA3VGABAAAAEDQVWAAAFCBFTgBQSFRgAQBAptyIEAByQoAFAAAAQNC0EAIAwPDS0AgA/aQCCwAAAICgqcACAKAAKXICgEKiAgsAAPrBHHcAGH4CLAAAAACCJsACAAAAIGgCLAAAAACCJsACAAAAIGgCLAAA6B9z3AFgmAmwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAAACAoAmwAAAAAAhaKo7jXO8BAADyTyo16M/SXW5l6JM5APRABRYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAAABA0Q9wBAGCAsjDHHQDIgAosAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAAAAgaAIsAAAYoDiOU6lUrncBAIVPgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0FJxHOd6DwAAMBy63DAwWx+EUykfqgFgaKnAAgAAACBoAiwAAAAAglaS6w0AAMCIN0TNjQBQKFRgAQAAABA0FVgAAIwUQ1TYFMexOe4AMKRUYAEAAAAQNAEWAAAAAEHTQggAALmm/RAAeqUCCwAAAICgCbAAAGCwkjnuud4FABQsARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQBAFrgRIQAMHQEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAABkhznuADBESnK9AQAA4HNd8q84ztE+ACAsKrAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgpWKDIQEAIHtSKZ+xASDLVGABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAEA2xXGcSqVyvQsAKCglud4AAADkUpesyf0DASBAKrAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgpWJjKgEAINtSKZ+0ASBrVGABAAAAEDQBFgAAAABBK8n1BgAAgIukUl/4UjciACObCiwAAAAAgibAAgCA7IvjONWligoAGCgBFgAAAABBE2ABAAAAEDRD3AEAIDymtgPABVRgAQAAABA0ARYAAAAAQRNgAQDAkHAjQgDIFgEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAMFXPcASArBFgAAAAABE2ABQAAAEDQBFgAAAAABE2ABQAAAEDQBFgAAAAABC0Vx3Gu9wAAAIUslRrEp+4uNzH06R2AEUkFFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAAAAEDRD3AEAYMgNao47AIx4JbneAAAABMet/wAgKFoIAQAAAAiaAAsAAACAoAmwAAAAAAiaAAsAAACAoLkZCgAADAc3IgSAAVOBBQAAAEDQBFgAAAAABE2ABQAAAEDQBFgAAAAABE2ABQAAwyGO41QqletdAEBeEmABAAAAEDQBFgAAAABBK8n1BgAAgAx0aT+M4xztAwByQAUWAAAAAEETYAEAAAAQNAEWAAAMEzciBICBEWABAAAAEDRD3AEAIB+Y2g7ACKYCCwAAAICgCbAAAAAACJoACwAAho857gAwAAIsAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAgGHlRoQA0F8CLAAAAACCJsACAAAAIGgCLAAAAACCJsACAAAAIGipOI5zvQcAABhxUqmBfhTvMgDe53kARoCSXG8AAADyg+AIAHJFCyEAAAAAQRNgAQAAABA0ARYAAAAAQTMDCwAA8orhWwCMPO5CCAAAuTHwGxECwAijhRAAAACAoAmwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAAACAoAmwAAAgN+I4TqVSud4FAOQBARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAAABA0ARYAAOSMOe4AkAkBFgAAAABBK8n1BgAAgP7rUrcVxznaBwAMBxVYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAALnkRoQA0CdD3AEAIA+Z2g7ASKICCwAAAICgCbAAAAAACJoACwAAAICgCbAAACDHzHEHgN4JsAAAAAAImgALAAAAgKAJsAAAAAAImgALAAAAgKAJsAAAAAAIWiqO41zvAQAA8lWXmwcO5sN1KuXDOQB0TwUWAAAAAEETYAEAAAAQNAEWAAAAAEEryfUGAACAQcjiFC4ACJUACwAABk5eBADDQAshAAAEIY7jVJdyKgAgiiIBFgAAAACBE2ABAAAAEDQzsAAAIJ+ZwgXACKACCwAAAICgCbAAACAU5rgDQLcEWAAAAAAETYAFAAAAQNAEWAAAAAAETYAFAAAAQNAEWAAAAAAETYAFAAABcSNCALiYAAsAAACAoAmwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAAMJijjsAdFGS6w0AAADZ0CXziuMc7QMAsk8FFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAAAAELRUbLgjAACEJ5XyWR0AzlOBBQAAAEDQBFgAAAAABE2ABQAAAEDQBFgAAAAABK0k1xsAAIBCk0p94Uuj2AFgkFRgAQBAiOI4TnVJwgBgpBJgAQAAABA0ARYAAAAAQRNgAQAAABA0Q9wBACDLTG0HgOxSgQUAAIEyxx0AEgIsAAAAAIImwAIAAAAgaGZgAQBAYenSdWgiFwD5TwUWAAAAAEETYAHA/9vevcXYVdcLHF9rZlJKbZumJ9hyM8QAAVo65ZL0BXwwJyhpDRbCYBUQJCUaTbQnhIRoOSAPEOKpN2qUehLThLSlAYO2VrkkJPBCY2in1RDTBk2oPUUp9yK3Pes8LNjO7Jl29uzb+u21Pp/Mw1rTDf59ovOd///3BwAAQhOwAAAgLhcRAkAiYAEAAAAQnCHuAABQLqa2A1A6dmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAQmosIAUDAAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAIDozHEHoOIELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0IaKXgAAANAdDXPfs6ygdQBAu+zAAgCAPuAiQgCqTMACAAAAIDQBCwAAAIDQBCwAAAAAQjPEHQAAeqGAieqmtgNQFnZgAQAAABCagAUAAP3BRYQAVJaABQAAAEBoAhYAAAAAoRniDgAAvWCiOgC0zA4sAAAAAEITsAAAoG+Y4w5ANQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQBAP3ERIQAVNFT0AgAAgC5rCF5ZVtA6AKBFdmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAISWZiY4AgBAv0lTf5MHoELswAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgCA/pNlWZqmRa8CAHpEwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAPqSiwgBqA4BCwAAAIDQBCwAAAAAQhsqegEAAFBdDUcAs6xk/3sA0Bl2YAEAAAAQmoAFAAAAQGgCFgAA9CsXEQJQEQIWAAAAAKEZ4g4AAIXp9RR1U9sB6E92YAEAAAAQmoAFAAAAQGgCFgAA9DFz3AGoAgELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAADoby4iBKD0BCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNCGil4AAADQWw0T37OsoHUAQLPswAIAgL7nIkIAyk3AAgAAACA0AQsAAACA0AQsAAAAAEIzxB0AACrG1HYA+o0dWAAAUAbmuANQYgIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAABQEi4iBKCsBCwAAAAAQhsqegEAAMAEDZuosqygdQBAGHZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAUB4uIgSglAxxBwCAWHo3td24eAD6hB1YAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAlIo57gCUjyHuAABQVaa2A9An7MACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAgLJxESEAJSNgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAJeQiQgDKRMACAAAAIDQBCwAAAIDQhopeAAAAULSGw4ZZVtA6AGBqdmABAAAAEJqABQAAAEBoAhYAAJSTiwgBKA0BCwAAAIDQDHEHAIDKM7UdgNjswAIAAAAgNAELAAAAgNAELAAAKC1z3AEoBzOwAACgDzRkKEOrAKgUO7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEJLM+MfAQCg1NLUX/sB6G92YAEAAAAQmoAFAAAAQGgCFgAAAAChDRW9AAAAIIw0nfBqchYAMdiBBQAAAEBoAhYAAJRclmVpw9YqAOgrAhYAAAAAoQlYAAAAAIRmiDsAAPAxU9sBCMkOLAAAAABCE7AAAKD8zHEHoK8JWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAQCW4iBCA/iVgAQAAABCagAUAAABAaAIWAAAAAKENFb0AAAAgmIZRWVlW0DoA4CN2YAEAAAAQmoAFAABV4SJCAPqUgAUAAABAaAIWAAAAAKEZ4g4AAExkajsAwdiBBQAAAEBoaea3KwAA0J8aBrI3+Vf7NPVTAAB9xg4sAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQhopeAAAA0CKj2AGoCDuwAACgWrIsSxvuLwSA2AQsAAAAAEJzhBAAADiOho1ajiwCUBA7sAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAKgcFxEC0F8McQcAAI7D1HYAYrADCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAgCoyxx2APiJgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACENlT0AgAAgNgaZr1nWUHrAKC67MACAICKchEhAP1CwAIAAAAgNAELAAAAgNAELAAAAABCM8QdAAA4IVPbASiaHVgAAAAAhCZgAQBAdbmIEIC+IGABAAAAEJqABQAAAEBoAhYAAAAAobmFEAAASqVhpJUrBAEoATuwAACg0sxxByA+AQsAAACA0BwhBAAAmuBoIgDFsQMLAAAAgNAErMqp1Wqf/OQn04/98Y9/nPJjBw4cmDNnTv6ZU0455eWXX+7xOgEAaE2WTfgCgBIQsCpncHDw6quvrr/+7ne/m/yZLMtuueWWf/3rX/nrpk2bFi1a1KP1AQAAAEwkYFXRtddeW3+eMmBt3LjxmWeeyZ+/9rWvffGLX+zNwgAAKISLCAEILs3sKq6eWq126qmn/vOf/0ySZGBg4MiRI6ecckr9T//6179eeOGFx44dS5LkrLPO2rdv37x58wpbKwAAPZGmfjQAIC47sKpocHBw9erV+fPY2Ngf/vCH8X+6du3avF4NDAxs3rxZvQIAAACKJWBV1PFOEW7atOmpp57Kn2+//fbLL7+81ysDAAAAmMg+4Yqq1WqLFy9+5ZVXkiRZuHDhP/7xj8HBwUOHDi1ZsuTNN99MkmR4eHj37t2zZs0qeqUAAPSCI4QARGYHVkWNv4vw1Vdffe6555IkufXWW/N6ddJJJz300EPqFQAAABCBgFVdDacIN2/evGvXrvz13nvvXbJkSUHrAgCgAC4iBCAy+4Sra/wpwnPOOeeVV1557bXXkiT57Gc/++STT/rrCwBA1ThFCEBYdmBV1/i7CA8cOJDXqwULFvzqV79SrwAAmFqaTvgCgJ4QsCpt/CnC3MaNG88888xCFgMAAAAwJZuEK+3DDz9cvHjx0aNH89eRkZFt27YVuyQAAIrS1BHChl1XfpoAoCfswCqzy37znct+850TfGBoaGjp0qX11w0bNnR9TQAARGWOOwBhCVhV9+c//zl/WLRo0emnn17sYgAAAAAmGyp6AXTRrP+Ye+IP/P3vf89vIUySZHh4uPsrAgCgzzkzCEAR7MAqreUb1jQ8TDY6Olp/FrAAAACAmASs0pp79qKGh8n27t1bfxawAAAAgJgErHJq2HV1vE1YdmABAAAA8QlYlVbfgTVr1qzzzjuv0LUAAFA8FxECEJOAVU4NxwanPEX4zjvvHDx4MH9esmTJ0JCJ/gAAAEBEaeYakdJZvmHN3LMXjb+C8P2jb7998OW9/7WlwFUBANAX0tTPCACEY9MNAAAwEw1nDNUuALrPEcKyOeumy1r4IwAASixNJ3wBQN+xA6tsFiw7c8qJV1N+EwAAACA+O7AAAIB/cxEhAAEJWKWyfMOaNj8AAAAAEI2AVTb5UcHxVxDWX50iBACgA7JswhcAdJ+AVR5Nzmg3yh0AoGoUJwD6nSHu5fHu4dePHH49SfYXvRAAAACATkozv4IprytG70mS5PHh9UUvBACAPpOmflIAIBBHCAEAAAAITcACAAAAIDQzsAAAgJlL0wmvzhsC0E12YAEAAAAQmoAFAAAAQGgCFgAA0CjLsrThkCAAFEfAAgAAACA0Q9wBAICZM7UdgB6yAwsAAACA0AQsAAAAAEITsAAAAAAITcACAACm4CJCAOIwxB0AAGhJQ94y1h2ArrEDCwAAAIDQBCwAAAAAQhOwAAAAAAjNDCwAAKiW5kdX5XPcM8OtACiagAUAALRE2AKgVxwhBAAAACA0AQsAAACA0AQsAAAAAEIzAwsAAKqlw6Ormp8JDwCtsgMLAAA4rvwiwqJXAUDVCVgAAAAAhCZgAQAAABCagAUAAABAaIa4AwAAbTC1HYDuswMLAAAAgNAELAAA4ERcRAhA4QQsAAAAAEIzAwsAAGhPw/4sU7EA6DQ7sAAAAAAITcACAAAAIDQBCwAAmIY57gAUS8ACAAAAIDRD3AEAgPaY2g5AlwlYAABQXe4PBKAvOEIIAAAAQGh2YAEAAG2zlQuAbrIDCwAAmJ6LCAEokIAFAAAAQGgCVhVt27Ytnc4NN9xQ9DJnZsWKFfXFX3755cf72L59++bPn59/bGBg4JFHHunlIgEAosmyCV8AEJOAVUX79u2b9jPDw8M9WEkH3XnnnfXnZ5999plnnpn8mcOHD69cufKtt97KX++///5rrrmmR+sDAAAAWiVgVdHo6Oi0n+m7gLVy5cqLL764/nrvvfc2fODYsWNf+MIXDh06lL9+/etfv+2223q3PgCAcrOVC4BucgthFZ122mmrVq1q+Obo6OhLL72UP8+fP/+SSy7p+bratX79+tWrV+fPu3bt2rt37/Lly/PXsbGxNWvWPP/88/nr5z//+QceeKCQRQIAAAAzJWBV0YMPPtjwnYMHD47fvrRp06aFCxf2dlEdcNVVV1144YX79+/PX++7776tW7fmz+vWrfvtb3+bPy9btuzhhx8eHBwsZpUAAH0rv4gws8EKgJ5zhJDkvffeGxkZqU+G+sY3vjEyMlLsklqTpun69evrr9u3bz9w4ECSJD/96U9/8pOf5N887bTTdu7cOW/evGKWCABQbmk64QsAOkTAIrntttv27NmTPy9fvnzDhg3Frqcd11xzzfnnn58/j42N3X///Tt27Fi3bl3+nblz5+7YseOMM84oboEAAADAjAlYVffoo4/Wp0HNnTt327Zts2fPLnZJ7RgYGPje975Xf928efOXvvSlWq2WJMng4ODWrVsvuuii4lYHAAAAtELAqrS//e1vt9xyS/31F7/4xbnnnlvgejriuuuuO+ecc/Ln999//9ixY/nzj370o5UrVxa3LgAAAKBFAlZ1ffDBB9ddd93rr7+ev65du/bLX/5yoSvqjMHBwe9+97sN31y3bt23vvWtQtYDAFAm+Rz3olcBQOUIWNV1xx137N69O39eunTpj3/842LX00FXX331+IOQS5cu/cEPflDgegAAqiLLJnwBQIcIWBW1c+fO+rD2T3ziEw8//PDJJ59c7JI6Jcuym2+++d13361/54UXXjh48GCBSwIAAADaIWBV0aFDh7761a9mH/9O7Gc/+1n95r4SuP322x955JHx36nVavfcc09R6wEA6BdpOuGr0H8LAEwgYFVOrVZbs2bN0aNH89ebbrrpxhtvLHZJHfTzn/+8flpw/J6yLVu2/OUvfyloUQAAAEBbBKzKufPOO5999tn8+fzzz9+4cWOx6+mg3//+9/VJ7SeddNLjjz9+ySWX5K+1Wu373/9+cUsDAAAAWidgVcsTTzxx33335c8nn3zy9u3b58yZU+ySOmV0dHRkZKRWq+Wvv/zlLy+77LK77rqr/oGtW7e+8MILxSwOAKBEXEQIQO8JWBVy5MiRG264YWxsLH994IEHlixZUuySOuXw4cOrVq1666238tf169dff/31SZKsWrXq0ksvzb85NjZmExYAAAD0ozRzu215XTF6T5Ikjw+v/+j1iiueeOKJ/Hn27Nmf+9znpvzV2ZYtW2bPnt2zRbbv7bff/sxnPrNnz578dWRkZOvWrfX/azt37ly1alX+PDAwsH///gsuuKCYhQIAlEWa+jkCgJ7yH54yGx+w3njjjQULFkz7j5xxxhkvvfRStxfWQbVa7aqrrtq5c2f+umLFiqeffrohwK1YsWL37t3588jIyLZt23q9SgCAcpkmYDX8ltRPHAC0zRHCqti/f38zH1u2bFm3V9JZ3/72t+v16lOf+tRjjz02efvY+ElY27dv/9Of/tSz5QEAAADtE7CqosmANTw83O2VdNAPf/jD+i2K8+bN27Fjx6JFiyZ/7Morr1yxYkX+nGXZ3Xff3bslAgAAAG1zhLCc0vTFhu9k2acLWQkAAKV0olOEjhAC0Gl2YJVNmr44uV6d4Pv96K6Lz/71f15U9CoAAACAHhGwSmXaRFWahrX604uTW69Mbr2y6IUAADBJlk34AoC2CVjl0WScKknDOnVhcurCJEnyjGVDFgAAAJTYUNELgDbkDStJVifJR7uxHtxV4HIAAEgSM7AA6DwBqyRmtK8qTV/s+5nu8+ckSZK8+c5Hrx+XrOS/v5L836tJomQBAHRXlmUnmuMOAB0lYNHP8ow13pvvfBSz8pIlYwEAzJwdVABEI2BV1cZvFr2C7hiftObPSf5n7Ue7tO5+qKgVAQAAAG0yxB0AAACA0OzAqqpvbix6BW3437OP+0f1qVhJ4gghAEAxsmzCKcQ0dQoRgDYJWPSz8bmqzhB3AAAAKBcBqySy7NPNX0TY91cQJpPSVR6tEt0KAKADmtwv5SJCAHpGwKKffdytfv3ikdVP7il2LQAAAECXCFjl0eQmrDJsv0oat1ytLnIpAAAAQHcJWKUybcMqSb2y5QoAIDjnCgHoKEfWy2lyxipNugIAII4TzcAafxFhImkB0BYBCwAAaN1xG5aABUDnDBS9AAAAAAA4ETOwAACAKdhBBUAcdmABAAAAEJqABQAAdEHDlq2GDV0AMBMCFgAAAAChCVgAAEDrsixL7a4CoMsMcQcAAKZgajsAcdiBBQAA9ISNWgC0SsACAAC6wyYuADpEwAIAAAAgNAELAAAAgNAELAAAoC0uIgSg29xCCAAAHFdDmDLVCoBC2IEFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAA7Wp2jrtZ7wC0xBB3AADguNqd2p5lohUA7bMDCwAAAIDQBCwAAAAAQhOwAAAAAAjNDCwAAGAaDWOs2h2MBQAzZAcWAADQAc1eRAgAMydgAQAAPSRyATBzAhYAAAAAoQlYAABAN5mYBUDbDHEHAACmoUEBUCw7sAAAAAAIzQ4sAACgKQ3j1ydvy8ovIszs1wKg0+zAAgAAestFhADMkIAFAAAAQGgCFgAA0GUOFQLQHgELAAAAgNAMcQcAAJrSzD4qc9wB6AYBCwAAaNa0FxECQDc4QggAAPSciwgBmAkBCwAAAIDQBCwAAKD7nDYEoA0CFgAAAAChGeIOAAA0y0WEABRCwAIAAGbARYQA9J4jhAAAAACEJmABAABFaNjKBQDHJ2ABAAAAEJqABQAAAEBoAhYAADADDVPbpzwImF9EOM0/CQBNE7AAAAAACE3AAgAAACA0AQsAAGhL69cJuogQgOYIWAAAAACEJmABAAAz08w09qnnuANASwQsAACgV1xECEBLBCwAAKBd9loB0FUCFgAAMGO2UgHQSwIWAAAAAKEJWAAAAACEJmABAABd4SJCADpFwAIAADpAqgKgewQsAAAAAEITsAAAAAAITcACAABakWVFrwCAyhCwAACAzjAGC4AuEbAAAIBucREhAB0hYAEAAB0zTa0SswBoiYAFAAC0yBgsAHpDwAIAAAAgNAELAADoJMcEAeg4AQsAAGjdtKcI/z3HfXLZcgQRgOYIWAAAQIfZhAVAZwlYAABA92laALRBwAIAANoy5UHA8cHKQUEA2iRgAQAAXTHNpisDsABomoAFAAC063gxKk0dHgSgAwQsAACg52y/AmAmBCwAAKADZpCk1CsAZkjAAgAAOkOYAqBLBCwAAKCHVC4AZi7N/PcDAADotMmj2/3kAUDLhopeAAAAUEJyFQAd5AghAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaP8PfoQ7z9SjLc8AAAAASUVORK5CYII=",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAZACAIAAACubhnwAAB8VUlEQVR4nOzdWZSV9Z0v/GfXQBU1AAVSYCKjMkgZERRBBCGIidE4xCHpjp2cHtL9rvSbm1691rnqtdSL9yZrvadvzulz+u10Ymw10WCcIjGKiEaZRHAAwiQzyiBTTdS834tHd7CoYVfVrtr/vevzWVw8teu/n/3fz2bFnS+/3+9JJJPJCAAAAABCVZDtDQAAAABATwRYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAAStKNsbAAC6l0h86cdkspfHAQAgHwmwACDbMptGybYAAMg7WggBAAAACJoKLAAYQsqjAACg7wRYADCcSNAAAMhBAiwAGASZyom6e6LgCQCA4USABQDZltk0SrYFAEDeEWABAF/QYAgwzDz66KPZ3gLQTw8//HC2tzCkBFgAMGDp5z4iIQAA6DsBFgAMJxI0AABykAALAAaBnAgAADJHgAUAfWFKFAAADDkBFgDwhR7yOMkdAADZI8ACgAGT5gAAwGASYAFA95QdAQBAAAqyvQEAAAAA6IkKLADoC0VYAAAw5ARYAEAaek7u9FoCADCYBFgA8AUpDAAABEmABQDdk2EBAEAADHEHAAAAIGgCLAAAAACCpoUQgGGs09Ar+k2vJQAAg0mABQBfkMIAAECQBFgAwGByb0cAAAbMDCwAAAAAgqYCC4DhxNArAADIQQIsAIYx7WwAAJALtBACAAAAEDQVWADAYFLmBgDAgKnAAgAAACBoKrAAyHedBrcrCAqKTwcAgDSowAIAAAAgaAIsAAAAAIImwAIAAAAgaGZgAZB3Oo1VAgAAcpwAC4B8Zy54yHw6AACkQQshAAAAAEETYAEAAAAQNC2EAOQFc68AACB/CbAAyEcmK+WBTqGkzxQAYBjTQggAAABA0ARYAAAAAARNCyEAAABk2TPPPLhz55woiu6777fXXvvRpQs2b16wevUdURTNn7/17rtfGur9BWYwrsarr962fv3iKIqWL1+3fPmbGTknGSTAAiBnmZEEAADDgwALAAiSRBIAgC+YgQUAAABA0ARYAAAAAARNCyEAuabT6CsAgGHga1/bPnXqwSiKRo5syvZess/VGIYEWADkOJOShiHz+wEYfkaOvDBy5IVs7yIUrsYwJMACAAAg9zQ1laxfv/jo0SuOH59YVNQ2YcLJadP2L1y4qbCwY4h3cvToFbt3zzx4cGpd3aj6+orCwrby8obLL//0yiv3X3vth0VFbRl5laam0vr68iiKSkubKyrqe1jZ3l64f//03btnHjt2RX19RWPjyLKyCxUVdVdccWzmzN3Tpx8oLGzv00u3tBTv2nX1jh01p06Nr6urLCpqHTWq7vLLP50zZ+eVV+7L4AVP/zNN/2p0dCQOHZqyZ8/Mw4cn19VVNjSUjxzZVFlZO2HCiZqaHdOn7+/H/tvaCvfvn75r19WffHJ5XV1lc3PJmDHnq6rOVFefnDdv22WXne7rCUlHIukfLQHILapv8HcAIEMeffTRbG+hnz7++MoXXri7tnZUp8erq0/ef/9vJ0w4cfGDmzcvWL36jiiK5s/fevfdL6Vz/qee+ss9e2ZGUfTAA6uuuWZHd8v275++Zs2tn3zyle4WVFQ0LFq08YYb3i0tbe70q7Vrv/7WW7f0upNvf/t3N9zwXprvIplMfPDBtW+88fXz50d3d8IxY86vWLH2a1/7KJHo+j+gnV5oz54ZL798Z3cnHDfu9J13rp4+fX+vb6RXg/GZ7tx59dq1t3722bjuFlRU1N9++x+uuWZ7FEWvvnrb+vWLoyhavnzd8uVvdrk+mUx8+OG1a9euOH++8z5Tpk/fv2zZm1OmHO5uQaY8/PDDg/0SQTHEHQAAgFxy5kzVr3/9vVTSMWbM+VQNzsmT1U8//b2WluLB3kN7e+FLL931+OM/uDi9KitrrK4+VVFRn/qnlvr68jVrbv23f/u/T50aP9hbunCh9Ikn/ur55+9NhU0FBcnKyroJE05WVNSn4qpz50b/9rff+fWv/6KlZUSv59y4cdFTT30/PmEikaysrK+uPllR0ZB6g6dPj3v88R/Euc9AZPwzbWkpfvrp7z7zzHdT6VUiEZWXN1RXn6ysrCso+Pxq1NdXrFp1/1NPfb+1tffzNzWVPPnkQ889d28qvSosbB8z5tyECScrK/9cBbZ///Rf/vKv33nn5j5tmF5pIQQgRyi6AQCiKIqiF1+8O44bJk48cf/9z44ffyqKosOHJ61a9WBtbeWZM1VvvPH1b37z1cHbQGtr0RNP/NWhQ1PiH6uqzt100/qrr95VWVmXWnDw4NTNm2/ct29GMhnV1lb+/Od/89BDT11xxdHUSaqqzsVjyGOnTlU3NJRFUTR+/Gfl5X9OQ1Ln7FlDQ/nPf/63p0+PjX+84opjixZtnDFjb0nJ55VfjY0j9+yZ9c47i+MobffumT//+d/+zd/8IrXgUnv3zty6dX4URZWV9UuXvlVTs6O8vDH+VW3tqO3br/njH5dcuDAyiqJXX72tuLh1wYJ309lqlzL7mTY1lTz22F8fPz4x/nHcuNOLF6+fPXtXav/NzSP27ZuxefOC+EPcs2fGE088NH78Zz2cs7Fx5C9+8TepIHLixOMrVrwxbdqB4uLW+JH6+oqdO69+883lDQ1lHR2J115b+emnl99//yr3H8oUARYAkGvElwDDWF1dxcGDU6MoKi5u+973fl1VdS5+fPLkI9/61uqnn/5eFEW7d88e1ADrhRfuTaVXS5f+cdmyN4uKvjRVqri4bcaMfTNm7Pv44+mrVj144ULphQsjf/nLH/7oRz+bMOFkvGbevG3z5m1LPeWZZx7cuXNOFEVLl7517bUf9Wk/7e0FTz/93Ti9Kixsv/POl+fP39ZpTVnZheuue//aaz98++0lb7zx9WQyOn58wvPP3/vd7z7dXcJSV1cRRdGVV+5/8MHflJZ+6WZ/o0bVLl68/rrr3n/qqe8fPfrVKIpee+22mTN3jx5d26edp14og59pMpl49tkH4vQqkYiWL39j6dK3Cwq+NOiqpKSlpmZHTc2OHTvmvPjiPc3NIw4dmnL48OTuztnRkfjNbx6M06uSkpYVK9YuWLA5VcYVq6iov/HGd6+99qN165Zv3LgwiqLt22suv/yTm29e34drQfe0EAIAAJAzTpz4vKzmiiuOppKO2MyZe+Px5GfOVDU2jhykDWzZcv327TXx8T33vHjrrWs7pVcXu/LK/f/wD/9fXEXV2lr8yiu3D8aW/vjHpXH4UljY8Vd/9eSl6VVKQUHHLbe8ddddnw+N+tOfZn/wwXU9nHn8+M++971fd0qvUsrKGn/wg/8qK2uMoqilpXjjxkX9239mP9ONGxfu3XtVFEWJRPSd7/x22bK3OqVXF6up2fl3f/ez+C0kk93WSq1ff/OBA9OiKEokkg8++JuFCzd1Sq9SSkubbr/9laVL/xj/+Prrtx45ckU626ZXAiwAAAByxrlzY+KDkSMvdPpVYWH7P/7j//7Hf/y3f/zHfxsxonUwXr2lpXjduuXx8U03bbi4hKo7VVVn77vvt/EIqgMHpu3aNTuzW2poKNuw4fMRVLfd9uq0aQd6fcr8+VtTIdebb97S0dFtMnDzzW/3fCVLSpoXLtwUH3/00dfS3fSXZfAzbW4e8cc/fj4af8mSt9OpZauuPvXgg7/pLpCKoqipqfTttz8faLVixdqrrtrX6zlXrFg7a9aeKIo6OgreeGNFr+tJhwALgIAlEn/+AwAQRZdd9vmgokOHJl86eHvcuNPV1aeqq08VFbUNxqu///68+vqKKIoqKupXrHgjzWdNm3bwwQdXrVy5ZuXKNW1tGZ7ks3Xr9c3NI6Iouuyy0wsXbk7zWStXromHN509W7V796wu14wceSG+PV/Pbrxxc1yDVl9f0cO9+XqQwc9027Z5caHWqFG1y5atS3MD06YdvO66brPIrVvnNzWVRlE0ceLxJUveTueEiUR0773Px5flwIFpPdwUkvQJsADIHcnkn/8AAMPShAnHCws7oihqaChfteqB5uaSoXz1VP3UokWbUtO70zFnzs4lS95ZsuSddCKhPtm9e+YXW9qYutVgr8rKGufO/SA+3rfvqi7XTJx4oofuyJSRI5tSCVT/braYwc80FcbddNPGdDafsmzZW939g2nqnHPnfpj+P6qOHHlh9uxdURQlk9EHH8xNfyd0R4AFAABAzhg5smnZsjfj4927Z/7P//mTjRsXxSVIg621tSg1uz3OJrKuuXnEsWNfjY9nzNjbp+fOmPF5K9z+/dO6XFBRUd/l45caM+ZcfNDU1J/RY5n6TFtbiw4f/vwDmjWrbx/Q6NHnv/KVTy59vKWl+MiRSVEUJRLJmpq+hY+pDtN9+67s0xPpkrsQAgD5otO/iqrUA8hTS5b88fDhyXEoUFdX8cor33zjja9fd937CxZsvuyy04P3unV1o9rbC6IoKi1tTtUcZVddXWU8erys7MLo0ef79NyvfvVYfFBbOzqZ7GJgQ1FRuiVmI0a0xActLZ0bANOUkc+0rq4y/oBGjmwaO/ZsX/dwxRVHjx37yqXn7OhIRFFUWNj+/PP39umEyeTnNUNnzozr62a4lAALgCAZegUAdKOgIPn97z/5zjtL1q9ffOFCaRRFzc0jNm26cfPmG+fOfX/lyjUVFQ2D8bp1dRXxQUVF3WCcvx/igVxRFJWXp1stlVJW1pBIRMlk1N5e0NQ08tIB6uk3JKamU1084evxx3+wf//0Hp51773PX3fd522MGflMU1cj/dqxi1VW1vZwzra2op7fTg8aG8v690QupoUQgFxg7hUA5JpHHnl48E5eUJBcuvSP//RP/+POO18eP/7zYqhkMnr//ev+z//58ZkzYwd4/ris6dIXHeBpM66w8PMxT11uuGeJRDKR6IiP4yKjAcjAlcnEZ/r5u+jf20kVTH15Vx39OFUnHR2J9vbCgZ9nmFOBBQAAQIbF6dUjjzz8yCOPDt6rjBjRumDBlhtu2LJv34w337zl6NEroiiqry9/4omHfvKT/5WKHlIHbW3pNrh1uTJVeJWqysm68vLP65IaGvq8paamkR0dBVEUFRQky8o6l18N3MyZe8aOPdPDgi57A9P8TLuUKrzq3wdUV1fZwzknTDj54x//736clkwRYAEAADBYBjvDiqIokYhmzNg7Y8bedeuWr1u3LIqiM2fG7tw5J3W/vxEjPp/l1NBQnuY5m5q6uBFeZWVdUVF7W1thU1PpZ5+NG9R5W2mqrKwrLOxoby+4cKH07NkxVVXn0n/uyZPV8UFFRX363YLpW7RoU7+f2+tn2qXKytqCgo6OjoLm5pKTJ8dXV5/q04sePjypq3N+/qGfPj2uvb0gvlsiWaGFEICQJBKf/4F+iFtNU38AyJJBbR7swfLl6668cn98/PHHfx5XVFr6eXlRfX26AVaXU7eLitqnTj0QH+/adXX/N5o5xcVtkycfjo/37ZvRp+d+/PHnt8abOvVgZneVQd19pl0qLm6bMuVQfLxr1+w+vdDZs1XHj0+89PHUh97WVrh3b9+ucHNzSWPjyMbGkRePBqPfBFgABEwSAQC55tL0KoN5VlNT6cGDUw4enHL8+IQuF8yYsTc+OHeuKvVg6o6BZ8+ObW3tvYvw8OHJzc0juvzV7Nm74oMNGxb16Y57n312WbzzY8e+mv6z0jFjxp74YOPGhelPwmprK9q6dV58fNVV+zK7pT7p32fandmzd8cHmzYt7NMH9NZbS9M456L0T9jQUP6v//pPP/3pf//pT//7qVOXpf9EuiPAAgAAYHBlKsM6c6bqscf++rHH/vrpp7/X5YIu7w9YVXWutLQpiqKWluJdu2b1+iqbN9/Y3a+uu+6DUaNqoyhqaChfs+a2NLf9ySdf+fd//7/ine/Z07cqnl7Nn78tfnenT4/btKnbnXeyfv1N8aCoior6q6/emdkt9Un/PtPuzJu3LZ4L1tBQ/vrrK9N81sGDUz/44Lrufjt37vuVlXVRFB04MPXDD69N85xr1qyMG1FnzNh3+eXH03wWPRBgAQAAkBmD3Tw4Zsy5eNLA2bNVXQ7qPnny8yqe0aPPpx5MJJKpIprNmxfGk8u7c/z4hD/9qdv2wKKithUr3vjiVAt6iLpSzp0b/atf/WVra1EURaNH19588/pen9InpaVNixd/fs7XXvvGgQNTe33KgQNT161bHh8vWfJ2cXFbZrfUJ/37TLszYkTL8uVvxsebNt24ZcsNvT7l9Olxq1Y90MONC4uL21LnfOmluw4fntzrOTdvXvD++9dFUVRQkLzlljd7XU86BFgABMDoKwDIfT2nVxnJtsrKLlx++afx8euv39rptxcujHzvvevj42nT9l/8q4ULN8VfNI4cueLll+/oLsM6cWLCE0/8VXt7T/9P+brr3p8794P4ePXqb/3hD9/oYcLRgQNT/+M//r6uriKKooKCjnvueWHEiJYeTt4/N9/8Tjz7qb294Mkn/2rbtut6WPzRR9c8+eRD8RWYOvXgjTduzvh++qTfn2l3brjh3Tlz/hQf/+53d7722sq2tsLuFn/88fT//M+/i4ejjR/f7dD3669/r6ZmZxRFra1Fjz/+g23b5nW3sr29YO3ar69efUc8A+Mb33h10qSj6WybXhkkBkB4DL0i4zrFo/6OAWRaOvlURu5IuHLlmscf/0EURdu2XVdU1Lpy5eslJc1RFJ06ddlzz32noaEsiqLq6lOdbld3+eWfLly4aePGhVEUvffe9Z988pWlS/84c+beoqLPi4/OnBm7dev8DRsWtbcXjhlzbvTo2kOHui20ueuul+rrK+OZ4hs23LRjR83ixeuvvvpPo0fXptYcOXLFli03fPTRtXFpT0FB8r77nps+Pa0Ipq8KCzu++91nfvGLv/3ss3FtbYUvvHDPe+/dsGjRhquu2lda2hyvaWsr2r9/2saNN+3fPy1+pKrq7IMPriooyP5/E/v3mXYnkYi+853n6uvL41Kpd965efv2axYvXn/11bvi9s8oijo6Cg4cmLply4I//enzWe/Ll7/Z0lJ86tT47k57zz3P19VVHj48qa2t6IUX7t6y5frFizdcddW+eKtRFDU0lO/cOeedd24+d250/Mi8edsWLdrYv2vCpQRYAAAADJGBZ1jTp++fN+/9uMjo3XcXbNlyQ1XVufb2wvPnR8ULEonorrteKizs6PTEb37zD/X1Fdu310RR9Omnlz/zzHeLitorK2tLSprr6ytTNygsLGy/777n3n775h72UFTU/tBDT7766m0bNy6Koqi2dtQrr9z+yiu3V1Q0VFTUt7QU19aOurgsq6Sk+e67X6qp2TGQN96z8vLGH/3oZ6tWPbBv35VRFB09+tVVqx4oKEhWVtaVlTU2N5fU1o66uBBp0qSjf/EXvyovbxy8LaWv359pd4qLW//bf3t89eo73ntvfhRF58+P/v3vv/X7338r/oBaW4tqa0ddPM7/+uvfW7Zs3Wuv9TTUbMSI1h/+8Jcvvnh3PAbr2LGv/uY3DxQUdIwaVVta2nzu3OimptKL1y9evGHlyjV9uAr0RoAFAADAgAz26KtO7rjj5bKyhg0bburoKEgmE2fO/PnmdJWVdXfd9btJk45c+qxEInn//c9OmnRk7doV8U0G29oKz5790o3tKivrvvvdZyZNOhpFPQVYURQVFHTcfvsfrr76T2vX3pqq1aqvL08FYallNTU7b7vttVTtz+ApLW166KEnP/roa2+8sTx+Xx0difPnR6VioFhZ2YVbbnlrwYJ3CwvbB3tL6evfZ9qDwsL2u+56qaZmx9q1K44e/fzOj5d+QCUlLXfe+fK1136YzjmLitrvu++5mpoda9bcFt9YsKOj4Ny5MZ2WTZx44tZb18yYkc17O+alRFIJPQBZ1OXcK/9tIuO0EAJ05dFHB9rQF/UrvRp4I2EURcePT9ywYdHhw1Pq6ysSiY4xY87NmLF3yZK3R45s6vmJjY0jd+26eteuWadPj6uvr+joKKioqB879mxNzfaamp1xR9jOnXPiDGXWrN3jx3/W8wk//XTinj0z9++fXls7qr6+IpGIysoaq6tPTp16sKZm+8V9hUOjvb3g4MFpe/fOOHJkUl1dRWNjeXFxS2Vl/YQJJ2bN2j1jxp6SkszP4cqIfn+mPTt27Ct79848cGBa/AEVFLRXVtZXVZ2dM2fHnDk7U1fjwIGpx459NYqiyZMPT57cU17W0ZE4dGjK7t2zDx+eVFdX2dhYVlraVFlZN2XK4Zkzd0+fvn9oJrs+/PCQBsdZJ8ACIKvECgwNf9MAupKtACvKUIYFw9lwC7C0EAIAw4DECmBwDHHzIDBs9XRzUAAAAOjOQNIryRfQJwIsALIkkeh6ABYAkAsGnkDJsID0CbAACEMyqckLAIYbGRaQJgEWAAAAfSN4AoaYAAsAAIA+yGx6JQsD0iHAAmDImX4FAFxEhgX0qijbGwBg2DP6iizqlKX62wiQhkceeTTbWwCGHRVYAAAAAARNBRYAQ0jnIAAA0HcqsAAAAAAImgosALLHvCEAACANAiwAYBiTogIA5AIBFgBDwvQrAACgvwRYAGSDshcAACBthrgDAAAAEDQVWAAMMs2DAADAwKjAAgAAACBoKrAAGFqmXwEAAH0kwAJgMOkfJEd1+qsreAUAyCothAAAAAAETYAFwBBSxgIAAPSdFkIABofmQQAAIENUYAEAAAAQNBVYAAwJzYPkFn9jAQBCogILgEGgfxAAAMgcARYAAAAAQRNgATD4dGMBAAADIMACINP0DwIAABklwAIAAAAgaAIsAAaZ/kEAAGBgBFgAZJT+QQAAINOKsr0BABgWEgOI9pKq2MLR6XP00QAADAkBFgAZ0mVAMyz/732XWdVAQqiMnxAAAHKLAAsABqpTwJTxaKnLEw72iwIAQDgEWADQZyGER51e9OItCbMAAMgzAiwAMuHSHre8y1ACT4gu3lJqqwHuEwAA+kGABQA9ycUwKLXVXNx86FxJAIBsEGABMGD5WH6VH9GPJAsAgPwgwAKAP8vXoKdTkpVn7w4AgLwnwAKAKBo2yU78BvM1pwMAIF8JsAAYmBzvHxyeUY6CLAAAcosAC4BhSnYTfbkga5hfCgAAQibAAmAAcrP8Sl7TiRgLAIDACbAAGC6GZ7dg+sRYAAAES4AFQP4TyqQvFWO5XH3QqRTRpQMAyDQBFgD9lSP9g7KYfkgmk1I/AADCIcACIG+JYAZCRyEAAOEQYAGQISFlHGKXTBFjAQAQAgEWAHlF1DIYDMYCACC7BFgA5AnR1WAzGKtbLggAwCATYAHQL5dOcM8eqcqQUYoFAEBWFGR7AwAwIHGYIk8ZSqlSLAAAGBoqsADou0vDi2zkRwqvskg7IQAAQ0mABUBO0sWWddoJAQAYMloIAcgxiURCaBIO7YQAAAwBFVgA9FFW+wdFVwHSTggAwGATYAGQG0QkIdNOCADAoBJgAdAX2Si/El3lirgUyycFAEDGCbAACJpAJLfIsP6sU9rrmgAADIAh7gCESxSSi+IMy2R3AAAySAUWAGkbwv5BbYM5zUgsAAAySwUWAMGJgw/ZR65L3Z0QAAAGSIAFQH8NTsCkbCefyLAAAMgILYQAhELbYF4avmPdh+FbBgAYNCqwAAiCtsE8pg4LAIABEmABkGXxHetEV/lNhgUAwEAIsABIz+CkDwqvhg8ZFgAA/SbAAiBrFF4NNzIsAAD6R4AFQL8MOHiSXg1PMiwAAPpBgAXAUDP0apiTYQEA0FcCLACGlKFXRDIsAAD6qCjbGwBgGFF4RUqcYfn7AAAMvQWbN9+xenUURVvnz3/p7rszcs7bXn118fr1URStW778zeXLM3JOLibAAmCISCvoZDhmWJ3qzobVewcAGAAthAAMOkOv6I5eQgAA0iHAAmBwGXpFz2RYAAD0SoAFwCBSeEU6ZFgAAPTMDCwABov0ivQNx3lYAECWbP/a1w5OnRpFUdPIkdneC+kSYAEwKIQR9NWwyLDy+90BQI64MHLkBdFVrhFgAZB5+R9DMDiGRYYFwIBNPH582v79URSdnDDh4yuvjB8s6OiYvn//Ndu3jz95clRd3cjGxsby8rrKysOTJu2ePfvQ5MnJgr6N0Jlw4sT8rVu/evTo6Nra//ef/7nLNYVtbdP37796167LP/mksq6upLn5/JgxZ6qqTlZXb5s37/Rll6XzQiVNTYvXr7/i6NGJx4+3FRWdnDBh/7RpmxYu7CgszMj6QTJk1yd96V+Z0qam8vr6KIqaS0vrKyp6OGeio2PKoUMz9+yZfPhwZV1deUND08iRtZWVJyZM2FFTs3/69H5c9iG+LHnDd0QA0tNpRFH3//kQQDBA/goBDJlHH30021vojwWbN9+xenUURVvnz3/p7rujKLr6T3+6Y/Xqirq67p7y2fjxa1au3D1rVjrn/N23v/2N115btGFD/Ku2oqL/51/+pdP6RDJ57Ycfrli7dtT5892dc//06W8uW3Z4ypQe3suVH3989wsvjKqt7fT4yerq395//4kJEway/tIL1au/fOqpmXv2RFG06oEHdlxzTZenGsrrk77BuDJX79x569q14z77rLsF9RUVf7j99u3XXBNF0W2vvrp4/fooitYtX/7m8uVdrs/sZXn44Yd7XZNPDHEHIJNEDwDAUEp0dNz7/PPfffrpVHrVXlh4fsyYk9XVjWVlqWWXnTr1F7/61X3PPlvU1tbrOW9/5ZVUOtOlkqamh5588t7nnkvFEO2FhefGjDk5YUJ9ZWVq2fT9+//6l7+8+Z13ujtP1Zkz3/v1r1OZy/kxY1LVQNUnT37v6aeLW1oGsn6QDNn1SV/Gr0xxS8t3n376u8888+f0KpFoKC8/WV1dV1mZquarqK+/f9Wq7z/1VHFra6/nHPrLkme0EALQL4nEpUVY0isyQiMhAGlKRNEdv//93Pffj3/cNXv21uuv3z9tWnvR5/9Xt7KubtauXYs3bKg6cyaKoq999FHV2bOP//CHrSNGdHfOK44erT51Koqi9qKiD+bOPTh16qEv18KMbGz8m1/8YvypU/GPxydOfGPFigPTprUWF8ePVNTXX71z5/I33yxraEh0dKx87bXLP/101f33d65nj6K7X3wxDj5OTJz47P33nxo/PoqiSYcPP7hqVWVtbdWZM19/441Xv/nNfq8fDEN5fdKX2StT0tT01489NvH48fjH0+PGrV+8eNfs2Y3l5fEjI5qbZ+zbt2Dz5imHDkVRNGPPnoeeeOKz8eN7OGdWLkueEWABkBkSBzJIhgVAOmbt3l3W0BBFUX1l5aoHHjh0SddVXWXllgULts2ff8tbb93y5ptRFF1x9Og9L7yw6sEHuztn9cmTURQdnzjxufvuO1ld3em3iY6OB3/zmziGaCkpWbtixeYFCzpN16qvqHj3xhs/uvba5evWLdy4MYqimu3bP7n88vU333zxsoq6uqkHD0ZR1FZc/Ovvfe9cVVX8+JHJk1d/61vfe/rpKIpm796dil36un6QDNn1SV9mr0wimXzg2Wc/T68SiTeWL3976dKOL7+FlpKSHTU1O2pq5uzYcc+LL45obp5y6NDkw4e7PWc2Lkv+0UIIQHp6jBJkDWRcnGFlexcABC1Or85VVf3H3//9pelVSnth4Rtf//oL99wT/1izY8e8bdt6OG3dqFE//9u/vTSdiaLo5vXrpx04EEVRMpH4zYMPblq4sLvZ8E2lpa/cfvsfly6Nf7z19devOHLk4gUTT5yID45ecUUqc4ntnTmzvbAwiqKqM2dGNjb2b/3gGZrrk77MXpmFGzdetXdvFEVRIvHb73znrWXLOrof/7+zpuZnf/d3cbNqovsvw1m5LPlHBRYAAyW9YpCowwKgV23Fxb/+i7+oHTWq15Xvz5s38fjxhZs2RVG0fN26D7/2tVSnYSevrVzZZY9haVPTzW+/HR+vXbFi31VX9fqia1esmHDy5Mzduws6Ola88cbjP/xh6ldjzp2LDy6MHNnpWe2Fhf/7H/+xoL09iqLUTvq6fvAMzfVJXwavzIjm5lv++Mf4+O0lSz669tpen3Kquvo3Dz74w//6r0RHR5cLsnVZ8o8KLAAGRL7AoFKHBUDPNi5ceOmt+rqz9tZb42KZUefPf2379i7XtJSUfPS1r3X5q/lbt5Y2NUVRdHzixLeXLEnrJROJ5++9N07Kph04MPqie899dtll8cHkQ4cuHQF+ety4U9XVp6qr275I2fq6fpAM2fVJXwavzLxt2+JCrdpRo9YtW5bmBg5Om7btuuu6+222Lkv+EWAB0H/SKwAgizoKCtYvXpz++pYRI95dsCA+nrV7d5drzowd293Y7NRTPpw7N/3R2hdGjtw1e3YURVEyOfeDD1KPH58woaOwMIqi8oaGB1atKmlu7vk8fV0/SIbs+qQvg1cm9RY23nRTdwV6XXpr2bLQLkv+EWAB0F/SK4ZE/hdhJRJf+gNA2g5PmXKhrKxPT9kza1Z8MP3jj7sc8Xlm7Ngun1jc0jLpyJEoipKJxPaamj696LZ58+KDK/ftSz3YNHLkm1/U+Mzcvfsn//N/Ltq4cUT34Utf1w+SIbs+6cvUlSlqbZ3yxSD2XV/8PUnT+dGjP/nKVy59PIuXJf+YgQUAhM4wLAC6dKyryKBnn15+eUdBQUFHx4iWlrLGxsby8k4LmkpKunxiZV1dPOSovbDw3uef79OLFnzxn7BxZ85c/PgflyyZfPhwHE9U1NV985VXvv7GG+9fd93mBQtOf9EWN5D1g2Eor0/6MnJlKuvq4mlZTSNHnu0mp+vB0Suu+MqxY5eeM4uXJc8IsABIWzLZqTwk/kmqwBCQYQFwqfqKir4+JZlINJSXV9bVRVFUUV9/aYDVnYr6+vigqK1t+v79fX3dWNmXb4SXLCh48vvfX/LOO4vXry+9cCGKohHNzTdu2nTj5s3vz527ZuXKhi+/wb6uH0oZvz4/ePzxns/z/L33fvDF5KmMXJnUW+jH36soimorK3s4Zwb/2gxbWggBgNyQ/72EAPnl4UceGeyXKOjXP2wkCz7/P8IF3dw2rksdBRn4v8+Jjo7C9vZOm/nj0qX/45/+6eU77/xs/PgvHk1e9/77P/4//2fsJaU3fV3f5x3299+KBun6pG/gVyb1JaO7+wn2rMu/jVm/LPlEBRYAA5VIKMICAL4kTq8efuSRRwczxkqVt/RJearQpquSme6kqnJOTpjwv3/84368bg9aR4zYsmDBlhtumLFv3y1vvnnF0aPxPh964on/9ZOfXBqCpLk+dVDc1pbmTtJf2UnGr8+emTO7m7cV67I3sK9X8mKpt9C/v1dxWV935xyMvzbDjQALgL5IJqOoizHTMiyGRn42EubZ2wH4skHNsL569Ghfn1J94kRczNJWXNyQdv9gFEV1lZXtRUWFbW3jTp8uaG+Pb3uXYYnE3hkz9s6YsXzdumXr1kVRNPbMmTk7d26/5pr+rW8dMSI+KG9oSHMLJU1N/dt7xq/PpkWL+v/kvl7JKIqiqLayMp6PVtLcPP7kyVPV1X16zUlfDIC/2FD8tRk2tBACkBnun8bQ0EgIEL4haB6MTTp6tCztaCY2c8+e+GD/tGnJvvwHpb2o6MDUqVEUFba1zdi7t08vWtLcPLKxcWRjY1F69U3rli/ff+WV8fH0jz/u9/oLpaXxQXnaJUX9nhc+lNcnfX26km3FxYemTImPZ+/a1acXqjp7duLx45c+HuZlyVECLAD6rId6kTS/B8Zp1+D9ufQlunyEHCXDAgjZpenV4OVZiY6OmzZsSH99UWvrws2b4+Pds2b19eV2z54dHyzatCn9Z5U3NPzTv/7rf//pT//7T3962alT8YOlTU1TDh6ccvDghK5SjyiK9s6YER9UnTvXj/Wxz75osht79mxxa2uvW518+PCI5uY03lPXMnh90te/K9Od1FtYuGlTcUtL+ttY+tZbvZ5zKC9LXhJgAZBhaQZMgQh2YwCQTwYvw1q4adP4kyfTXLzsrbcq6uqiKKqrrPzw2mv7+lrvz51bV1kZRdHUAweu/fDDNJ+1cs2auC9v34wZxy+/PH6w6syZv37ssb9+7LHvPf10l8+q+/KN8Pq6PnauqqqptDSKouKWlllplBTd+EW61z8ZvD7p69+V6c62efPixtLyhoaVr7+e5rOmHjx43QcfdPfbrFyWvCTAAqA/hsPQHtlWyBRhAYRpyJoHU4pbW//i6afTmbpds337krffjo/Xff3rbcXFfX2ttuLiN5cvj4/veumlyV3NPOpkwebN173/fhRFyYKCN2+5JfX4uTFj4q8XVWfPdrn5CV+kcudHj+7H+lgykfhzSdHmzT3fdXHC8eNX/+lPvb6jHmTw+qSvf1emOy0jRqTewo2bNt2wZUuvTxl3+vQDq1b1cOPCrFyWvCTAAqCfkslhEWN1SbYVAhkWQGh6Tq8GI9u6UFYWRdHY06d/9B//8ZVjx7pblujouPntt+9/9tn4u8vOmpqt8+f37xXfu/76nTU1URQVtbb+4PHH523b1t3Kgvb2r69de8fq1fGLvvqNbxydNOninX/6RVnNrZdU+oy8cOH6996Lj/dPm9aP9SmbFi6Mv6xcceTIHS+/3F2GNeHEib964omC9vbu33paMnV90tfvK9Odd2+44U9z5sTHd/7udytfe62w+xFU0z/++O/+8z/jEWOnxo/vbtnQX5a85C6EAAxIMinBIWvy86aEALkpnXwq43ck3DV7dnth4Q3vvjv6/Pm//9nPtl9zzdZ58w5NmZK611tZY+PM3bsXr18//ospQkcmTXr+3nsH8qLP33NPZV3dpMOHi9ra7n7hheu3bNmwePG+q65qLimJF5Q3NMzZufPmd94Z/cXQpW3z5m285J56a1au/MHjj0dRdN22ba1FRa+vXBmf4bJTp77z3HPxcPpT1dWpG+f1dX3s08sv37Rw4cKNG6Mouv69977yySd/XLp078yZbUWfpwFjz5yZv3Xrog0bCtvbz40ZUzt69ORDh0K4Punr35XpViLx3He+U15fH5dK3fzOO9ds375+8eJdV19dO2pUvKSgo2PqgQMLtmyZ/UXN2pvLlxe3tIzvfljV0F+W/CPAAmCg4vSg3zHWIIUPl55WygEAWZfZDCsZRau/9a3ilpa5H3wQJZPXfPTRNR991FZcXFdZ2VxSUt7QUFFXl7joG8AHc+e+dNdd7UUD+j/CrSNG/PKHP7z7xRfjeUZfPXbsgd/8pqOgoHbUqObS0tHnzpU2NV28fsPixWtWrrz0PPunT39/3rzrtm2LomjBu+/esGXLuaqqwvb2UefPf74ikXjprrtSYVxf16f84ZvfrKivr9m+PYqiyz/99LvPPNNeVFRbWdlcUlJZX5+6QWF7YeFz99138xddllm/Punr95Xp9i0UFz/+3/7bHatXz3/vvSiKRp8//63f//5bv/99Q0VFfUVFUWvrqNrai4fiv3f99euWLbvttdd6OueQX5b8I8ACIDNyNB4apG13ivNy9OLkBEVYACEY+tFXKcmCgue/8509s2bdsXp1nMUUtbZWnTnTadnJCRNev/XWPTNnZuRF24uKnrvvvh01NbetWRPfIa6go2PMJTe5OzFx4ppbb933xV3wLvXyHXc0lJXdtGFDQUdHIpm8eNt1lZW/u+uuI19uH+vr+lgykXj2/vuPTJq0Yu3a+CaDhW1tVWfPXrymrrLyme9+9+ikSTenfxW6l6nrk77+XZketBcWvnTXXTtqalasXfvVo0fjB8svyvtiLSUlL995Z5o3BBj6y5JnfOEDgD7rNZ8SYA0xGRZA/zz66KMDP0k/0qsBFmEt2Lz5jtWroyjaOn/+S3ffHT9Y0N5+1b591+zYMf7Uqcra2tKmpoby8rrKykNTpuyZNevw5MnJQZh6kOjomHLo0OzduycdPlxZV1fW2NhUWlpXWXl4ypTdM2funz49nRr1icePL9qwYcrhwxX19R2JxLkxY/bOmPH2kiVNI0dmZH3KyMbGq3ftmrVr17jTpyvq6ws6OuorKs6OHbu9pmZnTU3cyzZn5844/dk9a9Zn3Q91SlNGrk/6+n1levaVY8dm7t077cCBUbW1FfX17QUF9ZWVZ6uqdsyZs3POnJYvegCnHjjw1WPHoig6PHnykcmTezhhpi7Lww8/PJD3lXN82wOAzBNgDbE8DLD8HQKGRLYCrGhgGVaXARYMN8MtwHIXQgAg57kjIUC2ZLF5EBhWBFgAQD6QYQEMvYGkV5IvoE8EWACQecnkl/50KZH40h8GToYFMJQGnkDJsID0CbAAAADIDhkWkKaibG8AACBj4iKsfBjongdvAchrgidgiKnAAgDyikZCgMGW2fRKFgakQwUWAAAA2fTwI4882pcY690bb3z3xhsHbTtAiARYAJAdWsQGT/40EgIEqU9hE0BGCLAAIHSd+uHEMumQYQEA5BMzsAAAAAAImgALAMhPprkDAOQNARYAkLdkWAAA+UGABQAAAEDQDHEHgNAZRD4QprkDAOQBARYAkOfyJMNyN0oAYBjTQggAAABA0ARYAED+M80dACCnCbAAgGFBhgUAkLvMwAKAvGJQEgAA+UeABQAMF7k9zT1Htw0AkAlaCAEAAAAImgALABhGTMICAMhFAiwAYHiRYQEA5BwzsAAgrxiUBABA/lGBBQAMO4qwAAByiwALAAAAgKAJsACA4UgRFgBADhFgAQDDlAwLACBXCLAAAAAACJoACwAYvhRhAQDkhKJsbwAAgP7qlL4lk1naBwDA4BJgAcCwJgCJi7CSw/CdAwDkDi2EAAAAAARNgAUADHcmYQEABE6ABQAgwwIACJoZWAAAOcvoLgBgeBBgAcCwJgBJMc0dACBYWggBAAAACJoACwDgcyZhAQCESYAFAAAAQNAEWAAAf6YICwAgQAIsAAAAAIImwAIA+BJFWAAAoRFgAQB0JsMCAAiKAAsAAACAoAmwAAC6oAgLACAcRdneAAAAmdMpdEsms7QPAIBMUoEFANA1RVgAAIFQgQUA9I0SHwAAhpgKLACAbinCAgAIgQALAAAAgKBpIQQA6ElchJXMlVbJXNknAEBfqMACAAAAIGgqsACAvhmGJT45VoQFAJB3VGABAAAAEDQBFgBA79yOEAAgiwRYAAAAAARNgAUAkBZFWAAA2SLAAgAAACBoAiwAgHQpwgIAyAoBFgAAAABBE2ABAPSBIiwAgKFXlO0NAAAwmDrFbclklvYBANB/KrAAAPpGERYAwBATYAEAAAAQNAEWAECfKcICABhKZmABAIPI/CUAAAZOgAUA0B9xEVYy/Ewu/B0CAPRGCyEAAAAAQRNgAQD0k0lYAABDQ4AFAAAAQNDMwAIABlHez1/KmUlYAAC5TIAFAAAAOW/z5s2rV6+Oomj+/Pl33313trcDGaaFEABgQEzCAgAYbAIsAAAAAIImwAIAGChFWAAAg0qABQAAAEDQBFgAABmgCAsAYPAIsAAAAAAIWlG2NwAAkCfiIqxkMpntjfSoU5lY4LsFSNvRo0d379598ODBurq6+vr6wsLC8vLyyy+//Morr7z22muLivr2f37b29sPHDiwe/fuo0eP1tfXNzY2lpWVVVZWTpgwYe7cuVOmTOlH1e2uXbs++uijY8eONTQ0FBUVjRo1auLEiddff/3kyZM7rezo6Ni7d+8HH3zw2Wef1dbWdnR0xC89Z86c2bNn9+m9dHR0HDhwYPv27SdPnqytrW1sbCwvL6+srJw8efKsWbP68Uba2tr279+/a9euTz75pK6urrm5ecyYMVVVVdXV1fPmzbvsssv6dLYoik6cOLF169ajR4/W1tb+8z//c1+fzvAR/HcsAIDcIcACcsujjz6a7S1kwP79+9esWfPJJ590t6CiomLRokU33HBDaWlpr2dLJpMfffTR2rVrz507192a8ePHP/DAAxMmTIii6Pnnn3///fejKPr2t799ww03pNZs3rx59erVURTNnz//tttue+655/bs2dPl2WbNmnXfffeVlJTEP544ceKZZ545ffp0l4urqqruvPPOq6666tJfXfyKd999dxRFu3fvfvnll2tra7t7I9XV1StXrpw5c2Z3Cy6WTCY//PDDtWvXnj9/vrs106dPX7Zs2ZQpU7pbcPEmv/3tb7/22msbNmyIf1VUVPQv//Iv6eyE2MMPP5ztLQwpLYQAABljEhbAUGpvb3/ppZcef/zxi9OrsrKy6urqioqK1P8g19fXr1mz5t/+7d9OnTrV8wmbm5ufeuqp3/72t6n0KpFIlJeXV1dXjxo1qqDg8/8HferUqZ/97GcffvhhOptsbW198sknU+lVQUHBZZddNnr06NT2du/e/Z//+Z/Nzc1RFO3bt+9nP/tZKr0aMWLEZZddNnbs2FTV1dmzZ5988sk4MutBMpl88cUXf/WrX6XSq8LCwtGjR1dXV5eXl6de+uTJk0899dRzzz3X1tbW8wmbmpqefPLJ5557LpVeFRYWjhkzZsKECZWVlall+/fv/+Uvf/nOO++kc2VeeeWVVHoFvdJCCAAAQO5pbW194oknDh06FP9YVVV10003XX311ak8pbW19eDBg5s3b963b18ymaytrf35z3/+0EMPXXHFFV2esLGx8Re/+EUq5Bo7duzixYtnz55dUVERP9LS0rJv377NmzcfPHiwtbX1+eefHz16dK/73L59e1yce9VVV61YsaK6ujpOo+rq6jZv3vz2228nk8mTJ0++/PLLX//615999tnW1tYoiqZMmXLLLbdMnz49DptaW1v/9Kc//f73v79w4UIymXzhhRdGjx49bdq07l7097///datW+PjWbNmXX/99dOnT0+lYA0NDbt3796wYUP8Zj/44IMzZ8788Ic/LC4uTufKTJw4ccWKFdOmTUutr6+v37lz55tvvtnQ0NDR0fHaa699+umn999/fw//qHP06NH4hEVFRXPnzp06dWoPdVsQaSEEAMis0LsItRACF8npFsJVq1Zt3749Pl66dOmyZcu6Gw718ccfr1q16sKFC1EUFRcX/+hHP4q7/y7W0dHxxBNP7N+/P4qiRCKxbNmypUuXFhYWdnnCHTt2vPDCCy0tLRUVFRMnTty3b1/UfQth7NZbb12yZMmlgc6BAweeffbZ+vr6KIoqKirig5tuuukb3/jGpYvPnj37zDPPfPrpp1EUjRs37ic/+cnFa1KvWF5e3tDQEJ/wgQcemDp1apfvoqOjY8OGDWvWrIn/s3XNNdc88MADXS77r//6rwMHDkRRVFJSsmLFigULFqSK0S7W1NS0bt26jRs3xj/edtttN998c6c1nS7LxIkT77vvvurq6i53SM+0EAIA0H+hdxEmk1/6A5CbtmzZkkqv7rnnnltvvbWH0eZXXnnlP/zDP8SVWa2tra+88sqlazZs2BCnV1EU3XvvvcuXL+8uvYqiqKam5m/+5m9KSkrq6+vj9KpnkydPXrp0aZf/dZg2bdo3v/nN+DhOr6ZOndplehVFUVVV1QMPPBD/6vTp06kNdxKnV2PGjPn7v//77tKrKIoKCgpuvvnmBx98MD7h9u3bt23bdumy9evXx+lVIpF48MEHFy5c2GV6FUVRaWnp7bffvnTp0vjH119//ciRI929ehRFo0aN+tu//VvpFWkSYAEAAJBLWlpa1q1bFx/fdNNN8+bN6/UpVVVV9913X5zUHDhwYNeuXRf/trm5+e23346PlyxZMnfu3F5PePnll99zzz1pbnjlypU9/Paaa64ZP3586sebbrqph38IGTdu3JVXXhkff/zxx90tKy4u/su//Mt0OhznzJlzyy23xMdvvPFGp2FYTU1NqSuzYsWKLofHd7JixYpZs2ZFUdTR0fHGG2/0sHLlypUjRozo9YQQE2ABAGRY6EVYADnu/fffT/XcrVixIs1nTZs27cEHH1y5cuXKlSs7xTRbt26NGwxHjRq1fPnyNE84Z86cVJbUg9LS0smTJ/ewIJFIzJ49Oz4uKSnp9Z6AM2bMiA9OnDjR3ZqFCxde2ibZnaVLl44aNSqKotra2o8++ujiX23durWpqSmKookTJy5ZsiSdsyUSiXvvvTcuiDtw4EB3tywsKSn52te+luYOIRJgAQDhSCS+9AcAupSqn1q0aFF3c8e7NGfOnCVLlixZsuSaa665+PHULQJvuummHloRL3XpjKdLjR07ttc148aNiw+qqqp6/SeQ1JT6uFXwUgUFBYsXL+71RVOKiooWLlwYH+/evfviX6V+nDt3bvr/NjNy5Mg4kksmkx988EGXa8aOHesfe+gTARYAQOYpwgIYJK2trak7D6YKlwaira3t8OHD/Tvh1KlTS0pKel5TVVXV63lSJyktLe11cSrAamlp6XLBlClTysrKej3PxVJVXfv370/diqSlpSUeYpVIJGpqavp0wlRfZ3czwtLJ9eBifYiWAQAAILvq6ura29ujKCotLb3ssssGfsLa2tr4hCNHjkwnbLpYQUHBxIkTU4Fal3pNuKIoSg2M724+epcn7Ojo6HLBV77ylV5P0kl1dXVhYWF7e3tLS0tjY2N5eXkURXV1dfFLFBYWPv/88306YSoFO3PmTJcL0rkscDEBFgDAoIiLsJLu9AeQUXV1dfFBRUVFRk6YasTr3wkztY0M6vcbiedV1dXVxQFWPGgsiqK2trbu7njYq8bGxv49ETrRQggAAEDmPfLII4Nx2nRqlPokVcfUXUFTmk8PR//+7ST1RlIt8Bm51B0dHXGBGwyQCiwAIBT5V6ukCAsYtuL06pFHHsl4jJUqL0rVB2X3hJnaRgZ1N9y9B8lk8tJKtNTBhAkTfvzjH2dqe9A/KrAAAAAYLBkPsCorK+MbBTY1NX322WcZOWFcc9Tc3HzixIk+Pbetre348eMD30NmHT16tK9P+eSTT+IKrOLi4tQA+NSlPn36tCoqsk6ABQAAQCYNUvNgrKioaOrUqfHxrl27Bn7CESNGXHHFFf074YEDB1pbWwe+h8w6cuRIX4uw9uzZEx9MmzYt1UKYutRtbW179+7t0wmbm5sbGxsbGxvb2tr69ETojgALAGAQxV2E2d5FjxKJL/0BGJhL06uM51mzZ8+ODzZs2NDS0pL+Ez/77LODBw8ePHjw2LFjFz8+a9as+GDTpk19OuE777yT/uIh09HR8fbbb6e/vqWl5d13342PZ86cefGvUpd606ZN6Z+woaHhX//1X3/605/+9Kc/PXXqVPpPhB4IsAAAABhcmc2wrrvuulGjRkVR1NDQsGbNmjSf9cknn/z7v//7Y4899thjj6UKjmLz588vKSmJoqixsTH9E27fvv3gwYN92PcQ2rx585EjR9Jc/Prrr8f3CiwvL7/22msv/tXcuXMrKyujKDpw4MCHH36Y5gnXrFnT1NQURdGMGTMuv/zyPuwbuifAAgAYXDlQhAWQIYPaPJhSVFS0YsWK+Hjz5s2bN2/u9Snnzp371a9+Fbf7jR49+uabb774t2VlZYsXL06dcMuWLb2e8NNPP33ppZf6vPWh0t7e/swzz5w5c6bXldu2bUtVV91yyy0jRoy4+LfFxcXLly+Pj1966aXDhw/3esLNmze///77URQVFBTccsstfdw4dEuABQAAQAb0nF5lvAhr7ty58fHq1av/8Ic/9DBr6cCBA//xH/9RV1cXRVFBQcE999zTKaaJomjJkiVTpkyJj3/3u9+tWbOmhxPu3r37sccea25ujqIorgULSjyFva6u7mc/+1kPNWLt7e3r1q178cUX4x+vuuqqG2+88dJl119/fU1NTRRFra2tjz/++LZt23o44dq1a1evXh3ffvcb3/jGpEmTBvZW4M+Ksr0BAID8FxdhxV/oAfJSOvnUI488ksEY66677qqvr//444+jKNqwYcOOHTsWL1589dVXjx49OrXmyJEjW7Zs+eijj+Jb7BUUFNx3333Tp0+/9GyFhYXf+973fv7zn8d3Nnz77be3b99+8803z549O+6hi6Kovb39wIEDmzdvTnUgrlix4syZM3HBUThmz55dWFj47rvvNjY2PvbYYzU1NTfccMOUKVMKCj4vYWloaNi1a9f69etPnz4dPzJhwoQHHnigu3rhe+65p66u7vDhw21tbS+88MKWLVsWL1581VVXxX2X8Ql37tz5zjvvnDt3Ln5k3rx5ixYtGtz3yTAjwAIAGN7EasAQymCGVVRU9NBDD7366qsbN26Moqi2tvaVV1555ZVXKioqKioqWlpaamtrL66iKikpufvuu+Nioi6VlZX96Ec/evbZZ+M77p07d+7ll19evXp1eXl5lydctGjRLbfc8vzzz2fk7WTWt771rfb29q1bt0ZRtGPHjh07dhQXF48aNaq4uLihoaG+vv7if1OZNWvW/ffff2lVWsqIESN++MMfvvjii/EYrGPHjv3mN78pKCgYNWpUaWnpuXPn4olXKYsXL165cuWgvTmGKQEWAAAAAzI0o68uVVBQcPvtt1999dVr1649dOhQ/GB9fX19fX2nZTU1Nbfddluv7X6lpaXf//73t2/f/sYbb8QDpJLJ5KUnLCsru/vuu1N36AtQQUHB3XffPWvWrJdffrm2tjaKotbW1lS9VcrYsWNXrFhRU1PT66zGoqKi++67r6amZs2aNfGNBTs6OlL1VikTJ0689dZbZ8yYkbF3Al9Qyg4AMER0EQKhefTRRwd+kn6kV4MReH366ad79uzZv39/bW1tfX19IpEoKyurrq6eOnVqTU3NxX2F6ejo6Dh48ODevXsPHz5cV1fX2NhYXFxcUVExbty4mpqa2bNnFxcXxyv37t174sSJKIquuuqqiRMnZvx9pe/TTz+NGyonTJiQipA6OjoOHDiwffv2kydPnj9//sKFC2VlZZWVlZMmTZo5c+a0adNSfYVp6ujoOHTo0O7du1NXprS0tLKycsqUKTNnzpw+fbr7lgyZhx9+ONtbGFK+RQEADBEBFhCabAVY/X4WkDLcAix3IQQAGCLxKPds7wIgk+RQwNAQYAEAANAfA0mvJF9AnwiwAACGjiIsIG8MPIGSYQHpE2ABAACQHTIsIE0CLAAAAPpG8AQMMQEWAMCQ0kUI5LrMpleyMCAdAiwAIPckEl/6A0BOk2EBvSrK9gYAAIaduAgrmUxmeyMA/SFvAoaeAAsAgIt0KmmTsgEAAdBCCACQBSZhAQCkT4AFAAAAQNC0EAIAuUdbGwDAsKICCwAgO3QRAgCkSQUWAAAXUd4GAIRHBRYAQNYowgIASIcACwAAAICgCbAAAAAACJoACwAgm3QRAgD0SoAFAAAAQNAEWAAAWaYICwCgZwIsAAAAAIImwAIAAAAgaAIsAIDs00UIANADARYAAAAAQRNgAQAEQREWAEB3irK9AQAAwtYpVksms7QPAGD4UoEFAAAAQNAEWAAAodBFCADQJQEWAAAAAEETYAEABEQRFgDApQxxBwCgR6a2AwDZJsACAPKWu+cBAOQHLYQAAGHRRQgA0IkACwAAAICgCbAAAIKjCAsA4GICLAAAAACCZog7AJC3TG0HAMgPKrAAAEKkixAAIEWABQAAAEDQBFgAAAAABE2ABQAQKF2EAAAxARYAAAAAQRNgAQCESxEWAEAURUXZ3gAAADmlU6CWTGZpHwDAMJJI+s4BABCwRCKwL2wCLABgyGkhBAAImi5CAAABFgAAAABBE2ABAAAAELTARioAANCV4CZhAQAMIRVYAAAAAARNgAUAkAOMcgcAhjMBFgAAAABBE2ABAAAAEDQBFgBAbtBFCAAMWwIsAAAAAIImwAIAAAAgaAIsAICcoYsQABieirK9AQCALOuUCCWTWdoHAADdUIEFAAAAQNAEWAAAuUQXIQAwDGkhBABgAHRgAgCDTwUWAECOUYQFAAw3KrAAgOFOzRAAQOBUYAEAAAAQNAEWAEDu0UUIAAwrWggBABgAHZgAwOBTgQUAAABA0ARYAAA5SRchADB8CLAAAAAACJoACwAAAICgCbAAAHKVLkIAYJgQYAEAAAAQNAEWAAAAAEETYAEA5DBdhADAcCDAAgAAACBoAiwAAAAAgibAAgDIbboIAYC8J8ACAAAAIGhF2d4AAAD5olMhWDKZpX0AAPlGBRYAQM7TRQgA5DcBFgAAAABBE2ABAAAAEDQBFgBAPtBFCADkMUPcAQDIEFPbAYDBkUj6ngEA0Jtcub1eIuHbHQCQh7QQAgAAABA0ARYAAAAAQRNgAQDkD6PcAYC8JMACAAAAIGjuQggA0DuD0QEAskgFFgBAXtFFCADkHwEWAAAAAEETYAEAAAAQNAEWAEC+0UUIAOQZARYAAAAAQXMXQgAABkenKjC3cgQA+ksFFgBAHtJFCADkEwEWAAAAAEETYAEAAAAQNAEWAEB+0kUIAOQNQ9wBABgcprYDABmiAgsAAACAoAmwAAAAAAiaAAsAIG8ZgwUA5AcBFgAAAABBE2ABAAAAEDQBFgBAPtNFCADkAQEWAAAAAEETYAEAAAAQNAEWAECe00UIAOQ6ARYAAAAAQRNgAQAAABC0RDKZzPYeAAByXqcWvQC/YSUSvvgBALmqKNsbAABgeAg/5AMAQqWFEAAAAICgCbAAAIYF9yIEAHKXAAsAAACAoJmBBQCQAQY6AQAMHjejAQAYRtyLEADIRVoIAQAAAAiaAAsAAACAoAmwAACGEfciBABykQALAAAAgKAJsAAAAAAImgALAGB40UUIAOQcARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAMO8ZgAQC5RYAFAAAAQNAEWAAAAAAELZFMJrO9BwAAsiCRyN5XwU4NjL6RAgA9UoEFAAAAQNAEWAAAAAAETYAFADBMuRchAJArBFgAAAAABK0o2xsAAGD4MbUdAOgLFVgAAAAABE2ABQAwfBmDBQDkBAEWAAAAAEEzAwsAYCh0qnMyAwoAIH0qsAAAhjVdhABA+ARYAAAAAARNgAUAAABA0ARYAADDnS5CACBwhrgDAAwFU9sBAPpNBRYAAAAAQRNgAQAAABA0ARYAAMZgAQBBMwMLAIBs65SdGRgGAHyZCiwAAAAAgibAAgAginQRAgABE2ABAAAAEDQBFgAAAABBSyTNyAQA4AuJhO+HAEBwVGABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAf5ZMJhOJRLZ3AQDwJQIsAAAAAIImwAIAAAAgaAIsAAC+RBchABAaARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQDQmTFYAEBQBFgAAAAABK0o2xsAAICLdKr8SiaztA8AICAqsAAA6IIuQgAgHAIsAAAAAIKmhRAAIAg65wAAuqMCCwCArukiBAACoQILAICQqD0DAC6hAgsAAACAoAmwAAAAAAhaIqlIGwCA7iUSvjECAFmmAgsAAACAoAmwAAAAAAiaAAsAAACAoAmwAADoSTKZTCQS2d4FADCsCbAAAAAACJoACwAAAICgCbAAAOiFLkIAILsEWAAAAAAETYAFAAAAQNCKsr0BAADoRqe+xWQyS/sAALJMBRYAAL0zBgsAyCIBFgAAAABBE2ABAAAAEDQBFgAAadFFCABkiyHuAACEytR2ACCKIhVYAAAAAAROgAUAAABA0ARYAACkyxgsACArBFgAAAAABE2ABQAAAEDQBFgAAAAABE2ABQBAHxiDBQAMPQEWAAAAAEEryvYGAADoXaeap2QyS/sAAMgGFVgAAPSNLkIAYIgJsAAAAAAImgALAAAAgKAJsAAAAAAIWiJpBCgAAH2XSAztN0lz7AFgGFOBBQAAAEDQBFgAAAAABE2ABQAAAEDQBFgAAPRHMplMdJpLBQAwOIqyvQEAAEiDqe0AMIypwAIAAAAgaAIsAAD6SRchADA0BFgAAAAABE2ABQAAAEDQBFgAAAAABE2ABQBA/xmDBQAMAQEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAMCDGYAEAg02ABQAAAEDQBFgAAAAABK0o2xsAAIA+6tSxmExmaR8AwBBRgQUAwEAZgwUADCoBFgAAAABBE2ABAAAAEDQBFgAAAABBSyTNvAQAIBMSCd8tAYBBoQILAAAAgKAJsAAAAAAImjJvAICcl0h86ccsfr/TRQgADAYVWAAAAAAETYAFAAAAQNAEWAAAAAAETYAFAEDGJJPJRKeJXAAAA1aU7Q0AADBQxqYDAPlNBRYAAAAAQRNgAQAAABA0ARYAAJlkDBYAkHECLAAAAACCJsACAAAAIGjuQggAQC7r1K7ojowAkI9UYAEAkGHGYAEAmSXAAgAAACBoAiwAAAAAgibAAgAAACBoiaQ5lwAADIJEwldNACAzVGABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAgyKZTCYSiWzvAgDIBwIsAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAYLAYgwUAZIQACwAAAICgCbAAAAAACJoACwAAAICgCbAAABhExmABAANXlO0NAABAhnRKypLJLO0DAMgwFVgAAAAABE0FFgBAPlOTBADkARVYAAAMLmOwAIABEmABAAAAEDQthAAA5AsdkgCQp1RgAQAAABC0RNK/UwEAMPgSCd88AYB+UoEFAAAAQNAEWAAAAAAETYAFAAAAQNAEWAAADIVkMplIJLK9CwAgJwmwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAgCFiDBYA0D8CLAAAAACCJsACAAAAIGgCLAAAAACClkgmk9neAwAAw0giMfhfQTtN2vKNFwBynAosAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAYEglk8lEpxlVAAA9Ksr2BgAAINNMbQeA/KICCwAAAICgCbAAAAAACJoACwCAoWYMFgDQJwIsAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAAAAgaAIsAACywBx3ACB9RdneAAAAWdMpQUoms7QPAIAeqcACAAAAIGgCLAAAAACCJsACACA7jMECANJkBhYAAHnNoC8AyH0CLACA4UuYAwDkBC2EAAAAAARNgAUAQNYYgwUApEOABQAAAEDQzMACACCvGfQFALlPBRYAAAAAQRNgAQCQTcZgAQC9EmABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAJBl5rgDAD0TYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAADZZwwWANADARYAAAAAQRNgAQAAABC0omxvAAAAhkqnLsVkMkv7AAD6RgUWAABBMAYLAOiOAAsAAACAoAmwAAAAAAiaAAsAAACAoCWSRlcCABCMRMIXVACgMxVYAAAAAARNgAUAAABA0IqyvQEAAEKUSHzpR119AEAWqcACAAAAIGgCLAAAApJMJhOdqr8AgGFPgAUAAABA0ARYAAAAAATNEHcAALpgajsAEA4VWAAAhMUYLACgEwEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAEBxjsACAi7kLIQAAw0+ndMw9FwEgbCqwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAgBCZ4w4ApBjiDgDA8GNqOwDkFBVYAAAAAARNgAUAAABA0ARYAAAEyhgsACAmwAIAAAAgaAIsAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAIFzmuAMAkQALAAAAgMAJsAAAAAAImgALAAAAgKAJsAAACJoxWACAAAsAAACAoBVlewMAAJBVncq7ksks7QMA6JYKLAAAAACCpgILAIA+UK4EAAw9FVgAAITOHHcAGOYEWAAAAAAETQshAADDmzZIAAieCiwAAAAAgpZI+hcnAAByQSLhuysADFMqsAAAAAAImgALAAAAgKAJsAAAAAAImgALAAAAgKAJsAAAyA3JZDKRSGR7FwBAFgiwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAgJxhDBYADE8CLAAAAACCVpTtDQAAQBg61XYlk1naBwDQmQosAAAAAIImwAIAAAAgaAIsAAByiTnuADAMCbAAAAAACJoh7gAAEEWRqe0AEC4VWAAAAAAETYAFAECOMQYLAIYbARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAAABA0ARYAALnHHHcAGFYEWAAAAAAETYAFAAAAQNAEWAAAAAAErSjbGwAAIE90mkmVTGZpHwBA3lGBBQBATjLHHQCGDwEWAAAAAEHTQggAAJfQDwkAIVGBBQAAAEDQVGABAJAZQ1+lFI/BSiqPAoB8pwILAAAAgKAJsAAAAAAImhZCAAC4hLZEAAiJCiwAAAAAgibAAgAgh8Vz3LO9CwBgcAmwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAAACAoAmwAADIbea4A0DeE2ABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAOc8YLADIbwIsAAAAAIImwAIAAAAgaEXZ3gAAAASsU2diMpmlfQDAsKYCCwAAAICgCbAAAMgH5rgDQB4TYAEAAAAQNAEWAAAAAEEzxB0AALpnajsABEAFFgAAAABBE2ABAJAnzHEHgHwlwAIAAAAgaAIsAAAAAIJmiDsAAIOrU1efqegAQF+pwAIAAAAgaAIsAADyhznuAJCXBFgAAAAABE2ABQAAAEDQDHEHAGBwmdoOAAyQCiwAAPKKMVgAkH8EWAAAAAAETYAFAAAAQNDMwAIAgDR0aks02QsAhpAKLAAAAACCJsACACDfmOMOAHlGgAUAAABA0ARYAAAAAATNEHcAAEiDqe0AkD0qsAAAAAAImgALAIA8ZI47AOQTARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAAABA0ARYAAPnJHHcAyBsCLAAAAACCJsACAAAAIGgCLAAAAACCJsACAAAAIGgCLAAA8pY57gCQHwRYAAAAAAStKNsbAACAnNKppCuZzNI+AGAYUYEFAAAAQNAEWAAAAAAETYAFAEA+M8cdAPKAGVgAAGSHWVIAQJoEWAAA0BeSNgAYcloIAQAAAAiaAAsAAACAoAmwAADIc+a4A0CuMwMLAIDsMEsKAEiTCiwAAAAAgibAAgAAACBoAiwAAPKfMVgAkNMEWAAAAAAETYAFAAAAQNAEWAAAAAAETYAFAAAAQNAEWAAADAvmuANA7hJgAQAAABC0omxvAAAAclankq5kMkv7AIA8pwILAAAAgKAJsAAAAAAImgALAIDhwhx3AMhRAiwAAAAAgmaIOwAA9Jep7QAwJFRgAQAAABA0ARYAAAAAQRNgAQAwjJjjDgC5SIAFAAAAQNAEWAAAAAAETYAFAAAAQNAEWAAAAAAETYAFAMDwYo47AOQcARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAAABC0RDKZzPYeAADgzzoNWB+kr6uJhG/CAJAzirK9AQAAyH1Dk7oBwHClhRAAAACAoAmwAAAAAAiaAAsAAACAoJmBBQBAWIZmflQymTTHHQByhQALAAAGTBAGAINJCyEAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAwTMVz3LO9CwCgdwIsAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAYPhyI0IAyAkCLAAAAACCJsACAAAAIGgCLAAAAACCVpTtDQAAQB7pNFErmczSPgAgr6jAAgBgWDPHHQDCJ8ACAAAAIGgCLAAAAACCJsACAAAAIGiGuAMAQOaY2g4Ag0AFFgAAw5057gAQOAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAACY4w4AQSvK9gYAAKB3ncKlZDJL+wAAskEFFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAEAUmeMOAAEzxB0AgBxgajsADGcqsAAAAAAImgosAAAYBJ26EZWQAcAAqMACAAAAIGgCLAAA+Jw57gAQJgEWAAAAAEETYAEAAAAQNEPcAQBgEJjaDgCZowILAAAAgKAJsAAA4M/McQeAAAmwAAAAAAiaAAsAAACAoAmwAAAAAAiaAAsAAACAoAmwAADgS8xxB4DQCLAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAOnMjQgAISlG2NwAAAHmtUxCWTGZpHwCQw1RgAQAAABA0ARYAAAAAQRNgAQAAABA0ARYAAHTBHHcACIch7gAAMJhMbQeAAVOBBQAAAEDQVGABAJDDOjX5qXYCgLykAgsAAACAoAmwAACga+a4A0AgBFgAAAAABE2ABQAAAEDQDHEHACCHmdoOAMOBCiwAAAAAgibAAgCAbpnjDgAhEGABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAAABBK8r2BgAAYHjoNAw+mczSPgAg96jAAgCAnrgRIQBknQALAAAAgKAJsAAAAAAImgALAAAAgKAZ4g4AAEPC1HYA6C8VWAAA0Atz3AEguwRYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAADQO3PcASCLBFgAAAAABE2ABQAAAEDQBFgAAAAABE2ABQAAAEDQBFgAAJAWc9wBIFsEWAAAAAAETYAFAAAAQNCKsr0BAAAYZjr1ISaTWdoHAOQMFVgAAAAABE0FFgAAeUiREwDkExVYAACQLjciBICsEGABAAAAEDQthAAAMLQ0NAJAH6nAAgAAACBoKrAAAMhDipwAIJ+owAIAgD4wxx0Ahp4ACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAA+sYcdwAYYgIsAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAAAAgaAIsAAAAAIKWSCaT2d4DAADknkRiwN+lO93K0DdzAOiGCiwAAAAAgibAAgAAACBoAiwAAAAAgibAAgAAACBohrgDAEA/ZWCOOwCQBhVYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAADQT8lkMpFIZHsXAJD/BFgAAAAABE2ABQAAAEDQBFgAAAAABE2ABQAAAEDQBFgAAAAABC2RTCazvQcAABgKnW4YmKkvwomEL9UAMLhUYAEAAAAQNAEWAAAAAEEryvYGAABg2Buk5kYAyBcqsAAAAAAImgosAACGi0EqbEomk+a4A8CgUoEFAAAAQNAEWAAAAAAETQshAABkm/ZDAOiRCiwAAAAAgibAAgAAACBoAiwAABio+EaE2d4FAOQtARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAAABA0ARYAAGSAOe4AMHgEWAAAAAAETYAFAAAAQNAEWAAAAAAETYAFAAAAQNAEWAAAkBnmuAPAICnK9gYAAIAvdMq/ksks7QMAwqICCwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACFoiaTAkAABkTiLhOzYAZJgKLAAAAACCJsACAAAAIGgCLAAAAACCJsACAAAAIGgCLAAAyKRkMplIJLK9CwDIK0XZ3gAAAGRTp6zJ/QMBIEAqsAAAAAAImgALAAAAgKAJsAAAAAAImgALAAAAgKAlksZUAgBApiUSvmkDQMaowAIAAAAgaAIsAAAAAIJWlO0NAAAAl0gkvvSjbkQAhjcVWAAAAAAETYAFAACZl0wmE52qqACA/hJgAQAAABA0ARYAAAAAQTPEHQAAwmNqOwBcRAUWAAAAAEETYAEAAAAQNAEWAAAMCjciBIBMEWABAAAAEDQBFgAAAABBE2ABAAAAEDQBFgAAAABBE2ABAMBgMccdADJCgAUAAABA0ARYAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0BLJZDLbewAAgHyWSAzgW3enmxj69g7AsKQCCwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoh7gAAMOgGNMcdAIa9omxvAAAAguPWfwAQFC2EAAAAAARNgAUAAABA0ARYAAAAAARNgAUAAABA0NwMBQAAhoIbEQJAv6nAAgAAACBoAiwAAAAAgibAAgAAACBoAiwAAAAAgibAAgCAoZBMJhOJRLZ3AQA5SYAFAAAAQNAEWAAAAAAErSjbGwAAANLQqf0wmczSPgAgC1RgAQAAABA0ARYAAAAAQRNgAQDAEHEjQgDoHwEWAAAAAEEzxB0AAHKBqe0ADGMqsAAAAAAImgALAAAAgKAJsAAAYOiY4w4A/SDAAgAAACBoAiwAAAAAgibAAgAAACBoAiwAAAAAgibAAgAAACBoAiwAABhSbkQIAH0lwAIAAAAgaAIsAAAAAIImwAIAAAAgaAIsAAAAAIJWlO0NAAAAfdFpAHwymaV9AMDQEWABAEBaMhgcxTciTMqeACA9WggBAAAACJoACwAAAICgCbAAAAAACJoZWAAAkFNMzgJg+DE5EgAAssMcdwBIkxZCAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAAAAgaAIsAAAAAIImwAIAgOxIJpOJRCLbuwCAHCDAAgAAACBoAiwAAAAAgibAAgAAACBoAiwAAAAAgibAAgCArDHHHQDSIcACAAAAIGhF2d4AAADQd53qtpLJLO0DAIaCCiwAAAAAgibAAgAAACBoAiwAAAAAgibAAgCAbHIjQgDolSHuAACQg0xtB2A4UYEFAAAAQNAEWAAAAAAETYAFAAAAQNAEWAAAAAAETYAFAABZ5kaEANAzARYAAAAAQRNgAQAAABA0ARYAAAAAQRNgAQAAABC0RDKZzPYeAAAgV3WavT6QL9eJhC/nANA1FVgAAAAABE2ABQAAAEDQBFgAAAAABK0o2xsAAAAGIINTuAAgVAIsAADoP3kRAAwBLYQAABCEZDKZ6FROBQBEUSTAAgAAACBwAiwAAAAAgmYGFgAA5DJTuAAYBlRgAQAAABA0ARYAAITCHHcA6JIACwAAAICgCbAAAAAACJoACwAAAICgCbAAAAAACJoACwAAAICgCbAAACAgbkQIAJcSYAEAAAAQNAEWAAAAAEETYAEAAAAQNAEWAAAAAEETYAEAAAAQtEQymcz2HgAAgC9JJPr+Rb3TvQt9zwcgj6jAAgAAACBoAiwAAAAAgibAAgAAACBoAiwAAAAAgmaIOwAAhKg/c9wBIE+pwAIAAAAgaAIsAAAAAIImwAIAAAAgaAIsAAAAAIJWlO0NAABAvkkkvvSjUewAMEAqsAAAIETJZDLRKQkDgOFKgAUAAABA0ARYAAAAAARNgAUAAABA0AxxBwCADDO1HQAySwUWAAAAAEETYAEAQKDciBAAYgIsAAAAAIJmBhYAAOSXTkVbJnIBkPtUYAEAAAAQNAEWAADA/9/evcXYVdcLHF9rZlJKbZumJ9hyM8QAAVo65ZL0BXwwJyhpDRbCYBUQJCUaTbQnhIRoOSAPEOKpN2qUehLThLSlAYO2VrkkJPBCY2in1RDTBk2oPUUp9yK3Pes8LNjO7Jl29uzb+u21Pp/Mw1rTDf59ovOd///3ByA0AQsAAOIyxx0AEgELAAAAgOAMcQcAgHIxtR2A0rEDCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAgNBcRAgAAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAARGeOOwAVJ2ABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQ2VPQCAACA7miY+55lBa0DANplBxYAAPQBFxECUGUCFgAAAAChCVgAAAAAhCZgAQAAABCaIe4AANALBUxUN7UdgLKwAwsAAACA0AQsAADoDy4iBKCyBCwAAAAAQhOwAAAAAAjNEHcAAOgFE9UBoGV2YAEAAAAQmoAFAAB9wxx3AKpJwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAPqJiwgBqKChohcAAAB0WUPwyrKC1gEALbIDCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgtDQzwREAAPpNmvqbPAAVYgcWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAPSfLMvSNC16FQDQIwIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAADQl1xECEB1CFgAAAAAhCZgAQAAABDaUNELAACA6mo4AphlJfvfA4DOsAMLAAAAgNAELAAAAABCE7AAAKBfuYgQgIoQsAAAAAAIzRB3AAAoTK+nqJvaDkB/sgMLAAAAgNAELAAAAABCE7AAAKCPmeMOQBUIWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAQH9zESEApSdgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACENlT0AgAAgN5qmPieZQWtAwCaZQcWAAD0PRcRAlBuAhYAAAAAoQlYAAAAAIQmYAEAAAAQmiHuAABQMaa2A9Bv7MACAIAyMMcdgBITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAgJJwESEAZSVgAQAAABDaUNELAAAAJmjYRJVlBa0DAMKwAwsAAACA0AQsAAAAAEITsAAAAAAITcACAIDycBEhAKVkiDsAAMTSu6ntxsUD0CfswAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACC3NTGoEAIBySVN/zwegVOzAAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAICyybIsTdOiVwEAHSNgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAJeQiQgDKRMACAAAAIDQBCwAAAIDQhopeAAAAULSGw4ZZVtA6AGBqdmABAAAAEJqABQAAAEBoAhYAAJSTiwgBKA0BCwAAAIDQDHEHAIDKM7UdgNjswAIAAAAgNAELAAAAgNAELAAAKC1z3AEoBzOwAACgDzRkKEOrAKgUO7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEJLM+MfAQCg1NLUX/sB6G92YAEAAAAQmoAFAAAAQGgCFgAAAAChDRW9AAAAIIw0nfBqchYAMdiBBQAAAEBoAhYAAJRclmVpw9YqAOgrAhYAAAAAoQlYAAAAAIRmiDsAAPAxU9sBCMkOLAAAAABCE7AAAKD8zHEHoK8JWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAQCW4iBCA/iVgAQAAABCagAUAAABAaAIWAAAAAKENFb0AAAAgmIZRWVlW0DoA4CN2YAEAAAAQmoAFAABV4SJCAPqUgAUAAABAaAIWAAAAAKEZ4g4AAExkajsAwdiBBQAAAEBoaea3KwAA0J8aBrI3+Vf7NPVTAAB9xg4sAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQhopeAAAA0CKj2AGoCDuwAACgWrIsSxvuLwSA2AQsAAAAAEJzhBAAADiOho1ajiwCUBA7sAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAKgcFxEC0F8McQcAAI7D1HYAYrADCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAgCoyxx2APiJgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACENlT0AgAAgNgaZr1nWUHrAKC67MACAICKchEhAP1CwAIAAAAgNAELAAAAgNAELAAAAABCM8QdAAA4IVPbASiaHVgAAAAAhCZgAQBAdbmIEIC+IGABAAAAEJqABQAAAEBoAhYAAAAAobmFEAAASqVhpJUrBAEoATuwAACg0sxxByA+AQsAAACA0BwhBAAAmuBoIgDFsQMLAAAAgNAErMqp1Wqf/OQn04/98Y9/nPJjBw4cmDNnTv6ZU0455eWXX+7xOgEAaE2WTfgCgBIQsCpncHDw6quvrr/+7ne/m/yZLMtuueWWf/3rX/nrpk2bFi1a1KP1AQAAAEwkYFXRtddeW3+eMmBt3LjxmWeeyZ+/9rWvffGLX+zNwgAAKISLCAEILs3sKq6eWq126qmn/vOf/0ySZGBg4MiRI6ecckr9T//6179eeOGFx44dS5LkrLPO2rdv37x58wpbKwAAPZGmfjQAIC47sKpocHBw9erV+fPY2Ngf/vCH8X+6du3avF4NDAxs3rxZvQIAAACKJWBV1PFOEW7atOmpp57Kn2+//fbLL7+81ysDAAAAmMg+4Yqq1WqLFy9+5ZVXkiRZuHDhP/7xj8HBwUOHDi1ZsuTNN99MkmR4eHj37t2zZs0qeqUAAPSCI4QARGYHVkWNv4vw1Vdffe6555IkufXWW/N6ddJJJz300EPqFQAAABCBgFVdDacIN2/evGvXrvz13nvvXbJkSUHrAgCgAC4iBCAy+4Sra/wpwnPOOeeVV1557bXXkiT57Gc/++STT/rrCwBA1ThFCEBYdmBV1/i7CA8cOJDXqwULFvzqV79SrwAAmFqaTvgCgJ4QsCpt/CnC3MaNG88888xCFgMAAAAwJZuEK+3DDz9cvHjx0aNH89eRkZFt27YVuyQAAIrS1BHChl1XfpoAoCfswCqzy37znct+850TfGBoaGjp0qX11w0bNnR9TQAARGWOOwBhCVhV9+c//zl/WLRo0emnn17sYgAAAAAmGyp6AXTRrP+Ye+IP/P3vf89vIUySZHh4uPsrAgCgzzkzCEAR7MAqreUb1jQ8TDY6Olp/FrAAAACAmASs0pp79qKGh8n27t1bfxawAAAAgJgErHJq2HV1vE1YdmABAAAA8QlYlVbfgTVr1qzzzjuv0LUAAFA8FxECEJOAVU4NxwanPEX4zjvvHDx4MH9esmTJ0JCJ/gAAAEBEaeYakdJZvmHN3LMXjb+C8P2jb7998OW9/7WlwFUBANAX0tTPCACEY9MNAAAwEw1nDNUuALrPEcKyOeumy1r4IwAASixNJ3wBQN+xA6tsFiw7c8qJV1N+EwAAACA+O7AAAIB/cxEhAAEJWKWyfMOaNj8AAAAAEI2AVTb5UcHxVxDWX50iBACgA7JswhcAdJ+AVR5Nzmg3yh0AoGoUJwD6nSHu5fHu4dePHH49SfYXvRAAAACATkozv4IprytG70mS5PHh9UUvBACAPpOmflIAIBBHCAEAAAAITcACAAAAIDQzsAAAgJlL0wmvzhsC0E12YAEAAAAQmoAFAAAAQGgCFgAA0CjLsrThkCAAFEfAAgAAACA0Q9wBAICZM7UdgB6yAwsAAACA0AQsAAAAAEITsAAAAAAITcACAACm4CJCAOIwxB0AAGhJQ94y1h2ArrEDCwAAAIDQBCwAAAAAQhOwAAAAAAjNDCwAAKiW5kdX5XPcM8OtACiagAUAALRE2AKgVxwhBAAAACA0AQsAAACA0AQsAAAAAEIzAwsAAKqlw6Ormp8JDwCtsgMLAAA4rvwiwqJXAUDVCVgAAAAAhCZgAQAAABCagAUAAABAaIa4AwAAbTC1HYDuswMLAAAAgNAELAAA4ERcRAhA4QQsAAAAAEIzAwsAAGhPw/4sU7EA6DQ7sAAAAAAITcACAAAAIDQBCwAAmIY57gAUS8ACAAAAIDRD3AEAgPaY2g5AlwlYAABQXe4PBKAvOEIIAAAAQGh2YAEAAG2zlQuAbrIDCwAAmJ6LCAEokIAFAAAAQGgCVhVt27Ytnc4NN9xQ9DJnZsWKFfXFX3755cf72L59++bPn59/bGBg4JFHHunlIgEAosmyCV8AEJOAVUX79u2b9jPDw8M9WEkH3XnnnfXnZ5999plnnpn8mcOHD69cufKtt97KX++///5rrrmmR+sDAAAAWiVgVdHo6Oi0n+m7gLVy5cqLL764/nrvvfc2fODYsWNf+MIXDh06lL9+/etfv+2223q3PgCAcrOVC4BucgthFZ122mmrVq1q+Obo6OhLL72UP8+fP/+SSy7p+bratX79+tWrV+fPu3bt2rt37/Lly/PXsbGxNWvWPP/88/nr5z//+QceeKCQRQIAAAAzJWBV0YMPPtjwnYMHD47fvrRp06aFCxf2dlEdcNVVV1144YX79+/PX++7776tW7fmz+vWrfvtb3+bPy9btuzhhx8eHBwsZpUAAH0rv4gws8EKgJ5zhJDkvffeGxkZqU+G+sY3vjEyMlLsklqTpun69evrr9u3bz9w4ECSJD/96U9/8pOf5N887bTTdu7cOW/evGKWCABQbmk64QsAOkTAIrntttv27NmTPy9fvnzDhg3Frqcd11xzzfnnn58/j42N3X///Tt27Fi3bl3+nblz5+7YseOMM84oboEAAADAjAlYVffoo4/Wp0HNnTt327Zts2fPLnZJ7RgYGPje975Xf928efOXvvSlWq2WJMng4ODWrVsvuuii4lYHAAAAtELAqrS//e1vt9xyS/31F7/4xbnnnlvgejriuuuuO+ecc/Ln999//9ixY/nzj370o5UrVxa3LgAAAKBFAlZ1ffDBB9ddd93rr7+ev65du/bLX/5yoSvqjMHBwe9+97sN31y3bt23vvWtQtYDAFAm+Rz3olcBQOUIWNV1xx137N69O39eunTpj3/842LX00FXX331+IOQS5cu/cEPflDgegAAqiLLJnwBQIcIWBW1c+fO+rD2T3ziEw8//PDJJ59c7JI6Jcuym2+++d13361/54UXXjh48GCBSwIAAADaIWBV0aFDh7761a9mH/9O7Gc/+1n95r4SuP322x955JHx36nVavfcc09R6wEA6BdpOuGr0H8LAEwgYFVOrVZbs2bN0aNH89ebbrrpxhtvLHZJHfTzn/+8flpw/J6yLVu2/OUvfyloUQAAAEBbBKzKufPOO5999tn8+fzzz9+4cWOx6+mg3//+9/VJ7SeddNLjjz9+ySWX5K+1Wu373/9+cUsDAAAAWidgVcsTTzxx33335c8nn3zy9u3b58yZU+ySOmV0dHRkZKRWq+Wvv/zlLy+77LK77rqr/oGtW7e+8MILxSwOAKBEXEQIQO8JWBVy5MiRG264YWxsLH994IEHlixZUuySOuXw4cOrVq1666238tf169dff/31SZKsWrXq0ksvzb85NjZmExYAAAD0ozRzu215XTF6T5Ikjw+v/+j1iiueeOKJ/Hn27Nmf+9znpvzV2ZYtW2bPnt2zRbbv7bff/sxnPrNnz578dWRkZOvWrfX/azt37ly1alX+PDAwsH///gsuuKCYhQIAlEWa+jkCgJ7yH54yGx+w3njjjQULFkz7j5xxxhkvvfRStxfWQbVa7aqrrtq5c2f+umLFiqeffrohwK1YsWL37t3588jIyLZt23q9SgCAcpkmYDX8ltRPHAC0zRHCqti/f38zH1u2bFm3V9JZ3/72t+v16lOf+tRjjz02efvY+ElY27dv/9Of/tSz5QEAAADtE7CqosmANTw83O2VdNAPf/jD+i2K8+bN27Fjx6JFiyZ/7Morr1yxYkX+nGXZ3Xff3bslAgAAAG1zhLCc0vTFhu9k2acLWQkAAKV0olOEjhAC0Gl2YJVNmr44uV6d4Pv96K6Lz/71f15U9CoAAACAHhGwSmXaRFWahrX604uTW69Mbr2y6IUAADBJlk34AoC2CVjl0WScKknDOnVhcurCJEnyjGVDFgAAAJTYUNELgDbkDStJVifJR7uxHtxV4HIAAEgSM7AA6DwBqyRmtK8qTV/s+5nu8+ckSZK8+c5Hrx+XrOS/v5L836tJomQBAHRXlmUnmuMOAB0lYNHP8ow13pvvfBSz8pIlYwEAzJwdVABEI2BV1cZvFr2C7hiftObPSf5n7Ue7tO5+qKgVAQAAAG0yxB0AAACA0OzAqqpvbix6BW3437OP+0f1qVhJ4gghAEAxsmzCKcQ0dQoRgDYJWPSz8bmqzhB3AAAAKBcBqySy7NPNX0TY91cQJpPSVR6tEt0KAKADmtwv5SJCAHpGwKKffdytfv3ikdVP7il2LQAAAECXCFjl0eQmrDJsv0oat1ytLnIpAAAAQHcJWKUybcMqSb2y5QoAIDjnCgHoKEfWy2lyxipNugIAII4TzcAafxFhImkB0BYBCwAAaN1xG5aABUDnDBS9AAAAAAA4ETOwAACAKdhBBUAcdmABAAAAEJqABQAAdEHDlq2GDV0AMBMCFgAAAAChCVgAAEDrsixL7a4CoMsMcQcAAKZgajsAcdiBBQAA9ISNWgC0SsACAAC6wyYuADpEwAIAAAAgNAELAAAAgNAELAAAoC0uIgSg29xCCAAAHFdDmDLVCoBC2IEFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAA7Wp2jrtZ7wC0xBB3AADguNqd2p5lohUA7bMDCwAAAIDQBCwAAAAAQhOwAAAAAAjNDCwAAGAaDWOs2h2MBQAzZAcWAADQAc1eRAgAMydgAQAAPSRyATBzAhYAAAAAoQlYAABAN5mYBUDbDHEHAACmoUEBUCw7sAAAAAAIzQ4sAACgKQ3j1ydvy8ovIszs1wKg0+zAAgAAestFhADMkIAFAAAAQGgCFgAA0GUOFQLQHgELAAAAgNAMcQcAAJrSzD4qc9wB6AYBCwAAaNa0FxECQDc4QggAAPSciwgBmAkBCwAAAIDQBCwAAKD7nDYEoA0CFgAAAAChGeIOAAA0y0WEABRCwAIAAGbARYQA9J4jhAAAAACEJmABAABFaNjKBQDHJ2ABAAAAEJqABQAAAEBoAhYAADADDVPbpzwImF9EOM0/CQBNE7AAAAAACE3AAgAAACA0AQsAAGhL69cJuogQgOYIWAAAAACEJmABAAAz08w09qnnuANASwQsAACgV1xECEBLBCwAAKBd9loB0FUCFgAAMGO2UgHQSwIWAAAAAKEJWAAAAACEJmABAABd4SJCADpFwAIAADpAqgKgewQsAAAAAEITsAAAAAAITcACAABakWVFrwCAyhCwAACAzjAGC4AuEbAAAIBucREhAB0hYAEAAB0zTa0SswBoiYAFAAC0yBgsAHpDwAIAAAAgNAELAADoJMcEAeg4AQsAAGjdtKcI/z3HfXLZcgQRgOYIWAAAQIfZhAVAZwlYAABA92laALRBwAIAANoy5UHA8cHKQUEA2iRgAQAAXTHNpisDsABomoAFAAC063gxKk0dHgSgAwQsAACg52y/AmAmBCwAAKADZpCk1CsAZkjAAgAAOkOYAqBLBCwAAKCHVC4AZi7N/PcDAADotMmj2/3kAUDLhopeAAAAUEJyFQAd5AghAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaP8PDK6Z8cbA8oEAAAAASUVORK5CYII=",
       "text/plain": "<IPython.core.display.Image object>"
      },
      "execution_count": 2,
@@ -132,8 +132,33 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
-   "outputs": [],
+   "execution_count": 1,
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/many/miniconda3/envs/NTRfC/lib/python3.10/site-packages/scipy/optimize/_basinhopping.py:291: OptimizeWarning: Initial guess is not within the specified bounds\n",
+      "  return self.minimizer(self.func, x0, **self.kwargs)\n",
+      "/home/many/miniconda3/envs/NTRfC/lib/python3.10/site-packages/pyvista/core/filters/poly_data.py:2848: PyVistaFutureWarning: The default value of the ``capping`` keyword argument will change in a future version to ``True`` to match the behavior of VTK. We recommend passing the keyword explicitly to prevent future surprises.\n",
+      "  warnings.warn(\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAZACAIAAACubhnwAACCr0lEQVR4nOz9WZSV5Z3w/V+7BiioKgaVAhMZlUHKiDiBCEoQEzM4xCHpjp08PaT7v9L/PunVaz1HvZZ68J5krf/bJ8/bz9P/TifGVhONxikSo4iYKJMKDkCYZBKUQRBrouZ6D7buINSwd9Uerr3353O0qbr3ve99lyd+1++67kRfX18AAAAAgFhVFPoCAAAAAGAwAhYAAAAAUROwAAAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQNQELAAAAgKgJWAAAAABETcACAAAAIGoCFgAAAABRE7AAAAAAiJqABQAAAEDUBCwAAAAAoiZgAQAAABA1AQsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUROwAAAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQNQELAAAAgKgJWAAAAABETcACAAAAIGoCFgAAAABRE7AAAAAAiJqABQAAAEDUBCwAAAAAoiZgAQAAABA1AQsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUROwAAAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQNQELAAAAgKgJWAAAAABETcACAAAAIGoCFgAAAABRE7AAAAAAiJqABQAAAEDUBCwAAAAAoiZgAQAAABA1AQsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUROwAAAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQNQELAAAAgKhVFfoCAAAAKIwHHnig0JcADNN9991X6EvIKxNYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUROwAAAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQNQELAAAAgKgJWAAAAABETcACAAAAIGoCFgAAAABRE7AAAAAAiJqABQAAAEDUBCwAAAAAoiZgAQAAABA1AQsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUasq9AUAAABAuXv88Xu2b58fQrjzzt9cfvl75x6wadM1q1Z9M4Rw5ZWbb7vtuXxfX2RycTdefPHmdeuWhBCWL1+7fPmrWTknWWQCCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUbOJOwAAAMTuK1/ZOmPG/hDCmDHthb6WwnM3ypCABQAAALEbM+b0mDGnC30VsXA3ypCABQAAQPFpbx+9bt2SQ4cuOnJkSlVV9+TJx2bO3Lto0cbKyt48X8mhQxft3Dln//4Zzc3jWlrqKiu7a2tbL7zwo4sv3nv55e9WVXVn5VPa22taWmpDCDU1HXV1LYMc2dNTuXfvrJ075xw+fFFLS11b25ixY0/X1TVfdNHhOXN2zpq1r7KyJ6OP7uys3rHj0m3bGo8fn9TcXF9V1TVuXPOFF340f/72iy/ek8Ubnv7fNP270dubOHBg+q5dcw4enNbcXN/aWjtmTHt9fdPkyUcbG7fNmrV3GNff3V25d++sHTsu/fDDC5ub6zs6Rk+Y8OnEiScbGo4tXLjlggtOZHpC0pHo6+sr9DUAAABQAA888EChL2GY3n//4meeua2padxZP29oOHbXXb+ZPPnomT/ctOmaVau+GUK48srNt932XDrnf/TRv9y1a04I4e67n7jssm0DHbZ376zVq2/68MMvDXRAXV3r4sUbrr76jZqajrN+tWbNV//whxuGvJJvf/u3V1/9Vprfoq8v8c47l7/yylc//XT8QCecMOHTFSvWfOUr7yUS/deAsz5o167Zzz//rYFOeP75J771rVWzZu0d8osMKRd/0+3bL12z5qaPPz5/oAPq6lpuueX3l122NYTw4os3r1u3JISwfPna5ctf7ff4vr7Eu+9evmbNik8/Pfs6U2bN2nvjja9On35woAOy5b777sv1R0TFJu4AAAAUk5MnJ/7qV99LlY4JEz5NzeAcO9bw2GPf6+yszvU19PRUPvfcrQ899IMz69XYsW0NDcfr6loSic9+0tJSu3r1Tf/+7//f48cn5fqSTp+uefjhv3r66TtSsamioq++vnny5GN1dS2pXHXq1Pjf/OY7v/rVX3R2jhrynBs2LH700e8nT5hI9NXXtzQ0HKura019wRMnzn/ooR8ku89IZP1v2tlZ/dhj33388e+m6lUiEWprWxsajtXXN1dUfHY3Wlrqnnjirkcf/X5X19Dnb28f/cgj9z711B2pelVZ2TNhwqnJk4/V1/95Cmzv3lm/+MVfv/769RldMEOyhBAAAIBi8uyztyVzw5QpR++668lJk46HEA4enPrEE/c0NdWfPDnxlVe++vWvv5i7C+jqqnr44b86cGB68p8TJ5667rp1l166o76+OXXA/v0zNm26ds+e2X19oamp/mc/+5t77330oosOpU4yceKp5DbkScePN7S2jg0hTJr0cW3tn2tI6pyDa22t/dnP/vbEifOS/7zoosOLF2+YPXv36NGfTX61tY3ZtWvu668vSaa0nTvn/Oxnf/s3f/Pz1AHn2r17zubNV4YQ6utbli37Q2PjttratuSvmprGbd162R//uPT06TEhhBdfvLm6uuuaa95I51L7ld2/aXv76Acf/OsjR6Yk/3n++SeWLFk3b96O1PV3dIzas2f2pk3XJP+Iu3bNfvjheydN+niQc7a1jfn5z/8mFSKnTDmyYsUrM2fuq67uSv6kpaVu+/ZLX311eWvr2N7exEsvrfzoowvvuuuJVOxjhAQsAAAAikZzc93+/TNCCNXV3d/73q8mTjyV/Pm0aR984xurHnvseyGEnTvn5TRgPfPMHal6tWzZH2+88dWqqi/sKlVd3T179p7Zs/e8//6sJ5645/TpmtOnx/ziFz/80Y9+OnnyseQxCxduWbhwS+otjz9+z/bt80MIy5b94fLL38voenp6Kh577LvJelVZ2fOtbz1/5ZVbzjpm7NjTV1zx9uWXv/vaa0tfeeWrfX3hyJHJTz99x3e/+9hAhaW5uS6EcPHFe++559c1NV942N+4cU1Llqy74oq3H330+4cOfTmE8NJLN8+Zs3P8+KaMrjz1QVn8m/b1JZ588u5kvUokwvLlryxb9lpFxRc2uho9urOxcVtj47Zt2+Y/++ztHR2jDhyYfvDgtIHO2dub+PWv70nWq9GjO1esWHPNNZtSY1xJdXUt1177xuWXv7d27fINGxaFELZubbzwwg+vv35dBveCgVlCCAAAQNE4evSzsZqLLjqUKh1Jc+bsTm5PfvLkxLa2MTm6gDffvGrr1sbk69tvf/amm9acVa/OdPHFe//hH/7/ySmqrq7qF164JReX9Mc/LkvGl8rK3r/6q0fOrVcpFRW9N9zwh1tv/WzTqD/9ad4771wxyJknTfr4e9/71Vn1KmXs2LYf/OC/x45tCyF0dlZv2LB4eNef3b/phg2Ldu++JISQSITvfOc3N974h7Pq1ZkaG7f/3d/9NPkV+voGnJVat+76fftmhhASib577vn1okUbz6pXKTU17bfc8sKyZX9M/vPll2/64IOL0rlshiRgAQAAUDROnZqQfDFmzOmzflVZ2fOP//i///Ef//0f//HfR43qysWnd3ZWr127PPn6uuvWnzlCNZCJEz+5887fJLeg2rdv5o4d87J7Sa2tY9ev/2wLqptvfnHmzH1DvuXKKzenIterr97Q2ztgGbj++tcGv5OjR3csWrQx+fq9976S7kV/URb/ph0do/74x8+2xl+69LV0ZtkaGo7fc8+vBwpSIYT29prXXvtsQ6sVK9ZccsmeIc+5YsWauXN3hRB6eyteeWXFkMeTDgELAACAonHBBZ9tVHTgwLRzN94+//wTDQ3HGxqOV1V15+LT3357YUtLXQihrq5lxYpX0nzXzJn777nniZUrV69cubq7O8s7+WzefFVHx6gQwgUXnFi0aFOa71q5cnVy86ZPPpm4c+fcfo8ZM+Z08vF8g7v22k3JGbSWlrpBns03iCz+TbdsWZgc1Bo3runGG9emeQEzZ+6/4ooBW+TmzVe2t9eEEKZMObJ06WvpnDCRCHfc8XTytuzbN3OQh0KSPgELAACAojF58pHKyt4QQmtr7RNP3N3RMTqfn56an1q8eGNq9+50zJ+/fenS15cufT2dJJSRnTvnfH5JG1KPGhzS2LFtCxa8k3y9Z88l/R4zZcrRQVZHpowZ054qUMN72GIW/6apGHfddRvSufiUG2/8w0B7gaXOuWDBu+nvyD5mzOl583aEEPr6wjvvLEj/ShiIgAUAAEDRGDOm/cYbX02+3rlzzv/6X/+0YcPi5AhSrnV1VaX2bk+2iYLr6Bh1+PCXk69nz96d0Xtnz/5sKdzevTP7PaCurqXfn59rwoRTyRft7cPZeixbf9OurqqDBz/7A82dm9kfaPz4T7/0pQ/P/XlnZ/UHH0wNISQSfY2NmcXH1ArTPXsuzuiN9MtTCAEAACgmS5f+8eDBacko0Nxc98ILX3/lla9eccXb11yz6YILTuTuc5ubx/X0VIQQamo6UjNHhdXcXJ/cenzs2NPjx3+a0Xu//OXDyRdNTeP7+sK5s0VVVemOmI0a1Zl80dl59gLANGXlb9rcXJ/8A40Z037eeZ9keg0XXXTo8OEvnXvO3t5ECKGysufpp+/I6IR9fZ/NDJ08eX6mF8O5BCwAAACKSUVF3/e//8jrry9dt27J6dM1IYSOjlEbN167adO1Cxa8vXLl6rq61lx8bnNzXfJFXV1zLs4/DMkNuUIItbXpTkuljB3bmkiEvr7Q01PR3j7m3A3U01+QmNqd6swdvh566Ad7984a5F133PH0FVd8towxK3/T1N1If3bsTPX1TYOcs7u7avCvM4i2trHDeyNnsoQQAACA7Lv//vtyd/KKir5ly/74z//8f3/rW89PmvTZMFRfX3j77Sv+z//58cmT543w/MmxpnM/dISnzbrKys+2eer3ggeXSPQlEr3J18khoxHIwp3Jxt/0s28xvK+TGpj64lX1DuNUZ+ntTfT0VI78PGXOBBYAAABZlqxX999/3/33P5C7Txk1quuaa968+uo39+yZ/eqrNxw6dFEIoaWl9uGH7/2nf/p/Uukh9aK7O90Fbv0emRq8Sk3lFFxt7WdzSa2tGV9Se/uY3t6KEEJFRd/YsWePX43cnDm7zjvv5CAH9Ls2MM2/ab9Sg1fD+wM1N9cPcs7Jk4/9+Mf/exinJVsELAAAAHIl1w0rhJBIhNmzd8+evXvt2uVr194YQjh58rzt2+ennvc3atRnezm1ttamec729n4ehFdf31xV1dPdXdneXvPxx+fndL+tNNXXN1dW9vb0VJw+XfPJJxMmTjyV/nuPHWtIvqira0l/tWD6Fi/eOOz3Dvk37Vd9fVNFRW9vb0VHx+hjxyY1NBzP6EMPHpza3zk/+6OfOHF+T09F8mmJFIQlhAAAAGRTThcPDmL58rUXX7w3+fr99/+8XVFNzWfjRS0t6QasfnfdrqrqmTFjX/L1jh2XDv9Cs6e6unvatIPJ13v2zM7ove+//9mj8WbM2J/dq8qigf6m/aqu7p4+/UDy9Y4d8zL6oE8+mXjkyJRzf576o3d3V+7endkd7ugY3dY2pq1tzJlbgzFsAhYAAABZc269ymLPam+v2b9/+v79048cmdzvAbNn706+OHVqYuqHqScGfvLJeV1dQ68iPHhwWkfHqH5/NW/ejuSL9esXZ/TEvY8/viB55YcPfzn9d6Vj9uxdyRcbNixKfyes7u6qzZsXJl9fcsme7F5SRob3Nx3IvHk7ky82blyU0R/oD39YlsY5F6d/wtbW2n/7t3/+yU/+509+8j+PH78g/TcyEAELAACA3MpWwzp5cuKDD/71gw/+9WOPfa/fA/p9PuDEiadqatpDCJ2d1Tt2zB3yUzZtunagX11xxTvjxjWFEFpba1evvjnNy/7wwy/9x3/8f5JXvmtXZlM8Q7ryyi3Jb3fixPkbNw545WdZt+665EZRdXUtl166PbuXlJHh/U0HsnDhluS+YK2ttS+/vDLNd+3fP+Odd64Y6LcLFrxdX98cQti3b8a7716e5jlXr16ZXIg6e/aeCy88kua7GISABQAAQHbkevHghAmnEokQQvjkk4n9btR97NhnUzzjx3+a+mEi0Zcaotm0aVFy5/KBHDky+U9/GnB5YFVV94oVr3x+qmsGSV0pp06N/+Uv/7KrqyqEMH580/XXrxvyLRmpqWlfsuSzc7700tf27Zsx5Fv27Zuxdu3y5OulS1+rru7O7iVlZHh/04GMGtW5fPmrydcbN1775ptXD/mWEyfOf+KJuwd5cGF1dXfqnM89d+vBg9OGPOemTde8/fYVIYSKir4bbnh1yONJh4AFAABAFgxer7LStsaOPX3hhR8lX7/88k1n/fb06TFvvXVV8vXMmXvP/NWiRRuTleSDDy56/vlvDtSwjh6d/PDDf9XTM9j/KV9xxdsLFryTfL1q1Td+//uvDbLD0b59M/7zP/++ubkuhFBR0Xv77c+MGtU5yMmH5/rrX0/u/dTTU/HII3+1ZcsVgxz83nuXPfLIvck7MGPG/muv3ZT168nIsP+mA7n66jfmz/9T8vVvf/utl15a2d1dOdDB778/67/+6++Sm6NNmjTgpu9XXfVWY+P2EEJXV9VDD/1gy5aFAx3Z01OxZs1XV636Zl9fCCF87WsvTp16KJ3LZkg2EgMAAGCk0ulTWXki4cqVqx966AchhC1brqiq6lq58uXRoztCCMePX/DUU99pbR0bQmhoOH7W4+ouvPCjRYs2btiwKITw1ltXffjhl5Yt++OcOburqj4bPjp58rzNm69cv35xT0/lhAmnxo9vOnBgwEGbW299rqWlPrmn+Pr1123b1rhkybpLL/3T+PFNqWM++OCiN9+8+r33Lk+O9lRU9N1551OzZqWVYDJVWdn73e8+/vOf/+3HH5/f3V35zDO3v/XW1YsXr7/kkj01NR3JY7q7q/bunblhw3V7985M/mTixE/uueeJiorsP38wU8P7mw4kkQjf+c5TLS21yVGp11+/fuvWy5YsWXfppTuSyz9DCL29Ffv2zXjzzWv+9KfP9npfvvzVzs7q48cnDXTa229/urm5/uDBqd3dVc88c9ubb161ZMn6Sy7Zk7zUEEJra+327fNff/36U6fGJ3+ycOGWxYs3DO+ecC4BCwAAgDwZecOaNWvvwoVvJ4eM3njjmjffvHrixFM9PZWffjoueUAiEW699bnKyt6z3vj1r/++paVu69bGEMJHH134+OPfrarqqa9vGj26o6WlPvWAwsrKnjvvfOq1164f5BqqqnruvfeRF1+8ecOGxSGEpqZxL7xwywsv3FJX11pX19LZWd3UNO7MsazRoztuu+25xsZtI/nig6utbfvRj376xBN379lzcQjh0KEvP/HE3RUVffX1zWPHtnV0jG5qGnfmINLUqYf+4i9+WVvblrtLSt+w/6YDqa7u+h//46FVq7751ltXhhA+/XT87373jd/97hvJP1BXV1VT07gzt/O/6qq3brxx7UsvDbap2ahRXT/84S+effa25DZYhw9/+de/vruionfcuKaamo5Tp8a3t9ecefySJetXrlydwV1gKAIWAAAAI5Lrra/O8s1vPj92bOv69df19lb09SVOnvzzw+nq65tvvfW3U6d+cO67Eom+u+56curUD9asWZF8yGB3d+Unn3zhwXb19c3f/e7jU6ceCmGwgBVCqKjoveWW31966Z/WrLkpNavV0lKbCmGpwxobt99880up2Z/cqalpv/feR9577yuvvLI8+b16exOffjoulYGSxo49fcMNf7jmmjcqK3tyfUnpG97fdBCVlT233vpcY+O2NWtWHDr02ZMfz/0DjR7d+a1vPX/55e+mc86qqp4773yqsXHb6tU3Jx8s2NtbcerUhLMOmzLl6E03rZ49u5DPdixJib6+wo8LAgAAkH8PPDDSBX1hWPVq5AsJQwhHjkxZv37xwYPTW1rqEoneCRNOzZ69e+nS18aMaR/8jW1tY3bsuHTHjrknTpzf0lLX21tRV9dy3nmfNDZubWzcnlwRtn37/GRDmTt356RJHw9+wo8+mrJr15y9e2c1NY1raalLJMLYsW0NDcdmzNjf2Lj1zHWF+dHTU7F//8zdu2d/8MHU5ua6trba6urO+vqWyZOPzp27c/bsXaNHZ38frqwY9t90cIcPf2n37jn79s1M/oEqKnrq61smTvxk/vxt8+dvT92NfftmHD785RDCtGkHp00brJf19iYOHJi+c+e8gwenNjfXt7WNralpr69vnj794Jw5O2fN2psYcEf4bLrvvryG44ITsAAAAMpUoQJWyFLDgnJWbgHLUwgBAAAYpjwvHgTKloAFAADAcIykXilfQEYELAAAADI28gKlYQHpE7AAAAAoDA0LSJOABQAAQGaEJyDPBCwAAAAykN16pYUB6RCwAAAAKCQNCxhSVaEvAAAAgGJy//0PFPoSgLJjAgsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUROwAAAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQNQELAAAAgKgJWAAAAABETcACAAAAIGoCFgAAAABRE7AAAAAAiJqABQAAAEDUBCwAAAAAoiZgAQAAABA1AQsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUROwAAAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQNQELAAAAgKgJWAAAAABETcACAAAAIGoCFgAAAABRE7AAAAAAiJqABQAAAEDUBCwAAAAAoiZgAQAAABA1AQsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUROwAAAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQtapCXwAAAABA/lyzadM3V60KIWy+8srnbrstK+e8+cUXl6xbF0JYu3z5q8uXZ+WcnMkEFgAAAABRE7AAAAAAiJqABQAAAEDUBCwAAAAAomYTdwAAAKCMbP3KV/bPmBFCaB8zptDXQroELAAAAKCMnB4z5rR0VWwELAAAAIrJlCNHZu7dG0I4Nnny+xdfnPxhRW/vrL17L9u6ddKxY+Oam8e0tbXV1jbX1x+cOnXnvHkHpk3rq8hsC53JR49euXnzlw8dGt/U9P/7l3/p95jK7u5Ze/deumPHhR9+WN/cPLqj49MJE05OnHisoWHLwoUnLrggnQ8a3d6+ZN26iw4dmnLkSHdV1bHJk/fOnLlx0aLeysqsHJ8jebs/6Uv/ztS0t9e2tIQQOmpqWurqBjlnord3+oEDc3btmnbwYH1zc21ra/uYMU319UcnT97W2Lh31qxh3PY835aSkejr6yv0NQAAAFAADzzwQKEvYTiu2bTpm6tWhRA2X3nlc7fdFkK49E9/+uaqVXXNzQO95eNJk1avXLlz7tx0zvnbb3/7ay+9tHj9+uSvuquq/q9//dezjk/09V3+7rsr1qwZ9+mnA51z76xZr95448Hp0wf5Lhe///5tzzwzrqnprJ8fa2j4zV13HZ08eSTHn3ujhvSXjz46Z9euEMITd9+97bLL+j1VPu9P+nJxZy7dvv2mNWvO//jjgQ5oqav7/S23bL3sshDCzS++uGTduhDC2uXLX12+vN/js3tb7rvvviGPKSU2cQcAAKBYJXp773j66e8+9liqXvVUVn46YcKxhoa2sWNTh11w/Phf/PKXdz75ZFV395DnvOWFF1J1pl+j29vvfeSRO556KpUheiorT02YcGzy5Jb6+tRhs/bu/etf/OL6118f6DwTT5783q9+lWoun06YkJoGajh27HuPPVbd2TmS43Mkb/cnfVm/M9Wdnd997LHvPv74n+tVItFaW3usoaG5vj41zVfX0nLXE098/9FHq7u6hjxn/m9LibGEEAAAgKKUCOGbv/vdgrffTv5zx7x5m6+6au/MmT1Vn/2vbn1z89wdO5asXz/x5MkQwlfee2/iJ5889MMfdo0aNdA5Lzp0qOH48RBCT1XVOwsW7J8x48AXZ2HGtLX9zc9/Pun48eQ/j0yZ8sqKFftmzuyqrk7+pK6l5dLt25e/+urY1tZEb+/Kl1668KOPnrjrrpBInPVZtz37bDJ8HJ0y5cm77jo+aVIIYerBg/c88UR9U9PEkye/+sorL37968M+PhfyeX/Sl907M7q9/a8ffHDKkSPJf544//x1S5bsmDevrbY2+ZNRHR2z9+y5ZtOm6QcOhBBm79p178MPfzxp0iDnLMhtKTECFgAAAEVp7s6dY1tbQwgt9fVP3H33gXNWXTXX1795zTVbrrzyhj/84YZXXw0hXHTo0O3PPPPEPfcMdM6GY8dCCEemTHnqzjuPNTSc9dtEb+89v/51MkN0jh69ZsWKTddcc9buWi11dW9ce+17l1++fO3aRRs2hBAat2798MIL111//ZmH1TU3z9i/P4TQXV39q+9979TEicmffzBt2qpvfON7jz0WQpi3c2cqu2R6fI7k7f6kL7t3JtHXd/eTT35WrxKJV5Yvf23Zst4vfoXO0aO3NTZua2ycv23b7c8+O6qjY/qBA9MOHhzwnIW4LaXHEkIAAACKUrJenZo48T///u/PrVcpPZWVr3z1q8/cfnvyn43bti3csmWQ0zaPG/ezv/3bc+tMCOH6detm7tsXQuhLJH59zz0bFy0aaG/49pqaF2655Y/LliX/edPLL1/0wQdnHjDl6NHki0MXXZRqLkm758zpqawMIUw8eXJMW9vwjs+d/Nyf9GX3zizasOGS3btDCCGR+M13vvOHG2/sHXj7/+2NjT/9u79LLlZNDLzDeEFuS+kxgQUAAECx6q6u/tVf/EXTuHFDHvn2woVTjhxZtHFjCGH52rXvfuUrqZWGZ3lp5cp+1xjWtLdf/9pryddrVqzYc8klQ37omhUrJh87Nmfnzore3hWvvPLQD3+Y+tWEU6eSL06PGXPWu3oqK//3P/5jRU9PCCF1JZkenzv5uT/py+KdGdXRccMf/5h8/drSpe9dfvmQbzne0PDre+754X//d6K3t98DCnVbSo8JLAAAAIrVhkWLzn1U30DW3HRTclhm3KeffmXr1n6P6Rw9+r2vfKXfX125eXNNe3sI4ciUKa8tXZrWRyYST99xR7KUzdy3b/wZz577+IILki+mHThw7hbgJ84//3hDw/GGhu7PK1umx+dI3u5P+rJ4ZxZu2ZIc1GoaN27tjTemeQH7Z87ccsUVA/22ULel9AhYAAAAFKXeiop1S5akf3znqFFvXHNN8vXcnTv7PebkeecNtG126i3vLliQ/tbap8eM2TFvXggh9PUteOed1M+PTJ7cW1kZQqhtbb37iSdGd3QMfp5Mj8+RvN2f9GXxzqS+wobrrhtoQK9ff7jxxthuS+kRsAAAAChKB6dPPz12bEZv2TV3bvLFrPffD/1tWnTyvPP6fWN1Z+fUDz4IIfQlElsbGzP60C0LFyZfXLxnT+qH7WPGvPr5jM+cnTv/6X/9r8UbNowaOL5kenyO5O3+pC9bd6aqq2v65xux7/j8v5M0fTp+/Idf+tK5Py/gbSk99sACAACgKB3uLxkM7qMLL+ytqKjo7R3V2Tm2ra2ttvasA9pHj+73jfXNzclNjnoqK+94+umMPrTi81J2/smTZ/78j0uXTjt4MJkn6pqbv/7CC1995ZW3r7hi0zXXnPh8WdxIjs+FfN6f9GXlztQ3Nyd3y2ofM+aTATrdIA5ddNGXDh8+95wFvC0lRsACAACgKLXU1WX6lr5EorW2tr65OYRQ19JybsAaSF1LS/JFVXf3rL17M/3cpLFffBBeX0XFI9///tLXX1+ybl3N6dMhhFEdHddu3Hjtpk1vL1iweuXK1i9+wUyPz6es358fPPTQ4Od5+o473vl856ms3JnUVxjGf1chhKb6+kHOmcX/bMqWJYQAAABk333335/rj6jobw3gkPoqPvsf4YoBHhvXr96KLPzvc6K3t7Kn56yL+eOyZf/3P//z89/61seTJn3+074r3n77x//n/5x3zuhNpsdnfIXDuqUhZ/cnfSO/M6ntqQZ6nuDg+v2vseC3pZSYwAIAACDLkvXqvvvvfyCXGSs13pKR2tSgTX8jMwNJTeUcmzz5f//4x8P43EF0jRr15jXXvHn11bP37Lnh1VcvOnQoeZ33Pvzw//NP/3RuBEnz+NSL6u7uNK8k/SPPkvX7s2vOnIH220rqd21gpnfyTKmvMLz/rpJjfQOdMxf/2ZQbAQsAAIBcyWnD+vKhQ5m+peHo0eQwS3d1dWva6wdDCM319T1VVZXd3eefOFHR05N87F2WJRK7Z8/ePXv28rVrb1y7NoRw3smT87dv33rZZcM7vmvUqOSL2tbWNC9hdHv78K496/dn4+LFw39zpncyhBBCU319cn+00R0dk44dO97QkNFnTv18A/gz5eM/m7JhCSEAAADZlIfFg0lTDx0am3aaSZqza1fyxd6ZM/sSicEPPlNPVdW+GTNCCJXd3bN3787oQ0d3dIxpaxvT1laV3nzT2uXL9158cfL1rPffH/bxp2tqki9q0x4pGvZ+4fm8P+nL6E52V1cfmD49+Xrejh0ZfdDETz6ZcuTIuT+P87YUKQELAACArDm3XuWuZyV6e69bvz7946u6uhZt2pR8vXPu3Ew/bue8eckXizduTP9dta2t//xv//Y/f/KT//mTn1xw/HjyhzXt7dP375++f//k/qpHCGH37NnJFxNPnRrG8Ukff77I7rxPPqnu6hryUqcdPDiqoyON79S/LN6f9A3vzgwk9RUWbdxY3dmZ/mUs+8MfhjxnPm9LSRKwAAAAyK3cNaxFGzdOOnYszYNv/MMf6pqbQwjN9fXvXn55pp/19oIFzfX1IYQZ+/Zd/u67ab5r5erVyXV5e2bPPnLhhckfTjx58q8ffPCvH3zwe4891u+7mr/4ILxMj086NXFie01NCKG6s3NuGiNF135e94Yni/cnfcO7MwPZsnBhcmFpbWvrypdfTvNdM/bvv+Kddwb6bUFuS0kSsAAAAMiOvC0eTKnu6vqLxx5LZ9ftxq1bl772WvL12q9+tbu6OtPP6q6ufnX58uTrW597blp/ex6d5ZpNm654++0QQl9Fxas33JD6+akJE0IiEUKY+Mkn/V785M+r3Kfjxw/j+KS+ROLPI0WbNg3+1MXJR45c+qc/DfmNBpHF+5O+4d2ZgXSOGpX6Ctdu3Hj1m28O+ZbzT5y4+4knBnlwYUFuS0kSsAAAAMiCwetVLtrW6bFjQwjnnTjxo//8zy8dPjzQYYne3utfe+2uJ58MfX0hhO2NjZuvvHJ4n/jWVVdtb2wMIVR1df3goYcWbtky0JEVPT1fXbPmm6tWJT/0xa997dDUqWde+Uefj9XcdM6kz5jTp696663k670zZw7j+JSNixYl+85FH3zwzeefH6hhTT569K8efriip2fgr56WbN2f9A37zgzkjauv/tP8+cnX3/rtb1e+9FLlwFtQzXr//b/7r/9KbjF2fNKkgQ7L/20pSZ5CCAAAwEil06ey/kTCHfPm9VRWXv3GG+M//fTvf/rTrZddtnnhwgPTp6ee9Ta2rW3Ozp1L1q2b9PkuQh9Mnfr0HXeM5EOfvv32+ubmqQcPVnV33/bMM1e9+eb6JUv2XHJJx+jRyQNqW1vnb99+/euvj/9806UtCxduOOeZeqtXrvzBQw+FEK7YsqWrqurllSuTZ7jg+PHvPPVUcnP64w0NqQfnZXp80kcXXrhx0aJFGzaEEK56660vffjhH5ct2z1nTnfVZzXgvJMnr9y8efH69ZU9PacmTGgaP37agQMx3J/0De/ODCiReOo736ltaUmOSl3/+uuXbd26bsmSHZde2jRuXPKQit7eGfv2XfPmm/M+n1l7dfny6s7OSQNvVpX/21J6BCwAAADyJLsNqy+EVd/4RnVn54J33gl9fZe9995l773XXV3dXF/fMXp0bWtrXXNzoq8vdfw7CxY8d+utPVUj+h/hrlGjfvHDH9727LPJ/Yy+fPjw3b/+dW9FRdO4cR01NeNPnappbz/z+PVLlqxeufLc8+ydNevthQuv2LIlhHDNG29c/eabpyZOrOzpGffpp58dkUg8d+utqRiX6fEpv//61+taWhq3bg0hXPjRR999/PGeqqqm+vqO0aPrW1pSDyjsqax86s47r/98lWXB70/6hn1nBvwK1dUP/Y//8c1Vq658660QwvhPP/3G7373jd/9rrWurqWurqqra1xT05mb4r911VVrb7zx5pdeGuyceb8tpUfAAgAAYETyv/VVSl9FxdPf+c6uuXO/uWpVssVUdXVNPHnyrMOOTZ788k037ZozJysf2lNV9dSdd25rbLx59erkE+IqensnnPOQu6NTpqy+6aY9nz8F71zPf/ObrWPHXrd+fUVvb6Kv78zLbq6v/+2tt37wxeVjmR6f1JdIPHnXXR9MnbpizZrkQwYru7snfvLJmcc019c//t3vHpo69fr078LAsnV/0je8OzOInsrK5269dVtj44o1a7586FDyh7Vn9L6kztGjn//Wt9J8IED+b0uJSfSdUaMBAAAoHw888MDITzKMejXCIaxrNm365qpVIYTNV1753G23JX9Y0dNzyZ49l23bNun48fqmppr29tba2ub6+gPTp++aO/fgtGl9icRIPrRfid7e6QcOzNu5c+rBg/XNzWPb2tpraprr6w9On75zzpy9s2aFND50ypEji9evn37wYF1LS28icWrChN2zZ7+2dGn7mDFZOT5lTFvbpTt2zN2x4/wTJ+paWip6e1vq6j4577ytjY3bGxuTa9nmb9+erD875879eOBNndKUlfuTvmHfmcF96fDhObt3z9y3b1xTU11LS09FRUt9/ScTJ26bP3/7/Pmdn68BnLFv35cPHw4hHJw27YNp0wY5YbZuy3333TeS71V0BCwAAIAyVaiAFUbWsPoNWFBuyi1geQohAAAAw1TAxYNAWRGwAAAAGI6R1CvlC8iIgAUAAEDGRl6gNCwgfQIWAAAAhaFhAWkSsAAAAMiM8ATkmYAFAABABrJbr7QwIB1Vhb4AAAAAytp999//QCYZ641rr33j2mtzdjlAjAQsAAAAMpBRbALICksIAQAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQNQELAAAAgKgJWAAAAABETcACAAAAIGoCFgAAAABRE7AAAAAAiJqABQAAAEDUBCwAAAAAoiZgAQAAABA1AQsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUROwAAAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQNQELAAAAgKgJWAAAAABETcACAAAAIGoCFgAAAABRE7AAAAAAiJqABQAAAEDUBCwAAAAAoiZgAQAAABA1AQsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUROwAAAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQNQELAAAAgKgJWAAAAABETcACAAAAIGoCFgAAAABRE7AAAAAAiJqABQAAAEDUBCwAAAAAoiZgAQAAABA1AQsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFGrKvQFAAAAACO1adOmVatWhRCuvPLK2267rdCXA1lmAgsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNSqCn0BAAAAMFKHDh3auXPn/v37m5ubW1paKisra2trL7zwwosvvvjyyy+vqsrsf357enr27du3c+fOQ4cOtbS0tLW1jR07tr6+fvLkyQsWLJg+fXoikcj0Cnfs2PHee+8dPny4tbW1qqpq3LhxU6ZMueqqq6ZNm3bWkb29vbt3737nnXc+/vjjpqam3t7e5EfPnz9/3rx5GX2X3t7effv2bd269dixY01NTW1tbbW1tfX19dOmTZs7d+4wvkh3d/fevXt37Njx4YcfNjc3d3R0TJgwYeLEiQ0NDQsXLrzgggsyOlsI4ejRo5s3bz506FBTU9O//Mu/ZPp2ykeir6+v0NcAAABAATzwwAOFvoQs2Lt37+rVqz/88MOBDqirq1u8ePHVV19dU1Mz5Nn6+vree++9NWvWnDp1aqBjJk2adPfdd0+ePDmE8PTTT7/99tshhG9/+9tXX3116phNmzatWrUqhHDllVfefPPNTz311K5du/o929y5c++8887Ro0cn/3n06NHHH3/8xIkT/R48ceLEb33rW5dccsm5vzrzE2+77bYQws6dO59//vmmpqaBvkhDQ8PKlSvnzJkz0AFn6uvre/fdd9esWfPpp58OdMysWbNuvPHG6dOnD3TAmRf57W9/+6WXXlq/fn3yV1VVVf/6r/+azpWQdN999xX6EvLKEkIAAACKUk9Pz3PPPffQQw+dWa/Gjh3b0NBQV1eXmi1qaWlZvXr1v//7vx8/fnzwE3Z0dDz66KO/+c1vUvUqkUjU1tY2NDSMGzeuouKz/4M+fvz4T3/603fffTedi+zq6nrkkUdS9aqiouKCCy4YP3586vJ27tz5X//1Xx0dHSGEPXv2/PSnP03Vq1GjRl1wwQXnnXdeaurqk08+eeSRR5LJbBB9fX3PPvvsL3/5y1S9qqysHD9+fENDQ21tbeqjjx079uijjz711FPd3d2Dn7C9vf2RRx556qmnUvWqsrJywoQJkydPrq+vTx22d+/eX/ziF6+//no6d+aFF15I1SsYkiWEAAAAFJ+urq6HH374wIEDyX9OnDjxuuuuu/TSS1M9paura//+/Zs2bdqzZ09fX19TU9PPfvaze++996KLLur3hG1tbT//+c9Tkeu8885bsmTJvHnz6urqkj/p7Ozcs2fPpk2b9u/f39XV9fTTT48fP37I69y6dWty5dMll1yyYsWKhoaGZI1qbm7etGnTa6+91tfXd+zYseeff/6rX/3qk08+2dXVFUKYPn36DTfcMGvWrGRs6urq+tOf/vS73/3u9OnTfX19zzzzzPjx42fOnDnQh/7ud7/bvHlz8vXcuXOvuuqqWbNmpSpYa2vrzp07169fn/yy77zzzsmTJ3/4wx9WV1enc2emTJmyYsWKmTNnpo5vaWnZvn37q6++2tra2tvb+9JLL3300Ud33XXXIOsTDx06lDxhVVXVggULZsyYMcjcFgRLCAEAAMpWUS8hfOKJJ7Zu3Zp8vWzZshtvvHGgzaHef//9J5544vTp0yGE6urqH/3oR8nVf2fq7e19+OGH9+7dG0JIJBI33njjsmXLKisr+z3htm3bnnnmmc7Ozrq6uilTpuzZsycMvIQw6aabblq6dOm5QWffvn1PPvlkS0tLCKGuri754rrrrvva17527sGffPLJ448//tFHH4UQzj///H/6p38685jUJ9bW1ra2tiZPePfdd8+YMaPfb9Hb27t+/frVq1cns8Bll112991393vYf//3f+/bty+EMHr06BUrVlxzzTWpYbQztbe3r127dsOGDcl/3nzzzddff/1Zx5x1W6ZMmXLnnXc2NDT0e4UMzhJCAAAAiNqbb76Zqle33377TTfdNMjW5hdffPE//MM/JCezurq6XnjhhXOPWb9+fbJehRDuuOOO5cuXD1SvQgiNjY1/8zd/M3r06JaWlmS9Gty0adOWLVvW7zjSzJkzv/71rydfJ+vVjBkz+q1XIYSJEyfefffdyV+dOHEidcFnSdarCRMm/P3f//1A9SqEUFFRcf31199zzz3JE27dunXLli3nHrZu3bpkvUokEvfcc8+iRYv6rVchhJqamltuuWXZsmXJf7788ssffPDBQJ8eQhg3btzf/u3fqlekScACAACgmHR2dq5duzb5+rrrrlu4cOGQb5k4ceKdd96ZLDX79u3bsWPHmb/t6Oh47bXXkq+XLl26YMGCIU944YUX3n777Wle8MqVKwf57WWXXTZp0qTUP6+77rpBVt6df/75F198cfL1+++/P9Bh1dXVf/mXf5nOCsf58+ffcMMNydevvPLKWZthtbe3p+7MihUr+t08/iwrVqyYO3duCKG3t/eVV14Z5MiVK1eOGjVqyBNCkoAFAABAMXn77bdTa+5WrFiR5rtmzpx5zz33rFy5cuXKlWdlms2bNycXGI4bN2758uVpnnD+/PmpljSImpqaadOmDXJAIpGYN29e8vXo0aOHfCbg7Nmzky+OHj060DGLFi06d5nkQJYtWzZu3LgQQlNT03vvvXfmrzZv3tze3h5CmDJlytKlS9M5WyKRuOOOO5IDcfv27RvokYWjR4/+yle+kuYVQhCwAAAAKC6p+anFixcPtO94v+bPn7906dKlS5dedtllZ/489YjA6667bpCliOc6d4+nc5133nlDHnP++ecnX0ycOHGQ8auk1C71yaWC56qoqFiyZMmQH5pSVVW1aNGi5OudO3ee+avUPxcsWDDkhaWMGTMmmeT6+vreeeedfo8577zz0j8hBAELAACAItLV1ZV68mBqcGkkuru7Dx48OLwTzpgxY/To0YMfM3HixCHPkzpJTU3NkAenAlZnZ2e/B0yfPn3s2LFDnudMqamuvXv3ph711tnZmdzEKpFINDY2ZnTC1LrOgfYIS6frwZkySMsAAABQWM3NzT09PSGEmpqaCy64YOQnbGpqSp5wzJgx6cSmM1VUVEyZMiUV1Po1ZOEKIaQ2jB9of/R+T9jb29vvAV/60peGPMlZGhoaKisre3p6Ojs729raamtrQwjNzc3Jj6isrHz66aczOmGqgp08ebLfA9K5LXAmAQsAAICi0dzcnHxRV1eXlROmFuIN74TZuowsGvYXSe5X1dzcnAxYyY3GQgjd3d0DPfFwSG1tbcN7I5zFEkIAAACy7/7778/FadOZUcpIao5poIGmNN8ej9T0U0ZSXyS1NVVWbnVvb29ywA1GyAQWAAAAWZasV/fff3/WM1ZqvCg1H1TYE2brMrJooM3dB9HX13fuJFrqxeTJk3/84x9n6/JgeExgAQAAkCtZD1j19fXJBwW2t7d//PHHWTlhcuaoo6Pj6NGjGb23u7v7yJEjI7+G7Dp06FCmb/nwww+TE1jV1dWpDeBTt/rEiROmqCg4AQsAAIBsytHiwaSqqqoZM2YkX+/YsWPkJxw1atRFF100vBPu27evq6tr5NeQXR988EGmQ1i7du1Kvpg5c2ZqCWHqVnd3d+/evTujE3Z0dLS1tbW1tXV3d2f0RhiIgAUAAEDWnFuvst6z5s2bl3yxfv36zs7O9N/48ccf79+/f//+/YcPHz7z53Pnzk2+2LhxY0YnfP3119M/OG96e3tfe+219I/v7Ox84403kq/nzJlz5q9St3rjxo3pn7C1tfXf/u3ffvKTn/zkJz85fvx4+m+EQQhYAAAA5FZ2G9YVV1wxbty4EEJra+vq1avTfNeHH374H//xHw8++OCDDz6YGjhKuvLKK0ePHh1CaGtrS/+EW7du3b9/fwbXnUebNm364IMP0jz45ZdfTj4rsLa29vLLLz/zVwsWLKivrw8h7Nu37913303zhKtXr25vbw8hzJ49+8ILL8zgumFgAhYAAADZkdPFgylVVVUrVqxIvt60adOmTZuGfMupU6d++ctfJpf7jR8//vrrrz/zt2PHjl2yZEnqhG+++eaQJ/zoo4+ee+65jC89X3p6eh5//PGTJ08OeeSWLVtS01U33HDDqFGjzvxtdXX18uXLk6+fe+65gwcPDnnCTZs2vf322yGEioqKG264IcMLhwEJWAAAAGTB4PUq60NYCxYsSL5etWrV73//+0H2Wtq3b99//ud/Njc3hxAqKipuv/32szJNCGHp0qXTp09Pvv7tb3+7evXqQU64c+fOBx98sKOjI4SQnAWLSnIX9ubm5p/+9KeDzIj19PSsXbv22WefTf7zkksuufbaa8897KqrrmpsbAwhdHV1PfTQQ1u2bBnkhGvWrFm1alVfX18I4Wtf+9rUqVNH9lXgz6oKfQEAAAAUvXT61P3335/FjHXrrbe2tLS8//77IYT169dv27ZtyZIll1566fjx41PHfPDBB2+++eZ7772XfMReRUXFnXfeOWvWrHPPVllZ+b3vfe9nP/tZ8smGr7322tatW6+//vp58+Yl19CFEHp6evbt27dp06bUCsQVK1acPHkyOXAUj3nz5lVWVr7xxhttbW0PPvhgY2Pj1VdfPX369IqKz0ZYWltbd+zYsW7duhMnTiR/Mnny5Lvvvju1fftZbr/99ubm5oMHD3Z3dz/zzDNvvvnmkiVLLrnkkuS6y+QJt2/f/vrrr586dSr5k4ULFy5evDi335MyI2ABAACQJ1lsWFVVVffee++LL764YcOGEEJTU9MLL7zwwgsv1NXV1dXVdXZ2NjU1nTlFNXr06Ntuuy05TNSvsWPH/uhHP3ryySeTT9w7derU888/v2rVqtra2n5PuHjx4htuuOHpp5/OytfJrm984xs9PT2bN28OIWzbtm3btm3V1dXjxo2rrq5ubW1taWlJDkklzZ0796677jp3Ki1l1KhRP/zhD5999tnkNliHDx/+9a9/XVFRMW7cuJqamlOnTiV3vEpZsmTJypUrc/blKFMCFgAAACOSn62vzlVRUXHLLbdceumla9asOXDgQPKHLS0tLS0tZx3W2Nh48803D7ncr6am5vvf//7WrVtfeeWV5AZSfX19555w7Nixt912W+oJfRGqqKi47bbb5s6d+/zzzzc1NYUQurq6UvNWKeedd96KFSsaGxsHmr1KqaqquvPOOxsbG1evXp18sGBvb29q3iplypQpN9100+zZs7P2TeBziTOzKwAAAOXjgQceGPlJhlGvchG8Pvroo127du3du7epqamlpSWRSIwdO7ahoWHGjBmNjY1nritMR29v7/79+3fv3n3w4MHm5ua2trbq6uq6urrzzz+/sbFx3rx51dXVySN379599OjREMIll1wyZcqUrH+v9H300UfJBZWTJ09OJaTe3t59+/Zt3br12LFjn3766enTp8eOHVtfXz916tQ5c+bMnDkzta4wTb29vQcOHNi5c2fqztTU1NTX10+fPn3OnDmzZs0asoWRLffdd1+hLyGvBCwAAIAyVaiANex3ASnlFrA8hRAAAIBh0qGA/BCwAAAAGI6R1CvlC8iIgAUAAEDGRl6gNCwgfQIWAAAAhaFhAWkSsAAAAMiM8ATkmYAFAABABrJbr7QwIB0CFgAAAIWkYQFDqir0BQAAAFBM9CYg/0xgAQAAABA1AQsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqAhYAAAAAUROwAAAAAIiagAUAAABA1AQsAAAAAKImYAEAAAAQNQELAAAAgKgJWAAAAABETcACAAAAIGoCFgAAAABRE7AAAAAAiJqABQAAAEDUBCwAAAAAoiZgAQAAABA1AQsAAACAqAlYAAAAAERNwAIAAAAgagIWAAAAAFETsAAAAACImoAFAAAAQNQELAAAAACiJmABAAAAEDUBCwAAAICoCVgAAAAARE3AAgAAACBqib6+vkJfAwAAABROIvGFf6b+N3mgn5/97sTnv+/ngLPOMTj/gw4DqSr0BQAAAECUhupJyXQ10FyIdAVZJGABAABQNtIbqkrjNNlJV7oVpEnAAgAAgLRYLQiFImABAABQ0oYMS2nEJKsFobAELAAAAEpORklpsNMMNnKV0efoVjASAhYAAACcbfCRqyBdQX4JWAAAAJSENJOSZwtCERKwAAAAKGZWC0IZELAAAAAodYMmJasFIX4CFgAAAMUmnaQ04mcLpvk5aX8aMHwCFgAAAOUli6sFPz/PCK8IGIKABQAAQDHIxh7tRq6gSAlYAAAAxCpLDxYM0hUUOQELAACAkjXkasEgXUExELAAAACISZamrrI4cpXeBwI5JGABAAAQgUx70mBnsloQSo2ABQAAQJHI49SVdAVREbAAAAAokHR6UtobtAfpCkqXgAUAAECxGnLkKkhXUBIELAAAAPIoX3u0Z++jgMITsAAAAMix7JWkIVcLZrQXvHQFxULAAgAAIGeifLZgkK6g2AhYAAAA5EC2p66kKyhnAhYAAABZZeoKyDYBCwAAgCzJ6gbtQboCPidgAQAAMDLpx6RsPFswzQ8UraCUCFgAAAAMl3QF5IWABQAAQOaylK6yu1pQuoJSJWABAACQiaymq8FHrqQrIEnAAgAAID1RpquhPg0oBQIWAAAAQ8nq4wWlKyBTAhYAAAADk66ACAhYAAAAfFH2SlI6e7Sn/4GiFZQtAQsAAIDPZTtdDd6t0v9A6QrKnIAFAACAdAVETcACAAAob9IVED0BCwAAoCxl1K3CYD0pzY2u0v9M6Qo4i4AFAABQZtJPV9l4tmBGnyldAf0SsAAAAMqGdAUUJwELAACgDOQ3XWVvWy2AEAQsAACAEpe9CSjpCigUAQsAAKBE5TFdZW9HeIB+CFgAAAAlJ0vpKp3HC0pXQB4IWAAAACUkq+kqi6sF0/hMgAEJWAAAACUhynQlWgFZIWABAAAUsygfL6hbAdklYAEAABQn6QooGwIWAABAsZGugDIjYAEAABSPLKWrdB4vmP6nSVdArglYAAAAxSCPe7Rn79MAskPAAgAAiJt0BZQ9AQsAACBK+d3oKv0PlK6A/BOwAAAAIiNdAXyRgAUAABCNKB8vmManAeSWgAUAAFBo6ZekIF0B5UjAAgAAKJysliTpCihVAhYAAEAhSFcAaROwAAAA8ivbG12FNLZpz8anARSMgAUAAJAXeR+5Sv+TpSsgcgIWAABAjklXACMjYAEAAORGVp8tGDJJV+l8snQFFBEBCwAAoKCkK4ChCFgAAADZlr2MlN10BVCkBCwAAIDsiTtdmb0CipSABQAAMGJZXbmX9XSlWwHFTsACAAAYgUKkKyNXQLkRsAAAADKX7R2npCuAQQhYAAAAmcgoXWXvCYPSFVDOBCwAAIBsy+o27dIVgIAFAACQhqzul57+Nu3Z+0yAIiZgAQAADCriJwxKV0CZELAAAAD6k9WRqyBdAYyAgAUAAPBF2Q5I0hXACAlYAAAAuZLFdKVbAeVMwAIAAAghFGab9vSfMAhQzgQsAACg7BVim/b005XZKwABCwAAKFc5GLkK6S0YTJN0BZAkYAEAAGUm248XDCEkEok0u1UOPhyg9AlYAABAOcn2plOeMAiQBwIWAABQBjLqVlndpj3ND5euAAYhYAEAAKUu28v2srhNu24FkA4BCwAAKFG52esqZHWbdgDSIWABAAClqEBTV+l/uAgGkD4BCwAAKCEF3esqzc+XrgAyJWABAAClonBTV7oVQE4JWAAAQJHzhEGAUidgAQAAxayge10BkB8CFgAAUJzSH7wq0F5XaX8yAEMQsAAAgKKS7W4VbNMOED0BCwAAKDkF2qY9k08GIAMCFgAAUCSyOvuU3b2udCuAnBKwAACAuBV6m/aMHnIIQC4IWAAAQPGzTTtASROwAACAKA0ZkDJJR7ZpByhqAhYAABCTbC/Yy+5eV0G6AigEAQsAAIhA+t3KXlcA5UfAAgAAikHOFgwGawYBoidgAQAAhVPQBYO2aQcoFgIWAACQdxEsGMzeJwOQcwIWAAAQnwzrUSKRsNcVQAkTsAAAgHwZMh1lPvVkzSBAORCwAACAHMvNyJM1gwDlQ8ACAAAKLfMFgyF7DxnUrQDiJ2ABAAC5UegFg+lcAgBFQcACAACKgL2uAMqZgAUAAGRVtgev7HUFgIAFAABkgwWDAOSMgAUAAEQnR+nK7BVAkRKwAACAEYh+wWDmlwBAdAQsAAAgc7lZrZdIJDJKV4NfhW4FUDIELAAAIAdyOXhlryuAciNgAQAAaYtgp/Z0mL0CKDECFgAAMJScLRgMWd2pXbcCKFUCFgAAMGI53qndmkGAMidgAQAAA7BgEIA4CFgAAEA+DCNdecggAEkCFgAA8EW5GbyyYBCAYROwAACAEEKu9ki3ZhCAkROwAACAnPCQQQCyRcACAIDyViQ7tQNQzgQsAAAga4aXrmzWDsDgBCwAACg/6WyTnnGE8pBBAHJFwAIAgLKRg24VLBgEIPcELAAAYPgSiUR2FwwGs1cAnEPAAgCAUpebYpT1hwwCwEAELAAAIDM5WjNo8AqAgQhYAABQonIweJX1ndqHdRUAlB0BCwAASkscCwYBIIsELAAAYAh2agegsAQsAAAofulskB7HTu26FQDDIGABAAD9sGYQgHgIWAAAULRyM3g1vHQ1+LXoYACMhIAFAAAlZ7i5yNQVAHESsAAAoNikM3iV8SmHma4MXgGQBwIWAAAUiZxtkO4hgwBETsACAIDyZc0gAEVBwAIAgIjlZpv2kJud2od7LQAwBAELAADKi6krAIqOgAUAAPHJ5eBV1ndqH+61AEC6BCwAACgeIwhFwxi80q0AiISABQAA0Uhn8Go4Z7VmEIDiJmABAED0htue7NQOQGkQsAAAoKBMXQHAUAQsAAAohJxt0x7s1A5AyRGwAACgdORi8Eq3AqDgBCwAAMijnI05DTtd5WYJIwBkk4AFAADFLUfbXRm8AiAeAhYAAORYfNtdBYNXABQVAQsAAApnBGNOwxu8slM7AMVIwAIAgNzI2YxTjtYMAkC0BCwAAMivvE9dBYNXABQ5AQsAALIql4NXpq4AKE8CFgAA5EV8210Fg1cAFAkBCwAARqzYtrvSrQAoLgIWAADk0nBbUe62uwKAoiNgAQDAcBXVdlemrgAoXgIWAABkIsc7Sxm8AoBzCVgAABAF210BwEAELAAASEMuB69Gkq4MXgFQDgQsAAAopOFtdzVktzJ4BUApEbAAAGBguQxFOVozCAClR8ACAIDMjaw65W6ndjUMgJIkYAEAwBflclspU1cAMAwCFgAApG3Eg1c52qldEAOgtAlYAAAQQijKwSvdCoAyIWABAMCgCrTdVchtUgOAYiJgAQBQxnKciIa9ZnBwBq8AKDcCFgAA9CfW5wwCQBkSsAAAKD9FuN1VMHgFQBkTsAAA4HMjTkS5e84gAJQzAQsAgPKQ++2ugucMAkBuCFgAAJQ9zxkEgLgJWAAAlDTbXQFA8ROwAAAoS4Xb7ioYvAKADAlYAACUnOLc7ioYvAKAAQhYAACUk8JtdxUMXgHAcAlYAACUitwPXuVi6ioYvAKAoQhYAACUumxsdxU8ZxAACkfAAgCgmBXtdlfB4BUApE3AAgCgRHnOIACUCgELAIAiVLSDV6auAGAYBCwAAEpIQbe7CgavACA3BCwAAIpE7uOQ5wwCQJwELAAAip/BKwAoaQIWAABxK9rtroLBKwDIEgELAIDilI045DmDAFAUBCwAAOKTl+2ugsErACgSAhYAAEXFdlcAUH4ELAAAouE5gwBAfwQsAACil6XtroLBKwAoTgIWAAAFZbsrAGAoAhYAALEq9HMGg8ErAIiDgAUAQCEYvAIA0iZgAQAQE9tdAQDnELAAAMiXvJSh3D1nMBi8AoACEbAAAIiAwSsAYGACFgAAOVbkg1emrgCg4AQsAAAKJEtlyOAVAJQ8AQsAgGLlOYMAUCYELAAAcmCQuabsDV7lbrN2ACAqAhYAAEVm5INXuc9rAEA2CVgAAGRJXqauQs7WDAIA0RKwAAAoDiNfMzhQYRPEACByAhYAACOT+8f4GbwCgDInYAEAkBvRbNae+8IGAOSWgAUAQOby0oRyPXhlogsAioWABQBAVmUjC+X0OYMAQNERsAAASFu+Bq9yut2VwSsAKDoCFgAAI5a97a6CwSsA4BwCFgAAg8pXE8rp4JWpKwAoagIWAADDZfAKAMgLAQsAgHPkceoqeM4gADAUAQsAgExkrwnlerN2AKBkCFgAAORbVgavBpkSk8UAoMQIWAAAfG6gJpTVIGTwCgDIlIAFAECe5HTwShMDgBImYAEAlLe8rMTL9WbtAEBpE7AAAMitka8ZzNdDEQGASAlYAABlKS9NKA+DV4a6AKAcCFgAAJwhq8sGDV4BAFkhYAEAlI18BaFcD16ZugKAciNgAQCQtSZks3YAIBcELACAkpbHZXgjXzP4+Xn6/7ksBgBlS8ACAChXWd3uKhi8AgByRsACAGBEsjJ4NcigmCwGAAhYAAClKC/L8AxeAQD5IWABADAcuR68AgBIEbAAAEpFvpbh5WHwylAXAHAmAQsAgHRlJV2ZugIAMiVgAQAUszzWoKysGRycwSsAoF8CFgBAicpeDbJZOwBQWAIWAEARKsLBq7w8FxEAKE0CFgBACSm2zdoBANIhYAEA0A+DVwBAPAQsAIAiMciyQYNXAEBJE7AAAPizrAxe5XGHLgCgLAhYAAARy9fUVcjX4JW5LgBgGAQsAIByZ80gABA5AQsAID55XIOXrc3ag/3aAYCcEbAAAIqHzdoBgLIkYAEAxCG/O59na/Aqj5t0AQDlS8ACAIiewSsAoLwJWAAAZSQPg1cAAFknYAEAFE4eF+DlZ/DKXBcAkAsCFgBA6cviowYBAPJPwAIAyLuBBq9y0JiyOHhlv3YAoFAELACAkmXwCgAoDQIWAEBe5Hfb8zwMXiljAEDeCFgAAIWWg/3aDV4BAKVEwAIAKB35edQgAECeCVgAADmT323Pszh4Zb92ACAqAhYAQNEzeAUAlDYBCwAg2/K47Xl205X92gGAOAlYAADFymbtAECZELAAALJhkF2jcvJpWRu8yu+FAwAMh4AFAJBj2R6SytvglekuACASAhYAQNGwWTsAUJ4ELACA4Rpk9V1u9mvPYrqyXzsAUEQELACA2Bm8AgDKnIAFAJCh/A4vZXHwKr8TYwAAWSNgAQBEyuAVAECSgAUAkIZBhpdy9YF5etQgAED8BCwAgJHJdmbK+uCV/doBgGInYAEARMTgFQDAuQQsAIAB5HfP8+wOXtmvHQAoJQIWAEDhGbwCABiEgAUA8EX53TLKowYBAIYkYAEAFEzWB6/s1w4AlCQBCwBg0C2jcvWBBq8AANIlYAEADCo3+7VnMV3Zrx0AKHkCFgBA/hi8AgAYBgELAChXeZ9cytvgFQBAiRGwAAByLp+DV6a7AIDSI2ABAGUm7w/qy/qjBgEAyo2ABQCQQ/ZrBwAYOQELACAn7NcOAJAtAhYAUAZKdL92cQwAKBMCFgBANhm8AgDIOgELAChRhdgvyn7tAAC5IGABAGRB1gev7NcOAJAiYAEApWWQ8JPDzzR4BQCQQwIWAFAecrZZe8jL4JU+BgCUMwELAGCYDF4BAOSHgAUAFL+87xflUYMAAPkkYAEAZCbrg1f2awcAGJyABQAUp0JUH4NXAAAFIWABAKQlb4NX+hgAwFkELACAIRi8AgAoLAELACgeBVo2KF0BABSWgAUAMCD7tQMAxEDAAgCiV4jNoiwbBACIh4AFAHC2vC0b1McAANIhYAEAURpkrV1uPzYng1cF+jYAACVCwAIAio392gEAyoyABQCQ7x2vVDIAgIwIWABANAr0iD6DVwAAkROwAIDy5VGDAABFQcACAGKV466Uo8Grs8bIkp8gkQEAjISABQCUHYNXAADFRcACAMqLHa8AAIqOgAUAFEKBFtqpVwAAxUjAAgDKgmWDAADFS8ACAEqf/doBAIqagAUAlDKDVwAAJUDAAgBKlh2vAABKg4AFAORYIRbaGbwCACglAhYAUGoMXgEAlBgBCwAoKfZrBwAoPQIWAFAiLBsEAChVAhYAUAosGwQAKGECFgCQJf2usgv2awcAYKQELACgiBm8AgAoBwIWAFCUcjd4Zb92AIDYCFgAQPExeAUAUFYqCn0BAACZUa8AAMqNCSwAIHMFWmVnv3YAgPIkYAEAxcHgFQBA2RKwAIDY2a8dAKDMCVgAQNQMXgEAIGABAJGy4xUAAEkCFgAwqMLt1y5dAQCQVFHoCwAAOJt6BQDAmUxgAQARsV87AADnErAAgFgYvAIAoF8CFgBQePZrBwBgEAIWABBCGGCJXbBfOwAAhWcTdwCgkNQrAACGZAILACgM+7UDAJAmAQsAKACDVwAApE/AAgDyyn7tAABkSsACgPJTuCV2Bq8AABgGm7gDAHmiXgEAMDwmsACAnMvzskGVDACgxAhYAEBu5XTwqt/VkAAAlBgBCwDIFfu1AwCQFQIWAJS0Utyv/azvBABAybOJOwCQffZrBwAgi0xgAUDJKeiEkmWDAABknYAFAGRNPvdrT9HKAABKnoAFAGSBwSsAAHJHwAKAkjDIssHcR6WC7NeulQEAlA+buAMAI2K/dgAAcs0EFgAUs4LuC2XZIAAA+SFgAQDDYb92AADyxhJCACBjlg0CAJBPJrAAoNgUer/2kPdlg1oZAECZE7AAgHQVZNkgAAAIWABQJOzXDgBAuRKwAIAh2K8dAIDCsok7ADAY+7UDAFBwJrAAIGLlt187AACcS8ACAPqR68ErKwcBAEifgAUAkSno1NXnl2DZIAAAERGwAIA/y+mywQjSHAAARUnAAgA+Y/AKAIA4CVgAEIeCbgplv3YAAGImYAFAubNfOwAAkROwAKBwItgUyrJBAADiJ2ABQJkq1LJBuQwAgEwJWABQjgq1bBAAAIZBwAKAvCv0plCWDQIAUFwELAAoI7leNljoNAcAQGkSsAAgL+zXDgAAw1VR6AsAAPJBvQIAoHiZwAKAEpeHpw1aOQgAQE4JWACQS4VOOwavAAAoAQIWAJSsnNarCDb1AgCgXAhYAJBtEaSdPCwbBACAvBGwAKDUWDYIAECJEbAAoKTkul4VelMvAADKkYAFANlg2SAAAOSMgAUApaBQywblMgAA8kDAAoAcyGPXyc/g1SATZgAAkGsCFgCMQKG7jv3aAQAoBwIWABSrQu3XHqwcBAAgvwQsAMhQBF3Hfu0AAJQVAQsAioxlgwAAlBsBCwCKSR7q1UATZqIZAACFImABQHoK3XUsGwQAoGwJWABQBAxeAQBQzgQsABhYBPu1B5teAQBQ9gQsAIiXZYMAABAELACIVgGXDQYrBwEAiImABQDniGA7KMsGAQAgRcACgLgUcNmgYgYAQJwELAD4XNkMXg2ychAAACJUUegLAAA+Y9kgAAD0ywQWAEShgFu2i2YAAEROwAKgvEXwHL4CbnoFAABFQcACgEKybBAAAIYkYAFQluJYTVfAZYPBykEAAIqHgAUABWDZIAAApE/AAoB8K+CyQcUMAIBiJGABUDbiWE2Xn3o1yHcFAICiI2ABQJ5YNggAAMMjYAFQ6spmv/YQy3cFAIAsqyj0BQBA6SvgplcAAFACTGABQA5ZNggAACMnYAFQiuzXHkKwchAAgFJhCSEA5IRlgwAAkC0msAAoIXHsYZ6fZYNxfFcAAMgHAQsAssngFQAAZJ0lhACQNeoVAADkggksAIpfHKvpCrtlu24GAEAJE7AAYKTys+kVAACULQELgOI00CRSKM3Bq4GIZgAAlAMBCwCGL2/1apBeBwAAJU/AAoDhsGwQAADyRsACoKjEsYd5YfdrD1YOAgBQZioKfQEAUGQKu+kVAACUIRNYABSDOAavgnoFAACFIGABQFrytulVNLEOAABiIWABwNAMXgEAQAEJWADEKpo9zAu7ZbtuBgAAAhYADChvywYBAIBBCFgARCaaSSTLBgEAIBICFgD0I2/1KppeBwAA8aoo9AUAQHTMXgEAQFRMYAEQhzgmkQq+6ZVuBgAA5xKwAOAz+Ry8GuQRiwAAwFkELAAKKo7Bq2DZIAAAREzAAqDc5W3Z4CBTV9IZAAAMQsACoKwZvAIAgPgJWADkXTSTSOoVAAAUBQELgDKVt3oVzTZfAABQrAQsAPIlmpCTt02vAACArBCwACgvBq8AAKDoVBT6AgAgf2x6BQAAxcgEFgA5Fs0kknoFAABFSsACoPTlc9OraHodAACUDgELgNyIJuQYvAIAgGInYAFQymzZDgAAJcAm7gCULLNXAABQGkxgAZBVcUwi5XPTKwAAINcELABKTT4Hr+LodQAAUOIELACyIZqQY9kgAACUHgELgBIRw7JB6QwAAHJBwAJguAaauiqEGJYNAgAAOSJgAZADed+y3bJBAAAoYQIWAMUtb/Uqmm2+AACg7AhYAGQoppBj9goAAMqBgAVAUYphy3YAACA/BCwA0lOug1cxfW8AAChTFYW+AADIjGWDAABQbkxgAVBMbNkOAABlSMACYFDRhBybXgEAQNkSsAAoApYNAgBAOROwAOhPNINXwZbtAABQ9mziDkDUzF4BAAAmsAA4w0ADSIWQz02vDF4BAEDMBCwA0lCILdsNXgEAAEmWEAIQHfUKAAA4kwksAOJaQWfLdgAA4CwCFgCxyOemVwAAQBERsADKWEwDSDEsGyz05wMAAP0TsAAovDzXq5ietQgAAAzNJu4AFFgMs1cAAEDMTGABlJ9oVg7medOraL43AACQGQELgMIweAUAAKRJwAIoGzENIKlXAABA+gQsAPItki3bBTQAACgWAhZAqYvskXtmrwAAgEwJWADlypbtAABAkRCwAMgHg1cAAMCwCVgAJSqmAST1CgAAGAkBC4DcsmU7AAAwQgIWQGmJrN+YvQIAAEZOwAIgJ2zZDgAAZIuABVASBuo3BWLwCgAAyCIBC6Ck2bIdAAAofgIWANlky3YAACDrBCyAItdvwinQ4FXI46ZXAABA+RCwAMgCg1cAAEDuCFgAxSmmhGPTKwAAIKcqCn0BABQ39QoAAMg1E1gADJ+VgwAAQB4IWABFJZqEY8t2AAAgbwQsADJm8AoAAMgnAQugGMSUcGx6BQAA5JlN3AHIgHoFAADknwksgIgNNHhVIFYOAgAABSFgARQhW7YDAADlRMACiFJMs1cGrwAAgMISsACKhy3bAQCAsmQTdwAGpF4BAAAxMIEFEJOYls9ZOQgAAETCBBYA/TB7BQAAxMMEFkAEYpo+yvMDB2P66gAAQKQELAD+zOAVAAAQIQELoHAGmj4qEPUKAACIk4AFEB9btgMAAJzBJu4AmL0CAACiZgILoBD6HUAqgy3bQ0RfHQAAKBoCFkD5MngFAAAUBQELII9i2vlJvQIAAIqFgAVQjvJfr2JqdwAAQJERsAByb6B4UyBmrwAAgOIiYAEUThmsHDR4BQAAjJyABVAu8v/AQQAAgKwQsADyrgwGrwAAALJIwAIofbZsBwAAipqABZADZ/WbgmYbs1cAAECxE7AASpkt2wEAgBJQUegLACBXzF4BAAClwQQWQAnywEEAAKCUCFgA2TDQ2rlCKMjgVb83QEADAACyQsACyIHClRvLBgEAgNIjYAGUjvzXK7u2AwAAeWATd4ASYfYKAAAoVSawAEpBnutVTFt+AQAApU/AAsjcWf2mr6+wm16FaB44GMdVAAAApUbAAihilg0CAADlQMACKFa2bAcAAMqETdwBipLZKwAAoHyYwAJIQ2SblkcyeyWgAQAA+SFgAWSuoOXG7BUAAFBuLCEEKCbqFQAAUIZMYAEUh0QiEUKIYeVgsHgQAADILwELoAgYvAIAAMqZgAXQn7NGj8ps0yuDVwAAQFTsgQUQNbNXAAAAJrAA4hXP7BUAAEABCVgAkYpn9iqOqwAAAMqXgAUQQohu9CieegUAAFBwAhZAfwoXjxKJRAghkpWDGhoAABADAQsoezHNXhm8AgAAOJeABRCLeLZs19AAAICoCFhAuYpp8CqYvQIAABiYgAXwRYWoSPHMXgEAAERIwAIosHhmr+K4CgAAgLMJWED56Xf6qEDxJp56BQAAEC0BC6Bg4lk5qKEBAAAxE7CAshFTvEkkEiGESOoVAABA5AQsgHwryLLBmNZNAgAAZEbAAspATKNH8SwbBAAAKBYCFlCuCrRyUL0CAADIlIAFlLSY+k1s9cr6QQAAoFgIWED5MXulXgEAAEVFwAJKUUyDV6FAu7YPJJoLAQAASJeABZSTsp+9Uq8AAIBiJGABpSWm2atEIhFCUK8AAABGSMACykB5DF4F9QoAAChRAhZA9kVVr6QrAACg2AlYQKnot9+Ux+xVTOsmAQAAsq+i0BcAUFJiq1fGrwAAgBJgAgsocjEtnFOvAAAAcsEEFkB2qFcAAAA5YgILKFox7fxUkF3bBxLNhQAAAGSHgAWUlrJfOaheAQAApUfAAopQNLNXiUQihKBeAQAA5JSABZSKvMebgiwbVK8AAIAyJGABxSOawasQWb2SrgAAgNImYAHFr+xnrwAAAEqbgAUUg5jiTWz1yvgVAABQ8gQsoGiV/QMHg3oFAACUBwELiFt5z16pVwAAAEHAAoqS2Sv1CgAAKCcCFhArs1cDU68AAICyImABRaXsZ6+kKwAAoAwJWAADSiQSIQT1CgAAoLAELCAyA/WbvMebqAavgnoFAACUsYpCXwBAjNQrAACAeJjAAqLRb8Ip+02vgnoFAACUPRNYAF+gXgEAAMTGBBYQgcETTh5FVa+kKwAAgCQBC4hVee/arl4BAACkCFhAQZm96o96BQAAcCYBC4iP2SsAAADOIGABBWL2qj/qFQAAwLkELCAmpT575YGDAAAAwyBgAXlXrrNX6hUAAMDwCFhAHPK9iC8RQlCvAAAAioKABeRLuQ5eBfUKAABgZAQsoNDyPnsVT72SrgAAANIhYAG5Z/aqP+oVAABAmgQsoEBK/YGDQb0CAADIEgELyCWzV/1RrwAAADIiYAF5Z/YKAACATAhYQG6YveqPegUAADAMAhaQR2avAAAAyJyABWSb2av+qFcAAADDJmABeWH2CgAAgOESsIDsMXvVH/UKAABghAQsIMfMXgEAADAyAhaQDeU6ezX491avAAAAskLAAnKm1Gev1CsAAID8ELCAkYlj9iqRSIQQ1CsAAICSJGABOZDvLagi2vQqqFcAAADZJmABwxXN7JV6BQAAUNoELCCrynj2SroCAADIEQELyFy5zl4NIpoLAQAAKEECFpAlZq8AAADIDQELyES5zl6pVwAAAAUkYAEjZvYKAACAXBKwgPSYvQIAAKBABCxgBMp49ioYvwIAAMgXAQsYShwzSHmuV9IVAABAPAQsYFhKffZqENFcCAAAQLkQsICBleXsVbBrOwAAQGQELCBDpT57pV4BAADERsAC+lOWs1f2vQIAAIiTgAWkraRnr9QrAACAaAlYwBeZvTqHegUAAFBYAhaQBrNXAAAAFI6ABXzO7NU51CsAAIAYCFjAoMp19kq6AgAAiIeABZi9Opt6BQAAEBUBCxhAuc5eAQAAEBsBC8peBC0nnnpl9goAACBCAhZwjry2pEQIQb0CAABgEAIWlLFCz17lefAqqFcAAADFScACvihfISeeZYNBvQIAAIibgAVlqfxmrwYRzYUAAADQPwEL+JzZKwAAAKIkYEGZMXt1hmguBAAAgMEIWIDZKwAAAKImYEHZKLPZK/UKAACgZAhYUN7MXgEAABA9AQvKgNmrM6hXAAAARUfAglI3UM4xewUAAECRELCAHIqnXklXAAAAxUvAgtJl9goAAICSIGABORFPvTJ7BQAAUOwELChFhc458dQrAAAASoCABWWj/FYOmr0CAAAoDQIWlJZCDyPFU68AAAAoGQIWlIFSnL0aPF2ZvQIAACglFYW+ACB7CjqPlOfZq0HEcRUAAABkjQksKGmlOHsVrBwEAAAoMwIWlIRymr2yazsAAEC5EbCgdOUl50RSr6QrAACAEiZgQZEze6VeAQAAlDoBC0pROc1eAQAAUPIELChmhYs6+axXg39L41cAAAAlT8CC4lTQ1XTqFQAAAPlUUegLAIqMegUAAECemcCCYjNI1Ml90VGvAAAAyD8BC0hXJPVKugIAACg3AhYUlcJtfaVeAQAAUCgCFhS5ctq1Xb0CAAAoTwIWFInBd4TK7SerVwAAABSSpxBCMbNyEAAAgDIgYEExKND4lXoFAABADCwhhLjZtV29AgAAKHsmsIB+qFcAAADEwwQWxKpwXUe9AgAAIComsIAvUK8AAACIjQksiFKBtr5SrwAAAIiQgAVFwq7tAAAAlCsBCyIzSNrJ7ceqVwAAAETKHlgQEysHAQAA4BwCFpS7fNarQURwCQAAAETKEkKIQxnMXg0igksAAAAgXiawoHypVwAAABQFAQsiUIjxK/UKAACAYmEJIUSpdFcOKlYAAABkSsCCghrkmXwAAABACMESQiik8t64HQAAANIkYEF5Ua8AAAAoOpYQQoH0O35l9goAAADOYQILyoV6BQAAQJEygQV5V4itr9QrAAAAipcJLMgv9QoAAAAyJGBBHg1Ur3L7meoVAAAAxc0SQsiX0p29OuubyWUAAABklwksyAuzVwAAADBcAhbk3iD1KmeBSb0CAACgZAhYUDjqFQAAAKRBwIIcy/vWV+oVAAAAJcYm7pBLed/6qiD1Si4DAAAgpwQsyBmzVwAAAJANlhBCiVCvAAAAKFUCFuRGfsev1CsAAABKmIAFOaBeAQAAQPYIWJBt6hUAAABklYAFWZXfxw6qVwAAAJQDAQuyZ5B6lYPMpF4BAABQJgQsyD31CgAAAEagqtAXACUhv7NXeXDWFyrOLwEAAECJMIEFuWTjdgAAABgxAQtGzMbtAAAAkEsCFoyMjdsBAAAgxwQsyA31CgAAALLEJu4wXCU9eyWUAQAAEA8TWJBtxV+vAAAAICoCFgxLHjduV68AAAAocwIWZC6PiwfVKwAAABCwIHvUKwAAAMgBAQsyNND4lXoFAAAAuSFgQSbUKwAAAMg7AQvSlq+N29UrAAAAOFNVoS8AikS+Nm7Pdb0663sIZQAAAMTPBBaMTFHVKwAAAChGAhakIV9bXwEAAADnErBgKLa+AgAAgIISsGBQpbL1FQAAABQvm7jDwEqxXqlkAAAAFB0TWJC5oq1XAAAAUIwELBhAXjZuV68AAABgSAIW9CcvG7erVwAAAJAOAQvOkZetr9QrAAAASJOABWlTrwAAAKAQBCz4otxvfaVeAQAAQEYELDhD7re+Uq8AAAAgUwIWfC73W1+pVwAAADAMAhYMRXICAACAghKwIIRg6ysAAACIl4AFtr4CAACAqAlYlD1bXwEAAEDcBCwYgHoFAAAAcRCwKG853vpKvQIAAICRE7AoY+oVAAAAFAMBi3KlXgEAAECRELAg+9QrAAAAyKKqQl8AFEIux69yVK/OumR9DAAAgPJhAovyk+PFgwAAAEB2CVgQQrD1FQAAAMRLwKLMDDR+lZ1zq1cAAACQfQIW5aQIt74CAAAAbOJO2SjyeiWOAQAAULZMYMFImb0CAACAnBKwKA85G79SrwAAACDXBCzKQM42blevAAAAIA/sgUWpM3sFAAAARc4EFgAAAABRE7AoacavAAAAoPgJWJQuW18BAABASbAHFmXG7BUAAAAUGxNYlKjcjF+pVwAAAJB/AhalKDdbX6lXAAAAUBACFqRFvQIAAIBCEbAoOTkYv1KvAAAAoIAELEpLbhYPAgAAAAUkYFFCbH0FAAAApUjAgsGoVwAAAPy/7d1brBX1vcDxWXvvAFIghBML4iXGqCkF2ahNeBEfzImXgFEwbkpbq63BaGpiOTEkTYvHy4PGePCKUfEkhsQAEmzaQmnVJk3gpcQUNrQxBmKbgBy8YK2Ktda113kYXd3s+7rOb818Pk8zi0F+vn7z+8+QOQGLvPDqKwAAAMipnqwHgFaKUa+GtDVNDAAAAGpiA4tcGG39qv7/nt0rAAAAiELAovM1+/CgegUAAAChCFh0OPUKAAAA8k7AIo8UKAAAAMgRL3Gnk3XIq6/0NAAAAGiEDSw6lsODAAAAUAwCFp1JvQIAAIDCELDIEfUKAAAA8kjAoujUKwAAAAhOwKIDjXh+sK4IpV4BAABAfAIWnaZ59QoAAADoCAIWHWW0d7fX+R+zfgUAAAAdQMCioNQrAAAA6BQCFp1jtPWr2juUegUAAAAdRMCiQ6hXAAAAUFQCFp1AvQIAAIACE7DoWOoVAAAAFIOARXhN/fIgAAAA0HEELDqT9SsAAAAojJ6sB4Axjbh+1fZ6NWQKHQwAAADayQYWgTXp8KDdKwAAAOhoAhZRNenLg+oVAAAAdDoBi46iXgEAAEDxCFiE1IzDg+oVAAAA5IOXuNM5sqtROhgAAABkyAYW8TTjy4PWrwAAACA3BCyCcXgQAAAAOJWARSeopUapVwAAAJAz3oFFJA0fHmykXg35x0UwAAAACMIGFmE0fHiwifUKAAAAiMMGFjGMFpBavwclXQEAAEBwNrDIifrWr9QrAAAAiE/AIoCG16/UKwAAAMgxAYushaxX3uAOAAAAcXgHFiFlV6+kKwAAAIjGBhYdTL0CAACAIhCwyNSIMWliGUm9AgAAgIIQsMhOA/Wqif9g6/9ZAAAAoCECFh2pjvUr9QoAAAA6lIBFRtp7eFC9AgAAgM4lYJGFMXrS+H9VvQIAAIBiEbAIYwIxSb0CAACAAhKwaLt616/UKwAAACgmAYv2Gi0ptaAnqVcAAACQDz1ZDwDNPzw49o6XegUAAACdRcCiXdr14nb1CgAAAHLGEUKyNl5SUq8AAACg4AQs2qLeV1+pVwAAAICARVzqFQAAAJB4Bxbt0PovD/rgIAAAAOSYDSwy0rzDg+oVAAAA5JuARYuNmJfUKwAAAGDCBCxaaewXU436l9QrAAAA4N8ELFqmrldfqVcAAADAEAIWgahXAAAAwHC+QkhrtOzLg2OfSlSvAAAAIH9sYNFGDR8eVK8AAACggAQsWqD2d7dP/PDgaNQrAAAAyCtHCGmX0QuT3SsAAABgDDawaLYRU5N6BQAAANTLBhZNVePhwQbrlXQFAAAARWADi9YbpTM1vnsFAAAAFIGARfM0uzY5OQgAAAAkjhDSNKPVpnrXr5wcBAAAAFI2sGgl9QoAAABomIBFM9RyeLCRegUAAAAUkCOENKyWw4N2rwAAAIBa2cCiNdQrAAAAoElsYNGYJp3388FBAAAAYDQ2sGhAUw8Pjka9AgAAgIKzgUU7jFGv7F4BAAAAY7OBRb0mvH6lXgEAAACNsIFFUzWpXklXAAAAQJUNLOoyYnxq3u4VAAAAQJWARe0ajk9ODgIAAAAT5wghTTLh9SsnBwEAAICa2MCiRhNbv6qjXgEAAACMyAYWtZjYlwftXgEAAABNJGDRsAnUK4tXAAAAQN0ELCZsAhWqjnpl9woAAAAYm3dgMTETODyoXgEAAACtIGDRgPH6k3oFAAAANE7AYgLqOjyoXgEAAABNIWAxnroOD6pXAAAAQLN4iTuNqqleSVcAAABArWxgMabx1q9q3b0CAAAAqJWAxeiaXa+sXwEAAAB1cISQOg2pV9IVAAAA0CI2sBjFBN7dPu6zo/8NAAAAgIkSsBhJLYcH1SsAAACgpQQsaqZeAQAAAO0kYDHMmOtX6hUAAADQZgIWNVCvAAAAgPYTsDjV6OtX6hUAAACQiZ6sByCSCdSrsdNVol4BAAAAzSZgUQOLVwAAAED7OULIV8Zbv1KvAAAAgEwIWCRJol4BAAAAcQlYjKVUKiWJegUAAABkScBi1PWrUpJUxqxTlYp6BQAAALScgMXISkky9u6VdAUAAAC0h4BVeKM2qnF2rwAAAADaQ8AqtlEPD6pXAAAAQBQCFrVRrwAAAIA2E7AKrPb1K/UKAAAAaD8Bi1OoVwAAAEA0PVkPQEbG+L7gMNIVAAAAkCEbWPzbiOtX6hUAAACQLQGLsahXAAAAQOYELL40fP1KvQIAAAAiELAYmXoFAAAABOEl7gwlXQEAAACh2MDiFOoVAAAAEE2polgAAAAAEJgNLAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AatwyuXy17/+9dJXXn/99REfO3To0NSpU9NnTj/99HfeeafNcwIAAACkBKzC6e7uXrFiRfX217/+9fBnKpXKrbfe+o9//CO93bhx4+zZs9s0HwAAAMCpBKwiuvHGG6vXIwasDRs27N69O73+4Q9/eP3117dnMAAAAIDhSpVKJesZaLdyuXzGGWe89957SZJ0dXUdP3789NNPr/7pX/7yl4suuujkyZNJkpx77rkHDhyYPn16ZrMCAAAAhWcDq4i6u7uXL1+eXg8MDPz2t78d/KerV69O61VXV9emTZvUKwAAACBbAlZBjXaKcOPGjb/73e/S67Vr1y5ZsqTdkwEAAACcyhHCgiqXy3PmzHn//feTJJk1a9a7777b3d199OjR+fPnf/TRR0mS9Pb27t27d9KkSVlPCgAAABSdDayCGvwtwg8++OAPf/hDkiS33XZbWq8mT5784osvqlcAAABABAJWcQ05Rbhp06Zdu3altw8++OD8+fMzmgsAAADgFI4QFtfgU4QXXHDB+++//7e//S1JkiuuuOK1114rlUpZDwgAAACQJDawimzwtwgPHTqU1quZM2e+8MIL6hUAAAAQh4BVaINPEaY2bNhw9tlnZzIMAAAAwIgcISy0L774Ys6cOSdOnEhv+/r6tm7dmu1IAAAAAEPYwMqzy37548t++eMxHujp6VmwYEH1dv369S2fCQAAAKBGAlbR/fnPf04vZs+efeaZZ2Y7DAAAAMBwPVkPQAtN+o9pYz/w9ttvp18hTJKkt7e39RMBAAAA1MwGVm4tWr9qyMVw/f391WsBCwAAAIhJwMqtaefPHnIx3P79+6vXAhYAAAAQk4CVT0O2rkZbwrKBBQAAAMQnYBVadQNr0qRJ3/jGNzKdBQAAAGBkAlY+DTk2OOIpwk8//fTw4cPp9fz583t6vNEfAAAAiKhUqVSynoEmW7R+1bTzZw/+BOHnJz755PA7+/9rc4ZTAQAAANTHBhYAAAAAoQlYeXPuLZfV8UcAAAAAYXntUd7MXHj2iG+8GvFHAAAAgPhsYAEAAAAQmoCVK4vWr2rwAQAAAIBoBKy8SY8KDv4EYfXWKUIAAACgEwlY+THBd7R7lTsAAADQWbzEPT8+O/bh8WMfJsnBrAcBAAAAaKZSpVLJegZa5cr+B5IkeaV3XdaDAAAAANTPEUIAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7AAAAAACE3AAgAAACA0AQsAAACA0AQsAAAAAEITsAAAAAAITcACAAAAIDQBCwAAAIDQBCwAAAAAQhOwAAAAAAhNwAIAAAAgNAELAAAAgNAELAAAAABCE7CKaOvWraXx3HTTTVmPWZvFixdXh1+yZMlojx04cGDGjBnpY11dXdu3b2/nkAAAAEAdBKwiOnDgwLjP9Pb2tmGSJrrnnnuq13v27Nm9e/fwZ44dO7Z06dKPP/44vX344YdvuOGGNs0HAAAA1EvAKqL+/v5xn+m4gLV06dJLLrmkevvggw8OeeDkyZPXXnvt0aNH09vbb7/97rvvbt98AAAAQL16sh6ADMydO3fZsmVDfuzv7z9y5Eh6PWPGjEsvvbTtczVq3bp1y5cvT6937dq1f//+RYsWpbcDAwOrVq364x//mN5effXVTz31VCZDAgAAALUSsIroueeeG/LL4cOHB68vbdy4cdasWe0dqgmuu+66iy666ODBg+ntQw89tGXLlvR6zZo1v/rVr9LrhQsXvvTSS93d3dlMCQAAANTIEUKSf/7zn319fdU3Q91xxx19fX3ZjlSfUqm0bt266u22bdsOHTqUJMmTTz75xBNPpD/OnTt3586d06dPz2ZEAAAAoHYCFsndd9+9b9++9HrRokXr16/Pdp5G3HDDDfPmzUuvBwYGHn744R07dqxZsyb9Zdq0aTt27DjrrLOyGxAAAAComYBVdC+//HL1bVDTpk3bunXrlClTsh2pEV1dXT/72c+qt5s2bfr2t79dLpeTJOnu7t6yZcvFF1+c3XQAAABAPQSsQvvrX/966623Vm+fffbZCy+8MMN5mmLlypUXXHBBev3555+fPHkyvX7ssceWLl2a3VwAAABAnQSs4vrXv/61cuXKDz/8ML1dvXr1d77znUwnao7u7u6f/vSnQ35cs2bNnXfemck8AAAAQIMErOL6yU9+snfv3vR6wYIFjz/+eLbzNNGKFSsGH4RcsGDBI488kuE8AAAAQCMErILauXNn9WXtX/va11566aXTTjst25GapVKp/OAHP/jss8+qv7zxxhuHDx/OcCQAAACgEQJWER09evTmm2+uVCrp7dNPP139cl8OrF27dvv27YN/KZfLDzzwQFbzAAAAAA0SsAqnXC6vWrXqxIkT6e0tt9zy/e9/P9uRmuiZZ56pnhYcvFO2efPmN998M6OhAAAAgIYIWIVzzz337NmzJ72eN2/ehg0bsp2niX7zm99U39Q+efLkV1555dJLL01vy+Xy/fffn91oAAAAQP0ErGJ59dVXH3roofT6tNNO27Zt29SpU7MdqVn6+/v7+vrK5XJ6+/zzz1922WX33ntv9YEtW7a88cYb2QwHAAAANEDAKpDjx4/fdNNNAwMD6e1TTz01f/78bEdqlmPHji1btuzjjz9Ob9etW/e9730vSZJly5Z961vfSn8cGBiwhAUAAACdqFR9kzf5c2X/A0mSvNK77svbK6989dVX0+spU6ZcddVVpVJp+N/avHnzlClT2jZk4z755JPLL79837596W1fX9+WLVuq/2s7d+5ctmxZet3V1XXw4MFvfvOb2QwKAAAA1EXAyrPBAevvf//7zJkzx/0rZ5111pEjR1o9WBOVy+Xrrrtu586d6e3ixYt///vfDwlwixcv3rt3b3rd19e3devWdk8JAAAANMARwqI4ePDgRB5buHBhqydprrvuuqtar84555xf/OIXw9fHBr8Ja9u2bX/605/aNh4AAADQOAGrKCYYsHp7e1s9SRM9+uij1a8oTp8+fceOHbNnzx7+2DXXXLN48eL0ulKp3Hfffe0bEQAAAGiYI4T5VCq9NeSXSuW8TCYBAAAAaJANrLwpld4aXq/G+L0T3XvJ+T//z4uzngIAAABoEwErV8ZNVLlpWMvPm5Pcdk1y2zVZDwIAAAC0nICVHxOMUzlpWGfMSs6YlSRJmrEsZAEAAECO9WQ9ADQgbVhJsjxJvtzGem5XhuMAAAAArSBg5URNe1Wl0lsd/073GVOTJEk++vTL269KVvLf303+74MkUbIAAAAgPwQsOlmasQb76NMvY1ZasmQsAAAA6HwCVlFt+FHWE7TG4KQ1Y2ryP6u/3NK678WsJgIAAAAa5CXuAAAAAIRmA6uofrQh6wka8L/nj/pH1bdiJYkjhAAAAJAPAhadbHCuqvISdwAAAMgXASsnKpXzJv4hwo7/BGEyLF2l0SrRrQAAACCHBCw62Vfd6udvHV/+2r5sZwEAAABaRMDKjwkuYeVh/SoZunK1PMtRAAAAgNYSsHJl3IaVk3pl5QoAAACKpFSpVLKegeYbnrFyk64AAACAohGwAAAAAAitK+sBAAAAAGAsAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhCZgAQAAABCagAUAAABAaAIWAAAAAKEJWAAAAACEJmABAAAAEJqABQAAAEBoAhYAAAAAoQlYAAAAAIQmYAEAAAAQmoAFAAAAQGgCFgAAAAChCVgAAAAAhPb/ZoX0Ce10YMAAAAAASUVORK5CYII=",
+      "text/plain": "<IPython.core.display.Image object>"
+     },
+     "execution_count": 1,
+     "metadata": {
+      "image/png": {
+       "width": 400,
+       "height": 400
+      }
+     },
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "from ntrfc.cascade_case.domain import DomainParameters\n",
     "import importlib.resources\n",
@@ -163,8 +188,7 @@
    "metadata": {
     "collapsed": false,
     "pycharm": {
-     "name": "#%%\n",
-     "is_executing": true
+     "name": "#%%\n"
     }
    }
   }
diff --git a/ntrfc/cascade_case/domain.py b/ntrfc/cascade_case/domain.py
index 19ebb15894db537483a9de6aa4e2342a5970813a..ed54359d59348478ee87e7274cb0381ae7c01eea 100644
--- a/ntrfc/cascade_case/domain.py
+++ b/ntrfc/cascade_case/domain.py
@@ -7,6 +7,7 @@ import pyvista as pv
 
 from ntrfc.cascade_case.casemeta.casemeta import CaseMeta
 from ntrfc.cascade_case.utils.domain_utils import DomainParameters
+from ntrfc.math.vectorcalc import vecAbs
 from ntrfc.turbo.pointcloud_methods import calcMidPassageStreamLine
 
 
@@ -18,11 +19,14 @@ class CascadeDomain2D:
     profilepoints: pv.PolyData = None
     le_index: int = None
     te_index: int = None
+    beta_leading: float = None
+    beta_trailing: float = None
     yperiodic_low: pv.PolyData = None
     yperiodic_high: pv.PolyData = None
     inlet: pv.PolyData = None
     outlet: pv.PolyData = None
-
+    pitch: float = None
+    chordlength: float = None
 
     def generate_from_cascade_parameters(self, domainparams: DomainParameters):
         # Use params attributes to generate attributes of CascadeDomain2D
@@ -31,21 +35,21 @@ class CascadeDomain2D:
         self.te_index = domainparams.trailing_edge_index
         x_mids = domainparams.midspoly.points[::, 0]
         y_mids = domainparams.midspoly.points[::, 1]
-        beta_leading = domainparams.beta_in
-        beta_trailing = domainparams.beta_out
+        self.beta_leading = domainparams.beta_in
+        self.beta_trailing = domainparams.beta_out
         x_inlet = domainparams.xinlet
         x_outlet = domainparams.xoutlet
-        pitch = domainparams.pitch
+        self.pitch = domainparams.pitch
         blade_shift = domainparams.blade_yshift
 
-        x_mpsl, y_mpsl = calcMidPassageStreamLine(x_mids, y_mids, beta_leading, beta_trailing,
-                                                  x_inlet, x_outlet, pitch)
+        x_mpsl, y_mpsl = calcMidPassageStreamLine(x_mids, y_mids, self.beta_leading, self.beta_trailing,
+                                                  x_inlet, x_outlet, self.pitch)
 
         y_upper = np.array(y_mpsl) + blade_shift
         per_y_upper = pv.lines_from_points(np.stack((np.array(x_mpsl),
                                                      np.array(y_upper),
                                                      np.zeros(len(x_mpsl)))).T)
-        y_lower = y_upper - pitch
+        y_lower = y_upper - self.pitch
         per_y_lower = pv.lines_from_points(np.stack((np.array(x_mpsl),
                                                      np.array(y_lower),
                                                      np.zeros(len(x_mpsl)))).T)
@@ -65,6 +69,7 @@ class CascadeDomain2D:
         self.yperiodic_high = per_y_upper
         self.inlet = inletPoly
         self.outlet = outletPoly
+        self.chordlength = vecAbs(self.profilepoints.points[self.te_index] - self.profilepoints.points[self.le_index])
 
     def plot_domain(self):
         """
diff --git a/ntrfc/cascade_case/utils/domain_utils.py b/ntrfc/cascade_case/utils/domain_utils.py
index e5916b1e6f0405aa30ab9ad5ae0f98598a60784e..d21b116e0de7683f180cf8aed1d294285917dadf 100644
--- a/ntrfc/cascade_case/utils/domain_utils.py
+++ b/ntrfc/cascade_case/utils/domain_utils.py
@@ -1,8 +1,10 @@
+import os
 import tempfile
 from dataclasses import dataclass
-import os
+
 import pyvista as pv
 
+from ntrfc.math.vectorcalc import vecAbs
 from ntrfc.turbo.pointcloud_methods import extract_geo_paras
 
 
@@ -41,6 +43,9 @@ class DomainParameters:
     profile_points: pv.PolyData = None
     leading_edge_index: int = None
     trailing_edge_index: int = None
+    chordlength: float = None
+    xinlet: int = None
+    xoutlet: int = None
 
     def plot_domainparas(self, figurepath=tempfile.mkdtemp() + "/plot.png"):
         """
@@ -82,3 +87,7 @@ class DomainParameters:
         self.beta_out = beta_trailing
         self.stagger_angle = camber_angle
         self.alpha = alpha
+        self.chordlength = vecAbs(
+            self.profile_points.points[self.leading_edge_index] - self.profile_points.points[self.trailing_edge_index])
+        self.xinlet = -self.chordlength + self.profile_points.points[self.leading_edge_index][0]
+        self.xoutlet = self.profile_points.points[self.trailing_edge_index][0] + self.chordlength
diff --git a/ntrfc/data/turbine_cascade/profilepoints.txt b/ntrfc/data/turbine_cascade/profilepoints.txt
index dec469ee99bc53ab7ddb2807e8b43302f9f8a7e1..52a59f0e70bc25e26a9edc5a87ee5fcde0199a18 100644
--- a/ntrfc/data/turbine_cascade/profilepoints.txt
+++ b/ntrfc/data/turbine_cascade/profilepoints.txt
@@ -1,271 +1,271 @@
-0.0589828110	-0.0311948525	0.00
-0.0589230693	-0.0312344106	0.00
-0.0588610401	-0.0312692543	0.00
-0.0587967483	-0.0312994586	0.00
-0.0587306720	-0.0313243276	0.00
-0.0586625790	-0.0313439231	0.00
-0.0585910141	-0.0313584834	0.00
-0.0585143095	-0.0313676742	0.00
-0.0584326014	-0.0313704862	0.00
-0.0583461865	-0.0313657768	0.00
-0.0582555761	-0.0313522551	0.00
-0.0581615496	-0.0313284657	0.00
-0.0580652494	-0.0312928245	0.00
-0.0579683600	-0.0312437698	0.00
-0.0578731770	-0.0311796656	0.00
-0.0577822662	-0.0310991920	0.00
-0.0576974240	-0.0310025386	0.00
-0.0576203297	-0.0308908423	0.00
-0.0575494663	-0.0307660798	0.00
-0.0574711874	-0.0306162162	0.00
-0.0573867954	-0.0304561595	0.00
-0.0572801692	-0.0302574178	0.00
-0.0571121959	-0.0299493972	0.00
-0.0568876509	-0.0295405073	0.00
-0.0566246288	-0.0290647755	0.00
-0.0562992452	-0.0284817396	0.00
-0.0559273218	-0.0278224223	0.00
-0.0555122570	-0.0270953804	0.00
-0.0550570277	-0.0263083042	0.00
-0.0545642509	-0.0254681144	0.00
-0.0540362517	-0.0245810603	0.00
-0.0534751142	-0.0236527974	0.00
-0.0528827175	-0.0226884472	0.00
-0.0522607786	-0.0216926693	0.00
-0.0516108698	-0.0206696970	0.00
-0.0509344480	-0.0196233916	0.00
-0.0502328716	-0.0185572791	0.00
-0.0495074149	-0.0174745818	0.00
-0.0487592812	-0.0163782494	0.00
-0.0479896130	-0.0152709846	0.00
-0.0471995021	-0.0141552678	0.00
-0.0463900055	-0.0130333719	0.00
-0.0455544885	-0.0119131263	0.00
-0.0446689047	-0.0108167139	0.00
-0.0437255481	-0.0097557897	0.00
-0.0427285169	-0.0087332654	0.00
-0.0416802110	-0.0077533021	0.00
-0.0405834177	-0.0068196656	0.00
-0.0394411751	-0.0059357935	0.00
-0.0382567630	-0.0051047806	0.00
-0.0370335994	-0.0043294576	0.00
-0.0357791529	-0.0036053832	0.00
-0.0345005929	-0.0029268333	0.00
-0.0332004395	-0.0022949524	0.00
-0.0318813010	-0.0017107155	0.00
-0.0305459331	-0.0011749512	0.00
-0.0291972244	-0.0006883107	0.00
-0.0278382093	-0.0002512578	0.00
-0.0264720462	0.0001359569	0.00
-0.0251020307	0.0004733035	0.00
-0.0237315736	0.0007609923	0.00
-0.0223642068	0.0009994884	0.00
-0.0210035785	0.0011895300	0.00
-0.0196534426	0.0013321438	0.00
-0.0183176588	0.0014286581	0.00
-0.0170001935	0.0014807209	0.00
-0.0157051156	0.0014903159	0.00
-0.0144365994	0.0014597754	0.00
-0.0131989294	0.0013917983	0.00
-0.0119965080	0.0012894658	0.00
-0.0108338718	0.0011562463	0.00
-0.0097157122	0.0009960265	0.00
-0.0086468947	0.0008131045	0.00
-0.0076325117	0.0006122095	0.00
-0.0066779130	0.0003985494	0.00
-0.0057888047	0.0001776881	0.00
-0.0049713350	-0.0000444319	0.00
-0.0042320042	-0.0002608031	0.00
-0.0035781180	-0.0004644908	0.00
-0.0030406666	-0.0006419421	0.00
-0.0025744663	-0.0008058605	0.00
-0.0022148644	-0.0009383509	0.00
-0.0019712296	-0.0010277899	0.00
-0.0017687859	-0.0010992716	0.00
-0.0015765741	-0.0011630263	0.00
-0.0014071378	-0.0012043640	0.00
-0.0012432927	-0.0012199200	0.00
-0.0010877613	-0.0012130026	0.00
-0.0009431850	-0.0011886896	0.00
-0.0008106392	-0.0011503165	0.00
-0.0006904777	-0.0011005321	0.00
-0.0005826521	-0.0010420053	0.00
-0.0004868390	-0.0009771845	0.00
-0.0004025230	-0.0009080538	0.00
-0.0003272732	-0.0008342998	0.00
-0.0002594151	-0.0007549020	0.00
-0.0001982010	-0.0006698991	0.00
-0.0001443479	-0.0005791280	0.00
-0.0000978844	-0.0004822721	0.00
-0.0000593009	-0.0003792202	0.00
-0.0000292512	-0.0002692786	0.00
-0.0000088656	-0.0001510058	0.00
-0.0000001364	-0.0000218593	0.00
-0.0000066324	0.0001223612	0.00
-0.0000343728	0.0002829146	0.00
-0.0000878871	0.0004495219	0.00
-0.0001687193	0.0006163644	0.00
-0.0002746717	0.0008002255	0.00
-0.0003873645	0.0009913744	0.00
-0.0005204783	0.0012058767	0.00
-0.0007001432	0.0014832766	0.00
-0.0009176333	0.0018096979	0.00
-0.0011604103	0.0021630702	0.00
-0.0014359927	0.0025498013	0.00
-0.0017319030	0.0029460347	0.00
-0.0020427417	0.0033426148	0.00
-0.0023627162	0.0037322469	0.00
-0.0026856421	0.0041081834	0.00
-0.0030045355	0.0044635932	0.00
-0.0033177664	0.0047982630	0.00
-0.0036293342	0.0051178775	0.00
-0.0039427236	0.0054268517	0.00
-0.0042611568	0.0057286849	0.00
-0.0045880147	0.0060264893	0.00
-0.0049272656	0.0063233867	0.00
-0.0052840213	0.0066229019	0.00
-0.0056654424	0.0069294608	0.00
-0.0060658496	0.0072368612	0.00
-0.0064752103	0.0075366428	0.00
-0.0068926504	0.0078279785	0.00
-0.0073192367	0.0081114191	0.00
-0.0077546165	0.0083864827	0.00
-0.0081984338	0.0086527225	0.00
-0.0086503363	0.0089097342	0.00
-0.0091099669	0.0091571300	0.00
-0.0095769680	0.0093945641	0.00
-0.0100509848	0.0096217078	0.00
-0.0105316527	0.0098382575	0.00
-0.0110186128	0.0100439369	0.00
-0.0115115007	0.0102384885	0.00
-0.0120099491	0.0104216704	0.00
-0.0125135923	0.0105932719	0.00
-0.0130220605	0.0107530879	0.00
-0.0135349802	0.0109009389	0.00
-0.0140519826	0.0110366617	0.00
-0.0145726912	0.0111601049	0.00
-0.0150967283	0.0112711416	0.00
-0.0156237216	0.0113696506	0.00
-0.0161532891	0.0114555366	0.00
-0.0166850513	0.0115287098	0.00
-0.0172186311	0.0115891024	0.00
-0.0177536447	0.0116366587	0.00
-0.0182897094	0.0116713342	0.00
-0.0188264460	0.0116931073	0.00
-0.0193634690	0.0117019615	0.00
-0.0199003934	0.0116978994	0.00
-0.0204368387	0.0116809404	0.00
-0.0209724181	0.0116511135	0.00
-0.0215067448	0.0116084650	0.00
-0.0220394372	0.0115530590	0.00
-0.0225701062	0.0114849668	0.00
-0.0230983639	0.0114042875	0.00
-0.0236238252	0.0113111234	0.00
-0.0241460985	0.0112056048	0.00
-0.0246648268	0.0110878656	0.00
-0.0251797958	0.0109580169	0.00
-0.0256908149	0.0108161684	0.00
-0.0261976900	0.0106624204	0.00
-0.0267002306	0.0104968851	0.00
-0.0271982319	0.0103196681	0.00
-0.0276914898	0.0101308659	0.00
-0.0281797801	0.0099305315	0.00
-0.0286629595	0.0097189355	0.00
-0.0291408549	0.0094962411	0.00
-0.0296131222	0.0092622655	0.00
-0.0300793392	0.0090167363	0.00
-0.0305395608	0.0087602861	0.00
-0.0309947982	0.0084951113	0.00
-0.0314451218	0.0082216022	0.00
-0.0318915697	0.0079416139	0.00
-0.0323347274	0.0076561621	0.00
-0.0327744667	0.0073650839	0.00
-0.0332105982	0.0070681325	0.00
-0.0336430851	0.0067653115	0.00
-0.0340719253	0.0064566563	0.00
-0.0344970973	0.0061421700	0.00
-0.0349185715	0.0058218505	0.00
-0.0353363266	0.0054956861	0.00
-0.0357503369	0.0051636592	0.00
-0.0361605779	0.0048257522	0.00
-0.0365670339	0.0044819368	0.00
-0.0369696866	0.0041321806	0.00
-0.0373685207	0.0037764455	0.00
-0.0377635262	0.0034146770	0.00
-0.0381546931	0.0030468155	0.00
-0.0385420179	0.0026727929	0.00
-0.0389255040	0.0022925221	0.00
-0.0393051535	0.0019059010	0.00
-0.0396809591	0.0015127984	0.00
-0.0400521669	0.0011139023	0.00
-0.0404190918	0.0007089277	0.00
-0.0407836479	0.0002957113	0.00
-0.0411480397	-0.0001289238	0.00
-0.0415110701	-0.0005647579	0.00
-0.0418719376	-0.0010113593	0.00
-0.0422303132	-0.0014680581	0.00
-0.0425885560	-0.0019322439	0.00
-0.0429469604	-0.0024030946	0.00
-0.0433061364	-0.0028796647	0.00
-0.0436661204	-0.0033615334	0.00
-0.0440267050	-0.0038485408	0.00
-0.0443877269	-0.0043405607	0.00
-0.0447490553	-0.0048375075	0.00
-0.0451105890	-0.0053393332	0.00
-0.0454722544	-0.0058460272	0.00
-0.0458340048	-0.0063576157	0.00
-0.0461958188	-0.0068741628	0.00
-0.0465577006	-0.0073957709	0.00
-0.0469196791	-0.0079225829	0.00
-0.0472818089	-0.0084547846	0.00
-0.0476441706	-0.0089926080	0.00
-0.0480068722	-0.0095363351	0.00
-0.0483700502	-0.0100863033	0.00
-0.0487338727	-0.0106429113	0.00
-0.0490985412	-0.0112066268	0.00
-0.0494642946	-0.0117779960	0.00
-0.0498314131	-0.0123576539	0.00
-0.0502002239	-0.0129463392	0.00
-0.0505711084	-0.0135449114	0.00
-0.0509444737	-0.0141543125	0.00
-0.0513200017	-0.0147743243	0.00
-0.0516966637	-0.0154035254	0.00
-0.0520734787	-0.0160405088	0.00
-0.0524495323	-0.0166839119	0.00
-0.0528239611	-0.0173323947	0.00
-0.0531959467	-0.0179846295	0.00
-0.0535647060	-0.0186392839	0.00
-0.0539294774	-0.0192949979	0.00
-0.0542895194	-0.0199503793	0.00
-0.0546441020	-0.0206039877	0.00
-0.0549924955	-0.0212543127	0.00
-0.0553339684	-0.0218997663	0.00
-0.0556677805	-0.0225386690	0.00
-0.0559931719	-0.0231692247	0.00
-0.0563093576	-0.0237895074	0.00
-0.0566155192	-0.0243974408	0.00
-0.0569107949	-0.0249907759	0.00
-0.0571942689	-0.0255670649	0.00
-0.0574649580	-0.0261236316	0.00
-0.0577217973	-0.0266575388	0.00
-0.0579636229	-0.0271655504	0.00
-0.0581891505	-0.0276440892	0.00
-0.0583969598	-0.0280891804	0.00
-0.0585854002	-0.0284964137	0.00
-0.0587528461	-0.0288607500	0.00
-0.0588918301	-0.0291659420	0.00
-0.0590106475	-0.0294294984	0.00
-0.0591039933	-0.0296340168	0.00
-0.0591810389	-0.0297982270	0.00
-0.0592514594	-0.0299518502	0.00
-0.0593145044	-0.0301071549	0.00
-0.0593543790	-0.0302475711	0.00
-0.0593688346	-0.0305157278	0.00
-0.0593502899	-0.0306371252	0.00
-0.0593208499	-0.0307430361	0.00
-0.0592842856	-0.0308343072	0.00
-0.0592424500	-0.0309137032	0.00
-0.0591964924	-0.0309834762	0.00
-0.0591471972	-0.0310454258	0.00
-0.0590950036	-0.0311007950	0.00
-0.0590401588	-0.0311504222	0.00
+0.0589828110    -0.0311948525    0.00
+0.0589230693    -0.0312344106    0.00
+0.0588610401    -0.0312692543    0.00
+0.0587967483    -0.0312994586    0.00
+0.0587306720    -0.0313243276    0.00
+0.0586625790    -0.0313439231    0.00
+0.0585910141    -0.0313584834    0.00
+0.0585143095    -0.0313676742    0.00
+0.0584326014    -0.0313704862    0.00
+0.0583461865    -0.0313657768    0.00
+0.0582555761    -0.0313522551    0.00
+0.0581615496    -0.0313284657    0.00
+0.0580652494    -0.0312928245    0.00
+0.0579683600    -0.0312437698    0.00
+0.0578731770    -0.0311796656    0.00
+0.0577822662    -0.0310991920    0.00
+0.0576974240    -0.0310025386    0.00
+0.0576203297    -0.0308908423    0.00
+0.0575494663    -0.0307660798    0.00
+0.0574711874    -0.0306162162    0.00
+0.0573867954    -0.0304561595    0.00
+0.0572801692    -0.0302574178    0.00
+0.0571121959    -0.0299493972    0.00
+0.0568876509    -0.0295405073    0.00
+0.0566246288    -0.0290647755    0.00
+0.0562992452    -0.0284817396    0.00
+0.0559273218    -0.0278224223    0.00
+0.0555122570    -0.0270953804    0.00
+0.0550570277    -0.0263083042    0.00
+0.0545642509    -0.0254681144    0.00
+0.0540362517    -0.0245810603    0.00
+0.0534751142    -0.0236527974    0.00
+0.0528827175    -0.0226884472    0.00
+0.0522607786    -0.0216926693    0.00
+0.0516108698    -0.0206696970    0.00
+0.0509344480    -0.0196233916    0.00
+0.0502328716    -0.0185572791    0.00
+0.0495074149    -0.0174745818    0.00
+0.0487592812    -0.0163782494    0.00
+0.0479896130    -0.0152709846    0.00
+0.0471995021    -0.0141552678    0.00
+0.0463900055    -0.0130333719    0.00
+0.0455544885    -0.0119131263    0.00
+0.0446689047    -0.0108167139    0.00
+0.0437255481    -0.0097557897    0.00
+0.0427285169    -0.0087332654    0.00
+0.0416802110    -0.0077533021    0.00
+0.0405834177    -0.0068196656    0.00
+0.0394411751    -0.0059357935    0.00
+0.0382567630    -0.0051047806    0.00
+0.0370335994    -0.0043294576    0.00
+0.0357791529    -0.0036053832    0.00
+0.0345005929    -0.0029268333    0.00
+0.0332004395    -0.0022949524    0.00
+0.0318813010    -0.0017107155    0.00
+0.0305459331    -0.0011749512    0.00
+0.0291972244    -0.0006883107    0.00
+0.0278382093    -0.0002512578    0.00
+0.0264720462    0.0001359569    0.00
+0.0251020307    0.0004733035    0.00
+0.0237315736    0.0007609923    0.00
+0.0223642068    0.0009994884    0.00
+0.0210035785    0.0011895300    0.00
+0.0196534426    0.0013321438    0.00
+0.0183176588    0.0014286581    0.00
+0.0170001935    0.0014807209    0.00
+0.0157051156    0.0014903159    0.00
+0.0144365994    0.0014597754    0.00
+0.0131989294    0.0013917983    0.00
+0.0119965080    0.0012894658    0.00
+0.0108338718    0.0011562463    0.00
+0.0097157122    0.0009960265    0.00
+0.0086468947    0.0008131045    0.00
+0.0076325117    0.0006122095    0.00
+0.0066779130    0.0003985494    0.00
+0.0057888047    0.0001776881    0.00
+0.0049713350    -0.0000444319    0.00
+0.0042320042    -0.0002608031    0.00
+0.0035781180    -0.0004644908    0.00
+0.0030406666    -0.0006419421    0.00
+0.0025744663    -0.0008058605    0.00
+0.0022148644    -0.0009383509    0.00
+0.0019712296    -0.0010277899    0.00
+0.0017687859    -0.0010992716    0.00
+0.0015765741    -0.0011630263    0.00
+0.0014071378    -0.0012043640    0.00
+0.0012432927    -0.0012199200    0.00
+0.0010877613    -0.0012130026    0.00
+0.0009431850    -0.0011886896    0.00
+0.0008106392    -0.0011503165    0.00
+0.0006904777    -0.0011005321    0.00
+0.0005826521    -0.0010420053    0.00
+0.0004868390    -0.0009771845    0.00
+0.0004025230    -0.0009080538    0.00
+0.0003272732    -0.0008342998    0.00
+0.0002594151    -0.0007549020    0.00
+0.0001982010    -0.0006698991    0.00
+0.0001443479    -0.0005791280    0.00
+0.0000978844    -0.0004822721    0.00
+0.0000593009    -0.0003792202    0.00
+0.0000292512    -0.0002692786    0.00
+0.0000088656    -0.0001510058    0.00
+0.0000001364    -0.0000218593    0.00
+0.0000066324    0.0001223612    0.00
+0.0000343728    0.0002829146    0.00
+0.0000878871    0.0004495219    0.00
+0.0001687193    0.0006163644    0.00
+0.0002746717    0.0008002255    0.00
+0.0003873645    0.0009913744    0.00
+0.0005204783    0.0012058767    0.00
+0.0007001432    0.0014832766    0.00
+0.0009176333    0.0018096979    0.00
+0.0011604103    0.0021630702    0.00
+0.0014359927    0.0025498013    0.00
+0.0017319030    0.0029460347    0.00
+0.0020427417    0.0033426148    0.00
+0.0023627162    0.0037322469    0.00
+0.0026856421    0.0041081834    0.00
+0.0030045355    0.0044635932    0.00
+0.0033177664    0.0047982630    0.00
+0.0036293342    0.0051178775    0.00
+0.0039427236    0.0054268517    0.00
+0.0042611568    0.0057286849    0.00
+0.0045880147    0.0060264893    0.00
+0.0049272656    0.0063233867    0.00
+0.0052840213    0.0066229019    0.00
+0.0056654424    0.0069294608    0.00
+0.0060658496    0.0072368612    0.00
+0.0064752103    0.0075366428    0.00
+0.0068926504    0.0078279785    0.00
+0.0073192367    0.0081114191    0.00
+0.0077546165    0.0083864827    0.00
+0.0081984338    0.0086527225    0.00
+0.0086503363    0.0089097342    0.00
+0.0091099669    0.0091571300    0.00
+0.0095769680    0.0093945641    0.00
+0.0100509848    0.0096217078    0.00
+0.0105316527    0.0098382575    0.00
+0.0110186128    0.0100439369    0.00
+0.0115115007    0.0102384885    0.00
+0.0120099491    0.0104216704    0.00
+0.0125135923    0.0105932719    0.00
+0.0130220605    0.0107530879    0.00
+0.0135349802    0.0109009389    0.00
+0.0140519826    0.0110366617    0.00
+0.0145726912    0.0111601049    0.00
+0.0150967283    0.0112711416    0.00
+0.0156237216    0.0113696506    0.00
+0.0161532891    0.0114555366    0.00
+0.0166850513    0.0115287098    0.00
+0.0172186311    0.0115891024    0.00
+0.0177536447    0.0116366587    0.00
+0.0182897094    0.0116713342    0.00
+0.0188264460    0.0116931073    0.00
+0.0193634690    0.0117019615    0.00
+0.0199003934    0.0116978994    0.00
+0.0204368387    0.0116809404    0.00
+0.0209724181    0.0116511135    0.00
+0.0215067448    0.0116084650    0.00
+0.0220394372    0.0115530590    0.00
+0.0225701062    0.0114849668    0.00
+0.0230983639    0.0114042875    0.00
+0.0236238252    0.0113111234    0.00
+0.0241460985    0.0112056048    0.00
+0.0246648268    0.0110878656    0.00
+0.0251797958    0.0109580169    0.00
+0.0256908149    0.0108161684    0.00
+0.0261976900    0.0106624204    0.00
+0.0267002306    0.0104968851    0.00
+0.0271982319    0.0103196681    0.00
+0.0276914898    0.0101308659    0.00
+0.0281797801    0.0099305315    0.00
+0.0286629595    0.0097189355    0.00
+0.0291408549    0.0094962411    0.00
+0.0296131222    0.0092622655    0.00
+0.0300793392    0.0090167363    0.00
+0.0305395608    0.0087602861    0.00
+0.0309947982    0.0084951113    0.00
+0.0314451218    0.0082216022    0.00
+0.0318915697    0.0079416139    0.00
+0.0323347274    0.0076561621    0.00
+0.0327744667    0.0073650839    0.00
+0.0332105982    0.0070681325    0.00
+0.0336430851    0.0067653115    0.00
+0.0340719253    0.0064566563    0.00
+0.0344970973    0.0061421700    0.00
+0.0349185715    0.0058218505    0.00
+0.0353363266    0.0054956861    0.00
+0.0357503369    0.0051636592    0.00
+0.0361605779    0.0048257522    0.00
+0.0365670339    0.0044819368    0.00
+0.0369696866    0.0041321806    0.00
+0.0373685207    0.0037764455    0.00
+0.0377635262    0.0034146770    0.00
+0.0381546931    0.0030468155    0.00
+0.0385420179    0.0026727929    0.00
+0.0389255040    0.0022925221    0.00
+0.0393051535    0.0019059010    0.00
+0.0396809591    0.0015127984    0.00
+0.0400521669    0.0011139023    0.00
+0.0404190918    0.0007089277    0.00
+0.0407836479    0.0002957113    0.00
+0.0411480397    -0.0001289238    0.00
+0.0415110701    -0.0005647579    0.00
+0.0418719376    -0.0010113593    0.00
+0.0422303132    -0.0014680581    0.00
+0.0425885560    -0.0019322439    0.00
+0.0429469604    -0.0024030946    0.00
+0.0433061364    -0.0028796647    0.00
+0.0436661204    -0.0033615334    0.00
+0.0440267050    -0.0038485408    0.00
+0.0443877269    -0.0043405607    0.00
+0.0447490553    -0.0048375075    0.00
+0.0451105890    -0.0053393332    0.00
+0.0454722544    -0.0058460272    0.00
+0.0458340048    -0.0063576157    0.00
+0.0461958188    -0.0068741628    0.00
+0.0465577006    -0.0073957709    0.00
+0.0469196791    -0.0079225829    0.00
+0.0472818089    -0.0084547846    0.00
+0.0476441706    -0.0089926080    0.00
+0.0480068722    -0.0095363351    0.00
+0.0483700502    -0.0100863033    0.00
+0.0487338727    -0.0106429113    0.00
+0.0490985412    -0.0112066268    0.00
+0.0494642946    -0.0117779960    0.00
+0.0498314131    -0.0123576539    0.00
+0.0502002239    -0.0129463392    0.00
+0.0505711084    -0.0135449114    0.00
+0.0509444737    -0.0141543125    0.00
+0.0513200017    -0.0147743243    0.00
+0.0516966637    -0.0154035254    0.00
+0.0520734787    -0.0160405088    0.00
+0.0524495323    -0.0166839119    0.00
+0.0528239611    -0.0173323947    0.00
+0.0531959467    -0.0179846295    0.00
+0.0535647060    -0.0186392839    0.00
+0.0539294774    -0.0192949979    0.00
+0.0542895194    -0.0199503793    0.00
+0.0546441020    -0.0206039877    0.00
+0.0549924955    -0.0212543127    0.00
+0.0553339684    -0.0218997663    0.00
+0.0556677805    -0.0225386690    0.00
+0.0559931719    -0.0231692247    0.00
+0.0563093576    -0.0237895074    0.00
+0.0566155192    -0.0243974408    0.00
+0.0569107949    -0.0249907759    0.00
+0.0571942689    -0.0255670649    0.00
+0.0574649580    -0.0261236316    0.00
+0.0577217973    -0.0266575388    0.00
+0.0579636229    -0.0271655504    0.00
+0.0581891505    -0.0276440892    0.00
+0.0583969598    -0.0280891804    0.00
+0.0585854002    -0.0284964137    0.00
+0.0587528461    -0.0288607500    0.00
+0.0588918301    -0.0291659420    0.00
+0.0590106475    -0.0294294984    0.00
+0.0591039933    -0.0296340168    0.00
+0.0591810389    -0.0297982270    0.00
+0.0592514594    -0.0299518502    0.00
+0.0593145044    -0.0301071549    0.00
+0.0593543790    -0.0302475711    0.00
+0.0593688346    -0.0305157278    0.00
+0.0593502899    -0.0306371252    0.00
+0.0593208499    -0.0307430361    0.00
+0.0592842856    -0.0308343072    0.00
+0.0592424500    -0.0309137032    0.00
+0.0591964924    -0.0309834762    0.00
+0.0591471972    -0.0310454258    0.00
+0.0590950036    -0.0311007950    0.00
+0.0590401588    -0.0311504222    0.00
diff --git a/ntrfc/data/turbine_cascade_2/profilepoints.txt b/ntrfc/data/turbine_cascade_2/profilepoints.txt
index 6aad15972dde91e333907b0a14ee01f9eef0fc05..7b4efbf161aa99c3ac64e45ebe4c63e4da2aaa58 100644
--- a/ntrfc/data/turbine_cascade_2/profilepoints.txt
+++ b/ntrfc/data/turbine_cascade_2/profilepoints.txt
@@ -1,284 +1,284 @@
-2.303357470824734243e-01	-9.724512396730190800e-02	0
-2.302788237010710837e-01	-9.728075624867568716e-02	0
-2.302202853233227542e-01	-9.730425990832568262e-02	0
-2.301607956109358866e-01	-9.731516858436194128e-02	0
-2.301010602808444550e-01	-9.731277642058264177e-02	0
-2.300418079846125730e-01	-9.729764327666856616e-02	0
-2.299836472750698690e-01	-9.727074435444206524e-02	0
-2.299270976371182440e-01	-9.723285879501508688e-02	0
-2.298726454551240916e-01	-9.718457358043694483e-02	0
-2.298207775680988496e-01	-9.712635799213609200e-02	0
-2.297718454116240150e-01	-9.705905625165769934e-02	0
-2.297259819214752252e-01	-9.698388563715151789e-02	0
-2.296832557425683152e-01	-9.690189912216673473e-02	0
-2.296436887235864810e-01	-9.681401322080601668e-02	0
-2.296071887782020204e-01	-9.672114891838168305e-02	0
-2.295735472280964751e-01	-9.662420998767556890e-02	0
-2.295425753955580850e-01	-9.652389696502280958e-02	0
-2.295140867014993924e-01	-9.642078196018341596e-02	0
-2.294832253818007151e-01	-9.629658451233957805e-02	0
-2.294495235445618841e-01	-9.614784701593717675e-02	0
-2.294118631094384797e-01	-9.597089710783368588e-02	0
-2.293680858663839917e-01	-9.576196253769124478e-02	0
-2.293160863105380975e-01	-9.551617357664062002e-02	0
-2.292545988537086910e-01	-9.522680400375066467e-02	0
-2.291823250052043293e-01	-9.488576744421277354e-02	0
-2.290973790903062246e-01	-9.448382580486584803e-02	0
-2.289972792718793781e-01	-9.401030281471947636e-02	0
-2.288792826043230533e-01	-9.345246646317045824e-02	0
-2.287404173253952400e-01	-9.279509540539457313e-02	0
-2.285769958452484318e-01	-9.202039645522898381e-02	0
-2.283844735918366398e-01	-9.110755208063694988e-02	0
-2.281578294180039157e-01	-9.003173906142929173e-02	0
-2.278912261441831677e-01	-8.876361407622523902e-02	0
-2.275775597799189753e-01	-8.726874276156915133e-02	0
-2.272085105075382638e-01	-8.550645202683293533e-02	0
-2.267743446223782766e-01	-8.342868002788191018e-02	0
-2.262635450336112630e-01	-8.097872698334693253e-02	0
-2.257529010170745698e-01	-7.852664319274675619e-02	0
-2.252418818787980392e-01	-7.607291999810485150e-02	0
-2.247299519499954268e-01	-7.361805534076759638e-02	0
-2.242164827150144868e-01	-7.116262751944625597e-02	0
-2.237007477701757618e-01	-6.870730166234298442e-02	0
-2.231820192635460554e-01	-6.625275561788891709e-02	0
-2.226595237586971587e-01	-6.379971872449891057e-02	0
-2.221325078763292382e-01	-6.134892194626559436e-02	0
-2.216001944888082442e-01	-5.890113675687835143e-02	0
-2.210616932630167231e-01	-5.645725826917732948e-02	0
-2.205161037966277549e-01	-5.401822435230055341e-02	0
-2.199624255347212287e-01	-5.158510122952096599e-02	0
-2.193997501695769958e-01	-4.915892066118716236e-02	0
-2.188270016954642627e-01	-4.674092254191581502e-02	0
-2.182430728848902546e-01	-4.433244492200530407e-02	0
-2.176467988450322411e-01	-4.193496196616207372e-02	0
-2.170367947909426221e-01	-3.955026590532292885e-02	0
-2.164116620745235309e-01	-3.718028942953109650e-02	0
-2.157698239018987219e-01	-3.482730364982168647e-02	0
-2.151096024054675593e-01	-3.249388130034783218e-02	0
-2.144290707233266480e-01	-3.018311374805671479e-02	0
-2.137261130216840388e-01	-2.789862127130634389e-02	0
-2.129984757897545600e-01	-2.564458107327025754e-02	0
-2.122434188225267859e-01	-2.342630565997886813e-02	0
-2.114582173297791245e-01	-2.124976242982285629e-02	0
-2.106396672183760144e-01	-1.912247127896973126e-02	0
-2.097843753852781101e-01	-1.705342149157872828e-02	0
-2.088886047692700143e-01	-1.505374800432830729e-02	0
-2.079486013265372524e-01	-1.313677561559709397e-02	0
-2.069606179540409985e-01	-1.131872041752087291e-02	0
-2.059214916204617773e-01	-9.618471267843712452e-03	0
-2.048289863129239274e-01	-8.057813587307123548e-03	0
-2.036827081447026566e-01	-6.660027089860322963e-03	0
-2.024847591777285960e-01	-5.448037719699462544e-03	0
-2.012402422177330119e-01	-4.441178548375288374e-03	0
-2.001143946847304123e-01	-3.734566290908870705e-03	0
-1.991057701836107807e-01	-3.251432573687603779e-03	0
-1.982084819082754190e-01	-2.929743745862604595e-03	0
-1.974140592665805105e-01	-2.721431992461988743e-03	0
-1.967129171741094362e-01	-2.590174690915290033e-03	0
-1.960952472143273895e-01	-2.511219661775011824e-03	0
-1.955517071880887858e-01	-2.467559852818602441e-03	0
-1.950737248252220890e-01	-2.446175845923105087e-03	0
-1.946535427700700205e-01	-2.438161830067979950e-03	0
-1.942842312859893728e-01	-2.438662899357262135e-03	0
-1.939596600426978790e-01	-2.444640599321789773e-03	0
-1.936744208621183072e-01	-2.453698255761981722e-03	0
-1.934237473685412878e-01	-2.463953742631525782e-03	0
-1.932034478012451262e-01	-2.474346984211039588e-03	0
-1.930098372261601913e-01	-2.484196095647976665e-03	0
-1.928396791700513480e-01	-2.493203054854709142e-03	0
-1.926901310415811419e-01	-2.501287967673464403e-03	0
-1.925586997550036705e-01	-2.508767760855315672e-03	0
-1.924431965341149575e-01	-2.516043499951741390e-03	0
-1.923277061357092921e-01	-2.524093727167570772e-03	0
-1.922122239592267690e-01	-2.532604208987386356e-03	0
-1.920967378775787771e-01	-2.540895567622714502e-03	0
-1.919812220473209596e-01	-2.547267315556115720e-03	0
-1.918656698125993376e-01	-2.549583358299915142e-03	0
-1.917501325974514115e-01	-2.545506801833455433e-03	0
-1.916347677040927677e-01	-2.532424791545930930e-03	0
-1.915199410399261171e-01	-2.506773665482478486e-03	0
-1.914063518141180809e-01	-2.464602656987627260e-03	0
-1.912950658222485889e-01	-2.402658288187081194e-03	0
-1.911876126996233660e-01	-2.317943439445266027e-03	0
-1.910858597054355124e-01	-2.208708817647547524e-03	0
-1.909921889354363467e-01	-2.073670422785280423e-03	0
-1.909090652263085164e-01	-1.913419739285099688e-03	0
-1.908390839525465066e-01	-1.729792049442314787e-03	0
-1.907842827181190914e-01	-1.526584931135926710e-03	0
-1.907842827181190914e-01	-1.526584931135926710e-03	0
-1.907458718147258536e-01	-1.308838552907596979e-03	0
-1.907240709695158243e-01	-1.082087324061969773e-03	0
-1.907192137188649383e-01	-8.513710091239152372e-04	0
-1.907297892848908161e-01	-6.213639340028667950e-04	0
-1.907529633369998423e-01	-3.950344500300245840e-04	0
-1.907867198762068506e-01	-1.740731473223921448e-04	0
-1.908295829635542618e-01	4.049243242300977139e-05	0
-1.908808119065797948e-01	2.476007484072010136e-04	0
-1.909389617317165388e-01	4.472878151117671880e-04	0
-1.910024634965976909e-01	6.403600284365314243e-04	0
-1.910695683296136649e-01	8.285116604626850678e-04	0
-1.911386276148140939e-01	1.013819905609487579e-03	0
-1.912088423688836636e-01	1.197384059290604232e-03	0
-1.912799705598212385e-01	1.379536487023587474e-03	0
-1.913518844787874817e-01	1.560450527520018237e-03	0
-1.914246123562917123e-01	1.740058006842460248e-03	0
-1.914982004337510424e-01	1.918258133154338192e-03	0
-1.915766491840428798e-01	2.104326805550443304e-03	0
-1.916603419472444336e-01	2.298432976351153564e-03	0
-1.917496185785633467e-01	2.500854546013692430e-03	0
-1.918448931798207302e-01	2.711775936895632726e-03	0
-1.919465786414378261e-01	2.931420892563159353e-03	0
-1.920551884683904809e-01	3.159863010437148276e-03	0
-1.921711547200229131e-01	3.397368253923088721e-03	0
-1.922951034875909349e-01	3.643863314451380522e-03	0
-1.924276357206184118e-01	3.899352151866721048e-03	0
-1.925694363985605284e-01	4.163694061381085880e-03	0
-1.927211786418175643e-01	4.436798963465569956e-03	0
-1.928835412701011554e-01	4.718598854033630337e-03	0
-1.930572716665589772e-01	5.008904439116518108e-03	0
-1.932432213456965475e-01	5.307302747906016485e-03	0
-1.934423437330866358e-01	5.613131856318865145e-03	0
-1.936556328609392030e-01	5.925608156132043669e-03	0
-1.938842100521502299e-01	6.243563334483294078e-03	0
-1.941292468262922899e-01	6.565605079196902907e-03	0
-1.943918319272436579e-01	6.890508141570361386e-03	0
-1.946729300335910406e-01	7.217418853107863616e-03	0
-1.949736403363422910e-01	7.545025811152624579e-03	0
-1.952953610526777239e-01	7.870809243812065467e-03	0
-1.956397073348902782e-01	8.191031837625411399e-03	0
-1.960081568116203987e-01	8.501984980122515023e-03	0
-1.964020284347648415e-01	8.800147095737394926e-03	0
-1.968225161743986651e-01	9.082153354373186105e-03	0
-1.972709081499833539e-01	9.343491447646679049e-03	0
-1.977484748600518982e-01	9.578728964878619606e-03	0
-1.982564249673777479e-01	9.781267387521209306e-03	0
-1.987957578771799572e-01	9.944088802284405809e-03	0
-1.993672331782715412e-01	1.005982509621319854e-02	0
-1.999713634721826117e-01	1.012041011567029608e-02	0
-2.006083600245339160e-01	1.011723073365032761e-02	0
-2.012780738518632762e-01	1.004053851882845752e-02	0
-2.019799414231667756e-01	9.880412785995721509e-03	0
-2.027129559026520367e-01	9.626616347672473442e-03	0
-2.034374597646627369e-01	9.288905182134843744e-03	0
-2.041514262784329126e-01	8.870927124836785679e-03	0
-2.048531575426804918e-01	8.376957445570650668e-03	0
-2.055412562309777980e-01	7.811431292822492573e-03	0
-2.062146229340278414e-01	7.178903608925176275e-03	0
-2.068723081203985015e-01	6.483468770704985118e-03	0
-2.075136817067231021e-01	5.729527236516773932e-03	0
-2.081383618830236482e-01	4.921435342636953578e-03	0
-2.087460537741396838e-01	4.063064478712902564e-03	0
-2.093367858665287073e-01	3.158553329047861149e-03	0
-2.099105893836820946e-01	2.211429067666463577e-03	0
-2.104675827476847894e-01	1.224960868303953242e-03	0
-2.110081531909506203e-01	2.025866828134353383e-04	0
-2.115326006929283409e-01	-8.528559985954237100e-04	0
-2.120412622451497142e-01	-1.938768899183214867e-03	0
-2.125346452833208333e-01	-3.052520345922947811e-03	0
-2.130132254716431972e-01	-4.191805555501687888e-03	0
-2.134774597892418468e-01	-5.354573352102116185e-03	0
-2.139278748426851340e-01	-6.538854456811156804e-03	0
-2.143650024003850019e-01	-7.742850211602630289e-03	0
-2.147893651220657840e-01	-8.964930367276028461e-03	0
-2.152014807748740544e-01	-1.020360651144127002e-02	0
-2.156018490468550319e-01	-1.145753158427956046e-02	0
-2.159909988024851790e-01	-1.272542727669029664e-02	0
-2.163693674776978604e-01	-1.400621977362010925e-02	0
-2.167374897785249444e-01	-1.529880017785927721e-02	0
-2.170958258664434648e-01	-1.660222234357484894e-02	0
-2.174448181211050546e-01	-1.791562285824841935e-02	0
-2.177849202911569526e-01	-1.923818380716971199e-02	0
-2.181165149768564127e-01	-2.056921091275684677e-02	0
-2.184400057661579631e-01	-2.190803097430245316e-02	0
-2.187558529503782212e-01	-2.325395927025807052e-02	0
-2.190644017789911135e-01	-2.460645816836314059e-02	0
-2.193660415751664539e-01	-2.596498039794637586e-02	0
-2.196611231596854730e-01	-2.732904308200205523e-02	0
-2.199499861933825462e-01	-2.869819849310858983e-02	0
-2.202329645395003643e-01	-3.007202735496906920e-02	0
-2.205103905051137847e-01	-3.145013293670242960e-02	0
-2.207825636212555065e-01	-3.283216395612100630e-02	0
-2.210497785995897968e-01	-3.421778944601141376e-02	0
-2.213123289064009014e-01	-3.560669491742569914e-02	0
-2.215704886916535776e-01	-3.699859381912866396e-02	0
-2.218245145038388044e-01	-3.839322508315261284e-02	0
-2.220746014727325024e-01	-3.979038131511904164e-02	0
-2.223211568792340387e-01	-4.118971560650375174e-02	0
-2.225642154615518897e-01	-4.259115116115740063e-02	0
-2.228041830583642191e-01	-4.399436139271105384e-02	0
-2.230410777939858813e-01	-4.539929089066672280e-02	0
-2.232753192269750775e-01	-4.680562037815358400e-02	0
-2.235069561845289265e-01	-4.821328342325724436e-02	0
-2.237362443946518120e-01	-4.962208155457262237e-02	0
-2.239633815254849503e-01	-5.103185885631980612e-02	0
-2.241885358023955332e-01	-5.244248224770264172e-02	0
-2.244118717395130191e-01	-5.385382419666247950e-02	0
-2.246335510384731560e-01	-5.526576159883354877e-02	0
-2.248536889506462799e-01	-5.667820316029983929e-02	0
-2.250724563851417004e-01	-5.809102464569969315e-02	0
-2.252899649153041195e-01	-5.950414014022445408e-02	0
-2.255063678141555061e-01	-6.091744048870351147e-02	0
-2.257217979329550483e-01	-6.233082989551119030e-02	0
-2.259363669085216741e-01	-6.374422650492674036e-02	0
-2.261501832930958855e-01	-6.515755187928465308e-02	0
-2.263633466909409364e-01	-6.657073286834844228e-02	0
-2.265759674907727172e-01	-6.798369149695079883e-02	0
-2.267881009159907202e-01	-6.939638205937063986e-02	0
-2.269998647537352365e-01	-7.080872325334033879e-02	0
-2.272113045821832211e-01	-7.222067574910995269e-02	0
-2.274224571897649483e-01	-7.363220645516063700e-02	0
-2.276333446454560649e-01	-7.504329008650922894e-02	0
-2.278440160574487783e-01	-7.645388661316536438e-02	0
-2.280545632940279011e-01	-7.786393026449299481e-02	0
-2.282508543104756482e-01	-7.917802986682240252e-02	0
-2.284338350294665698e-01	-8.040275261369136950e-02	0
-2.286043875215556520e-01	-8.154421426595476197e-02	0
-2.287633577681164598e-01	-8.260809641547811610e-02	0
-2.289115404152100852e-01	-8.359968755160784859e-02	0
-2.290496791887493000e-01	-8.452391125275306172e-02	0
-2.291784631188668320e-01	-8.538535583781528548e-02	0
-2.292985312951280885e-01	-8.618829691846358054e-02	0
-2.294104739248234159e-01	-8.693672006778921379e-02	0
-2.295148395950269982e-01	-8.763433937269282659e-02	0
-2.296121403153043028e-01	-8.828461408650387088e-02	0
-2.297028536824122502e-01	-8.889076664627949820e-02	0
-2.297874235720010760e-01	-8.945579994687834213e-02	0
-2.298662635311279900e-01	-8.998251182020441941e-02	0
-2.299397594718131099e-01	-9.047350847369590998e-02	0
-2.300082671344399476e-01	-9.093122140535897513e-02	0
-2.300721193975235335e-01	-9.135791437644963375e-02	0
-2.301316285774252235e-01	-9.175569641944594790e-02	0
-2.301870948061889299e-01	-9.212652763936171607e-02	0
-2.302388114419428866e-01	-9.247222591207640563e-02	0
-2.302870477092307522e-01	-9.279448858980388071e-02	0
-2.303320488446316816e-01	-9.309490051832294832e-02	0
-2.303739985259238010e-01	-9.337496467914005449e-02	0
-2.304130496825211871e-01	-9.363609236055009388e-02	0
-2.304493620951048594e-01	-9.387958851054872822e-02	0
-2.304831011635778415e-01	-9.410666062265904408e-02	0
-2.305145559083543738e-01	-9.431835603532406909e-02	0
-2.305440487391347826e-01	-9.451562065446333927e-02	0
-2.305718499936079968e-01	-9.469935164372705882e-02	0
-2.305981603739579444e-01	-9.487041365773209167e-02	0
-2.306227654154789364e-01	-9.502984979904610663e-02	0
-2.306451661252983398e-01	-9.517880884127782881e-02	0
-2.306650020325256289e-01	-9.531827410437240800e-02	0
-2.306820361547191056e-01	-9.544906354754023603e-02	0
-2.306961498113681286e-01	-9.557183297539080524e-02	0
-2.307073117746031576e-01	-9.568710524994272770e-02	0
-2.307160756625622478e-01	-9.580316465833890738e-02	0
-2.307218696764530841e-01	-9.591992910491452251e-02	0
-2.307240683938342474e-01	-9.603715472882637383e-02	0
-2.307221506610406814e-01	-9.615439014494961412e-02	0
-2.307158798691965607e-01	-9.627103085382265890e-02	0
-2.307050593157841667e-01	-9.638637177089018349e-02	0
-2.306894991837267206e-01	-9.649959696918400387e-02	0
-2.306690392847532689e-01	-9.660977176122326204e-02	0
-2.306435780678960934e-01	-9.671584734707409925e-02	0
-2.306129671401798420e-01	-9.681653202987690332e-02	0
-2.305771429349287860e-01	-9.691035401410157124e-02	0
-2.305364813982163641e-01	-9.699624894852318380e-02	0
-2.304914372283481394e-01	-9.707327096022239088e-02	0
-2.304426054875363672e-01	-9.714083100078213517e-02	0
-2.303905326288261390e-01	-9.719832138204861915e-02	0
-2.303357470824734243e-01	-9.724512396730190800e-02	0
+2.303357470824734243e-01    -9.724512396730190800e-02    0
+2.302788237010710837e-01    -9.728075624867568716e-02    0
+2.302202853233227542e-01    -9.730425990832568262e-02    0
+2.301607956109358866e-01    -9.731516858436194128e-02    0
+2.301010602808444550e-01    -9.731277642058264177e-02    0
+2.300418079846125730e-01    -9.729764327666856616e-02    0
+2.299836472750698690e-01    -9.727074435444206524e-02    0
+2.299270976371182440e-01    -9.723285879501508688e-02    0
+2.298726454551240916e-01    -9.718457358043694483e-02    0
+2.298207775680988496e-01    -9.712635799213609200e-02    0
+2.297718454116240150e-01    -9.705905625165769934e-02    0
+2.297259819214752252e-01    -9.698388563715151789e-02    0
+2.296832557425683152e-01    -9.690189912216673473e-02    0
+2.296436887235864810e-01    -9.681401322080601668e-02    0
+2.296071887782020204e-01    -9.672114891838168305e-02    0
+2.295735472280964751e-01    -9.662420998767556890e-02    0
+2.295425753955580850e-01    -9.652389696502280958e-02    0
+2.295140867014993924e-01    -9.642078196018341596e-02    0
+2.294832253818007151e-01    -9.629658451233957805e-02    0
+2.294495235445618841e-01    -9.614784701593717675e-02    0
+2.294118631094384797e-01    -9.597089710783368588e-02    0
+2.293680858663839917e-01    -9.576196253769124478e-02    0
+2.293160863105380975e-01    -9.551617357664062002e-02    0
+2.292545988537086910e-01    -9.522680400375066467e-02    0
+2.291823250052043293e-01    -9.488576744421277354e-02    0
+2.290973790903062246e-01    -9.448382580486584803e-02    0
+2.289972792718793781e-01    -9.401030281471947636e-02    0
+2.288792826043230533e-01    -9.345246646317045824e-02    0
+2.287404173253952400e-01    -9.279509540539457313e-02    0
+2.285769958452484318e-01    -9.202039645522898381e-02    0
+2.283844735918366398e-01    -9.110755208063694988e-02    0
+2.281578294180039157e-01    -9.003173906142929173e-02    0
+2.278912261441831677e-01    -8.876361407622523902e-02    0
+2.275775597799189753e-01    -8.726874276156915133e-02    0
+2.272085105075382638e-01    -8.550645202683293533e-02    0
+2.267743446223782766e-01    -8.342868002788191018e-02    0
+2.262635450336112630e-01    -8.097872698334693253e-02    0
+2.257529010170745698e-01    -7.852664319274675619e-02    0
+2.252418818787980392e-01    -7.607291999810485150e-02    0
+2.247299519499954268e-01    -7.361805534076759638e-02    0
+2.242164827150144868e-01    -7.116262751944625597e-02    0
+2.237007477701757618e-01    -6.870730166234298442e-02    0
+2.231820192635460554e-01    -6.625275561788891709e-02    0
+2.226595237586971587e-01    -6.379971872449891057e-02    0
+2.221325078763292382e-01    -6.134892194626559436e-02    0
+2.216001944888082442e-01    -5.890113675687835143e-02    0
+2.210616932630167231e-01    -5.645725826917732948e-02    0
+2.205161037966277549e-01    -5.401822435230055341e-02    0
+2.199624255347212287e-01    -5.158510122952096599e-02    0
+2.193997501695769958e-01    -4.915892066118716236e-02    0
+2.188270016954642627e-01    -4.674092254191581502e-02    0
+2.182430728848902546e-01    -4.433244492200530407e-02    0
+2.176467988450322411e-01    -4.193496196616207372e-02    0
+2.170367947909426221e-01    -3.955026590532292885e-02    0
+2.164116620745235309e-01    -3.718028942953109650e-02    0
+2.157698239018987219e-01    -3.482730364982168647e-02    0
+2.151096024054675593e-01    -3.249388130034783218e-02    0
+2.144290707233266480e-01    -3.018311374805671479e-02    0
+2.137261130216840388e-01    -2.789862127130634389e-02    0
+2.129984757897545600e-01    -2.564458107327025754e-02    0
+2.122434188225267859e-01    -2.342630565997886813e-02    0
+2.114582173297791245e-01    -2.124976242982285629e-02    0
+2.106396672183760144e-01    -1.912247127896973126e-02    0
+2.097843753852781101e-01    -1.705342149157872828e-02    0
+2.088886047692700143e-01    -1.505374800432830729e-02    0
+2.079486013265372524e-01    -1.313677561559709397e-02    0
+2.069606179540409985e-01    -1.131872041752087291e-02    0
+2.059214916204617773e-01    -9.618471267843712452e-03    0
+2.048289863129239274e-01    -8.057813587307123548e-03    0
+2.036827081447026566e-01    -6.660027089860322963e-03    0
+2.024847591777285960e-01    -5.448037719699462544e-03    0
+2.012402422177330119e-01    -4.441178548375288374e-03    0
+2.001143946847304123e-01    -3.734566290908870705e-03    0
+1.991057701836107807e-01    -3.251432573687603779e-03    0
+1.982084819082754190e-01    -2.929743745862604595e-03    0
+1.974140592665805105e-01    -2.721431992461988743e-03    0
+1.967129171741094362e-01    -2.590174690915290033e-03    0
+1.960952472143273895e-01    -2.511219661775011824e-03    0
+1.955517071880887858e-01    -2.467559852818602441e-03    0
+1.950737248252220890e-01    -2.446175845923105087e-03    0
+1.946535427700700205e-01    -2.438161830067979950e-03    0
+1.942842312859893728e-01    -2.438662899357262135e-03    0
+1.939596600426978790e-01    -2.444640599321789773e-03    0
+1.936744208621183072e-01    -2.453698255761981722e-03    0
+1.934237473685412878e-01    -2.463953742631525782e-03    0
+1.932034478012451262e-01    -2.474346984211039588e-03    0
+1.930098372261601913e-01    -2.484196095647976665e-03    0
+1.928396791700513480e-01    -2.493203054854709142e-03    0
+1.926901310415811419e-01    -2.501287967673464403e-03    0
+1.925586997550036705e-01    -2.508767760855315672e-03    0
+1.924431965341149575e-01    -2.516043499951741390e-03    0
+1.923277061357092921e-01    -2.524093727167570772e-03    0
+1.922122239592267690e-01    -2.532604208987386356e-03    0
+1.920967378775787771e-01    -2.540895567622714502e-03    0
+1.919812220473209596e-01    -2.547267315556115720e-03    0
+1.918656698125993376e-01    -2.549583358299915142e-03    0
+1.917501325974514115e-01    -2.545506801833455433e-03    0
+1.916347677040927677e-01    -2.532424791545930930e-03    0
+1.915199410399261171e-01    -2.506773665482478486e-03    0
+1.914063518141180809e-01    -2.464602656987627260e-03    0
+1.912950658222485889e-01    -2.402658288187081194e-03    0
+1.911876126996233660e-01    -2.317943439445266027e-03    0
+1.910858597054355124e-01    -2.208708817647547524e-03    0
+1.909921889354363467e-01    -2.073670422785280423e-03    0
+1.909090652263085164e-01    -1.913419739285099688e-03    0
+1.908390839525465066e-01    -1.729792049442314787e-03    0
+1.907842827181190914e-01    -1.526584931135926710e-03    0
+1.907842827181190914e-01    -1.526584931135926710e-03    0
+1.907458718147258536e-01    -1.308838552907596979e-03    0
+1.907240709695158243e-01    -1.082087324061969773e-03    0
+1.907192137188649383e-01    -8.513710091239152372e-04    0
+1.907297892848908161e-01    -6.213639340028667950e-04    0
+1.907529633369998423e-01    -3.950344500300245840e-04    0
+1.907867198762068506e-01    -1.740731473223921448e-04    0
+1.908295829635542618e-01    4.049243242300977139e-05    0
+1.908808119065797948e-01    2.476007484072010136e-04    0
+1.909389617317165388e-01    4.472878151117671880e-04    0
+1.910024634965976909e-01    6.403600284365314243e-04    0
+1.910695683296136649e-01    8.285116604626850678e-04    0
+1.911386276148140939e-01    1.013819905609487579e-03    0
+1.912088423688836636e-01    1.197384059290604232e-03    0
+1.912799705598212385e-01    1.379536487023587474e-03    0
+1.913518844787874817e-01    1.560450527520018237e-03    0
+1.914246123562917123e-01    1.740058006842460248e-03    0
+1.914982004337510424e-01    1.918258133154338192e-03    0
+1.915766491840428798e-01    2.104326805550443304e-03    0
+1.916603419472444336e-01    2.298432976351153564e-03    0
+1.917496185785633467e-01    2.500854546013692430e-03    0
+1.918448931798207302e-01    2.711775936895632726e-03    0
+1.919465786414378261e-01    2.931420892563159353e-03    0
+1.920551884683904809e-01    3.159863010437148276e-03    0
+1.921711547200229131e-01    3.397368253923088721e-03    0
+1.922951034875909349e-01    3.643863314451380522e-03    0
+1.924276357206184118e-01    3.899352151866721048e-03    0
+1.925694363985605284e-01    4.163694061381085880e-03    0
+1.927211786418175643e-01    4.436798963465569956e-03    0
+1.928835412701011554e-01    4.718598854033630337e-03    0
+1.930572716665589772e-01    5.008904439116518108e-03    0
+1.932432213456965475e-01    5.307302747906016485e-03    0
+1.934423437330866358e-01    5.613131856318865145e-03    0
+1.936556328609392030e-01    5.925608156132043669e-03    0
+1.938842100521502299e-01    6.243563334483294078e-03    0
+1.941292468262922899e-01    6.565605079196902907e-03    0
+1.943918319272436579e-01    6.890508141570361386e-03    0
+1.946729300335910406e-01    7.217418853107863616e-03    0
+1.949736403363422910e-01    7.545025811152624579e-03    0
+1.952953610526777239e-01    7.870809243812065467e-03    0
+1.956397073348902782e-01    8.191031837625411399e-03    0
+1.960081568116203987e-01    8.501984980122515023e-03    0
+1.964020284347648415e-01    8.800147095737394926e-03    0
+1.968225161743986651e-01    9.082153354373186105e-03    0
+1.972709081499833539e-01    9.343491447646679049e-03    0
+1.977484748600518982e-01    9.578728964878619606e-03    0
+1.982564249673777479e-01    9.781267387521209306e-03    0
+1.987957578771799572e-01    9.944088802284405809e-03    0
+1.993672331782715412e-01    1.005982509621319854e-02    0
+1.999713634721826117e-01    1.012041011567029608e-02    0
+2.006083600245339160e-01    1.011723073365032761e-02    0
+2.012780738518632762e-01    1.004053851882845752e-02    0
+2.019799414231667756e-01    9.880412785995721509e-03    0
+2.027129559026520367e-01    9.626616347672473442e-03    0
+2.034374597646627369e-01    9.288905182134843744e-03    0
+2.041514262784329126e-01    8.870927124836785679e-03    0
+2.048531575426804918e-01    8.376957445570650668e-03    0
+2.055412562309777980e-01    7.811431292822492573e-03    0
+2.062146229340278414e-01    7.178903608925176275e-03    0
+2.068723081203985015e-01    6.483468770704985118e-03    0
+2.075136817067231021e-01    5.729527236516773932e-03    0
+2.081383618830236482e-01    4.921435342636953578e-03    0
+2.087460537741396838e-01    4.063064478712902564e-03    0
+2.093367858665287073e-01    3.158553329047861149e-03    0
+2.099105893836820946e-01    2.211429067666463577e-03    0
+2.104675827476847894e-01    1.224960868303953242e-03    0
+2.110081531909506203e-01    2.025866828134353383e-04    0
+2.115326006929283409e-01    -8.528559985954237100e-04    0
+2.120412622451497142e-01    -1.938768899183214867e-03    0
+2.125346452833208333e-01    -3.052520345922947811e-03    0
+2.130132254716431972e-01    -4.191805555501687888e-03    0
+2.134774597892418468e-01    -5.354573352102116185e-03    0
+2.139278748426851340e-01    -6.538854456811156804e-03    0
+2.143650024003850019e-01    -7.742850211602630289e-03    0
+2.147893651220657840e-01    -8.964930367276028461e-03    0
+2.152014807748740544e-01    -1.020360651144127002e-02    0
+2.156018490468550319e-01    -1.145753158427956046e-02    0
+2.159909988024851790e-01    -1.272542727669029664e-02    0
+2.163693674776978604e-01    -1.400621977362010925e-02    0
+2.167374897785249444e-01    -1.529880017785927721e-02    0
+2.170958258664434648e-01    -1.660222234357484894e-02    0
+2.174448181211050546e-01    -1.791562285824841935e-02    0
+2.177849202911569526e-01    -1.923818380716971199e-02    0
+2.181165149768564127e-01    -2.056921091275684677e-02    0
+2.184400057661579631e-01    -2.190803097430245316e-02    0
+2.187558529503782212e-01    -2.325395927025807052e-02    0
+2.190644017789911135e-01    -2.460645816836314059e-02    0
+2.193660415751664539e-01    -2.596498039794637586e-02    0
+2.196611231596854730e-01    -2.732904308200205523e-02    0
+2.199499861933825462e-01    -2.869819849310858983e-02    0
+2.202329645395003643e-01    -3.007202735496906920e-02    0
+2.205103905051137847e-01    -3.145013293670242960e-02    0
+2.207825636212555065e-01    -3.283216395612100630e-02    0
+2.210497785995897968e-01    -3.421778944601141376e-02    0
+2.213123289064009014e-01    -3.560669491742569914e-02    0
+2.215704886916535776e-01    -3.699859381912866396e-02    0
+2.218245145038388044e-01    -3.839322508315261284e-02    0
+2.220746014727325024e-01    -3.979038131511904164e-02    0
+2.223211568792340387e-01    -4.118971560650375174e-02    0
+2.225642154615518897e-01    -4.259115116115740063e-02    0
+2.228041830583642191e-01    -4.399436139271105384e-02    0
+2.230410777939858813e-01    -4.539929089066672280e-02    0
+2.232753192269750775e-01    -4.680562037815358400e-02    0
+2.235069561845289265e-01    -4.821328342325724436e-02    0
+2.237362443946518120e-01    -4.962208155457262237e-02    0
+2.239633815254849503e-01    -5.103185885631980612e-02    0
+2.241885358023955332e-01    -5.244248224770264172e-02    0
+2.244118717395130191e-01    -5.385382419666247950e-02    0
+2.246335510384731560e-01    -5.526576159883354877e-02    0
+2.248536889506462799e-01    -5.667820316029983929e-02    0
+2.250724563851417004e-01    -5.809102464569969315e-02    0
+2.252899649153041195e-01    -5.950414014022445408e-02    0
+2.255063678141555061e-01    -6.091744048870351147e-02    0
+2.257217979329550483e-01    -6.233082989551119030e-02    0
+2.259363669085216741e-01    -6.374422650492674036e-02    0
+2.261501832930958855e-01    -6.515755187928465308e-02    0
+2.263633466909409364e-01    -6.657073286834844228e-02    0
+2.265759674907727172e-01    -6.798369149695079883e-02    0
+2.267881009159907202e-01    -6.939638205937063986e-02    0
+2.269998647537352365e-01    -7.080872325334033879e-02    0
+2.272113045821832211e-01    -7.222067574910995269e-02    0
+2.274224571897649483e-01    -7.363220645516063700e-02    0
+2.276333446454560649e-01    -7.504329008650922894e-02    0
+2.278440160574487783e-01    -7.645388661316536438e-02    0
+2.280545632940279011e-01    -7.786393026449299481e-02    0
+2.282508543104756482e-01    -7.917802986682240252e-02    0
+2.284338350294665698e-01    -8.040275261369136950e-02    0
+2.286043875215556520e-01    -8.154421426595476197e-02    0
+2.287633577681164598e-01    -8.260809641547811610e-02    0
+2.289115404152100852e-01    -8.359968755160784859e-02    0
+2.290496791887493000e-01    -8.452391125275306172e-02    0
+2.291784631188668320e-01    -8.538535583781528548e-02    0
+2.292985312951280885e-01    -8.618829691846358054e-02    0
+2.294104739248234159e-01    -8.693672006778921379e-02    0
+2.295148395950269982e-01    -8.763433937269282659e-02    0
+2.296121403153043028e-01    -8.828461408650387088e-02    0
+2.297028536824122502e-01    -8.889076664627949820e-02    0
+2.297874235720010760e-01    -8.945579994687834213e-02    0
+2.298662635311279900e-01    -8.998251182020441941e-02    0
+2.299397594718131099e-01    -9.047350847369590998e-02    0
+2.300082671344399476e-01    -9.093122140535897513e-02    0
+2.300721193975235335e-01    -9.135791437644963375e-02    0
+2.301316285774252235e-01    -9.175569641944594790e-02    0
+2.301870948061889299e-01    -9.212652763936171607e-02    0
+2.302388114419428866e-01    -9.247222591207640563e-02    0
+2.302870477092307522e-01    -9.279448858980388071e-02    0
+2.303320488446316816e-01    -9.309490051832294832e-02    0
+2.303739985259238010e-01    -9.337496467914005449e-02    0
+2.304130496825211871e-01    -9.363609236055009388e-02    0
+2.304493620951048594e-01    -9.387958851054872822e-02    0
+2.304831011635778415e-01    -9.410666062265904408e-02    0
+2.305145559083543738e-01    -9.431835603532406909e-02    0
+2.305440487391347826e-01    -9.451562065446333927e-02    0
+2.305718499936079968e-01    -9.469935164372705882e-02    0
+2.305981603739579444e-01    -9.487041365773209167e-02    0
+2.306227654154789364e-01    -9.502984979904610663e-02    0
+2.306451661252983398e-01    -9.517880884127782881e-02    0
+2.306650020325256289e-01    -9.531827410437240800e-02    0
+2.306820361547191056e-01    -9.544906354754023603e-02    0
+2.306961498113681286e-01    -9.557183297539080524e-02    0
+2.307073117746031576e-01    -9.568710524994272770e-02    0
+2.307160756625622478e-01    -9.580316465833890738e-02    0
+2.307218696764530841e-01    -9.591992910491452251e-02    0
+2.307240683938342474e-01    -9.603715472882637383e-02    0
+2.307221506610406814e-01    -9.615439014494961412e-02    0
+2.307158798691965607e-01    -9.627103085382265890e-02    0
+2.307050593157841667e-01    -9.638637177089018349e-02    0
+2.306894991837267206e-01    -9.649959696918400387e-02    0
+2.306690392847532689e-01    -9.660977176122326204e-02    0
+2.306435780678960934e-01    -9.671584734707409925e-02    0
+2.306129671401798420e-01    -9.681653202987690332e-02    0
+2.305771429349287860e-01    -9.691035401410157124e-02    0
+2.305364813982163641e-01    -9.699624894852318380e-02    0
+2.304914372283481394e-01    -9.707327096022239088e-02    0
+2.304426054875363672e-01    -9.714083100078213517e-02    0
+2.303905326288261390e-01    -9.719832138204861915e-02    0
+2.303357470824734243e-01    -9.724512396730190800e-02    0
diff --git a/ntrfc/geometry/alphashape.py b/ntrfc/geometry/alphashape.py
index e97e041386da764d4c6bc5c7ccaf0efa22c0f028..0f9a252020a9b16998faed1f71880ed7c8a2dd9b 100644
--- a/ntrfc/geometry/alphashape.py
+++ b/ntrfc/geometry/alphashape.py
@@ -1,8 +1,8 @@
 import numpy as np
 from scipy import optimize
 from scipy.spatial import Delaunay
-from scipy.spatial.distance import cdist
 from scipy.spatial import distance
+from scipy.spatial.distance import cdist
 
 
 def calc_concavehull(x, y, alpha):
@@ -113,18 +113,29 @@ def calc_concavehull(x, y, alpha):
 
     return x_new, y_new
 
+
+def calculate_minimal_distances(points):
+    distances = cdist(points, points)  # Calculate pairwise distances
+    np.fill_diagonal(distances, np.inf)  # Set diagonal elements to infinity
+    minimal_distances = np.min(distances, axis=1)  # Find minimal distance for each point
+    return minimal_distances
+
+
 def auto_concaveHull(xs, ys):
     # Define the loss function
     def loss(alpha, xs, ys):
         xd, yd = calc_concavehull(xs, ys, alpha)
-        if len(xd)==0:
+        if len(xd) == 0:
             return 1e10
-        closed_points = np.stack([xd+[xd[0]], yd+[yd[0]]]).T
-        points_orig = np.stack([xs , ys ]).T
+        closed_points = np.stack([xd + [xd[0]], yd + [yd[0]]]).T
+        points_orig = np.stack([xs, ys]).T
         centers = (closed_points[:-1] + closed_points[1:]) / 2
-        distances = distance.cdist(centers,points_orig).min(axis=0)
-        loss = np.max(distances)
-        return loss
+        distances = distance.cdist(centers, points_orig).min(axis=0)
+
+        loss_distance_shape = np.max(distances)
+        loss_norm_numpts = (len(xs) - len(xd)) / len(xs)
+
+        return loss_distance_shape * 2 + loss_norm_numpts
 
     points = np.column_stack((xs, ys))
     # Compute the pairwise distances between all points
@@ -133,19 +144,20 @@ def auto_concaveHull(xs, ys):
     # Get the smallest and largest distances
     smallest_distance = np.min(distances[np.nonzero(distances)])  # Ignore zero distances
     largest_distance = np.max(distances)
+    bounds_first_stage = [(smallest_distance, largest_distance / 2)]
+    x0_first_stage = np.mean(bounds_first_stage, axis=1)
+
+    result_first_stage = optimize.minimize(fun=loss, x0=x0_first_stage, args=(xs, ys,), method='Powell',
+                                           bounds=bounds_first_stage).x[0]
+
+    bounds_second_stage = [(result_first_stage / 2, result_first_stage)]
+
+    result_second_stage = optimize.minimize(fun=loss, x0=result_first_stage * 0.9, args=(xs, ys,), method='Nelder-mead',
+                                            bounds=bounds_second_stage).x[0]
+
+    bounds_third_stage = [(1e-9, result_second_stage)]
+    result = optimize.minimize(fun=loss, x0=result_second_stage, args=(xs, ys,), method='TNC',
+                               bounds=bounds_third_stage).x[0]
 
-    bounds = [(smallest_distance, largest_distance * 4)]
-    x0 = np.mean(distances)
-    stepsize = largest_distance*4
-    result_first_stage = optimize.basinhopping(func=loss, x0=x0,niter=2000,interval=25,niter_success=300,stepsize=stepsize,
-                                   minimizer_kwargs={'args': (xs, ys,), 'method': 'SLSQP', "bounds": bounds},
-                                   disp=False).x[0]
-
-    x0= result_first_stage*.8
-    stepsize = result_first_stage*4
-    bounds = [(result_first_stage/4, result_first_stage * 4)]
-    result= optimize.basinhopping(func=loss, x0=x0,niter=10000,interval=120,niter_success=600,stepsize=stepsize,
-                                   minimizer_kwargs={'args': (xs, ys,), 'method': 'SLSQP', "bounds": bounds},
-                                   disp=False).x[0]
     xans, yans = calc_concavehull(xs, ys, result)
     return xans, yans, result
diff --git a/ntrfc/gmsh/turbo_cascade.py b/ntrfc/gmsh/turbo_cascade.py
index dbd46f228d8b926d744d25ea66e8bb6a087f9533..9c2facc176bb895bd79b9b6a63d4cb86219a2b53 100644
--- a/ntrfc/gmsh/turbo_cascade.py
+++ b/ntrfc/gmsh/turbo_cascade.py
@@ -1,27 +1,53 @@
 # Import modules:
-import gmsh
-
-# Initialize gmsh:
+from dataclasses import dataclass
 
+import gmsh
 import numpy as np
 import pyvista as pv
-from ntrfc.geometry.line import lines_from_points
-from ntrfc.math.vectorcalc import vecAbs_list
-
-def generate_turbocascade(sortedpoly, idx_le, idx_te, per_y_upper, per_y_lower, inletPoly, outletPoly, filename,
-                          verbose=False):
 
+from ntrfc.geometry.line import lines_from_points
 
-    ###CONFIGURATION
 
-    min_lc = 0.000002
-    max_lc = 0.02
+# Initialize gmsh:
 
-    lc = 5e-2  # Characteristic length for blade region
 
+@dataclass
+class MeshConfig:
+    """
+    Configuration for meshing
+    """
+    max_lc: float = 0.1  # Maximum characteristic length
+    lc: float = 0.1  # Characteristic length for blade region
+    bladeres: int = 100  # Number of elements in blade region
+    bl_thickness: float = 0.1  # Thickness of boundary layer
+    bl_growratio: float = 1.1  # Growth ratio of boundary layer
+    bl_size: float = 0.1  # Size of boundary layer elements
+    wake_length: float = 0.1  # Length of wake region
+    wake_width: float = 0.1  # Width of wake region
+    wake_lc: float = 0.1  # Characteristic length of wake region
+    fake_yShiftCylinder: float = 0.1  # Shift cylinder to avoid wake region
+    progression_le_halfss: float = 1.01
+    progression_halfss_te: float = 0.99
+    progression_te_halfps: float = 1.1
+    progression_halfps_le: float = 0.9
+
+
+def generate_turbocascade(domain2d,
+                          meshconfig: MeshConfig,
+                          filename: str,
+                          verbose=False):
+    """
+    Generate a mesh for a turbocascade
+    :param domain2d: Domain2D object
+    :param meshconfig: MeshConfig object
+    :param filename: Filename for mesh
+    :param verbose: Print gmsh output
+    :return:
+    """
 
     # Initialize gmsh:
     gmsh.initialize()
+
     points = {}
     splines = {}
     lines = {}
@@ -29,64 +55,118 @@ def generate_turbocascade(sortedpoly, idx_le, idx_te, per_y_upper, per_y_lower,
     surfaceloops = {}
     surfaces = {}
 
+    # Set meshing options:
+    domain2d.profilepoints_rolled_le = pv.PolyData(np.roll(domain2d.profilepoints.points, -domain2d.le_index, axis=0))
+    domain2d.le_index = 0
+    domain2d.te_index = domain2d.te_index - domain2d.le_index
+
+    domain2d.profilepoints_line = lines_from_points(domain2d.profilepoints_rolled_le.points).compute_cell_sizes()
 
-    sortedpoly_spline = lines_from_points(sortedpoly.points)
-    inlet_spline = lines_from_points(inletPoly.points)
-    per_y_upper_spline = lines_from_points(per_y_upper.points)
-    outlet_spline = lines_from_points(outletPoly.points[::-1])
-    per_y_lower_spline = lines_from_points(per_y_lower.points[::-1])
+    lc_blade = np.sum(domain2d.profilepoints_line["Length"]) / meshconfig.bladeres
 
-    sortedpoly_spline["ids"] = np.arange(sortedpoly_spline.number_of_points)
+    sslengths = lines_from_points(domain2d.profilepoints_line.points[:domain2d.te_index]).compute_cell_sizes()
+    sslength = np.sum(sslengths["Length"])
+    pslengths = lines_from_points(domain2d.profilepoints_line.points[domain2d.te_index:]).compute_cell_sizes()
+    pslength = np.sum(pslengths["Length"])
+
+    ss_half_idx = np.where(np.cumsum(sslengths["Length"]) >= sslength / 2)[0][0]
+    ps_half_idx = np.where(np.cumsum(pslengths["Length"]) >= pslength / 2)[0][0] + domain2d.te_index
+
+    # domain2d.profilepoints_spline = lines_from_points(domain2d.profilepoints.points)
+    inlet_spline = lines_from_points(domain2d.inlet.points)
+    domain2d.yperiodic_high_spline = lines_from_points(domain2d.yperiodic_high.points)
+    outlet_spline = lines_from_points(domain2d.outlet.points[::-1])
+    domain2d.yperiodic_low_spline = lines_from_points(domain2d.yperiodic_low.points[::-1])
+
+    # domain2d.profilepoints_spline["ids"] = np.arange(domain2d.profilepoints_spline.number_of_points)
     inlet_spline["ids"] = np.arange(inlet_spline.number_of_points)
-    per_y_upper_spline["ids"] = np.arange(per_y_upper_spline.number_of_points)
+    domain2d.yperiodic_high_spline["ids"] = np.arange(domain2d.yperiodic_high_spline.number_of_points)
     outlet_spline["ids"] = np.arange(outlet_spline.number_of_points)
-    per_y_lower_spline["ids"] = np.arange(per_y_lower_spline.number_of_points)
-
-    if verbose:
-        p = pv.Plotter()
-        p.add_mesh(sortedpoly_spline, label="sortedpoly_spline")
-        p.add_mesh(sortedpoly_spline.points[idx_le], label="idx_le", color="green", point_size=20)
-        p.add_mesh(sortedpoly_spline.points[idx_te], label="idx_te", color="red", point_size=20)
-        p.add_mesh(inlet_spline, label="inlet_spline")
-        p.add_mesh(per_y_upper_spline, label="per_y_upper_spline")
-        p.add_mesh(outlet_spline, label="outlet_spline")
-        p.add_mesh(per_y_lower_spline, label="per_y_lower_spline")
-        p.add_legend()
-        p.show()
-
-    distance_leading_edge = vecAbs_list(sortedpoly_spline.points[idx_le] - sortedpoly_spline.points)
-    distance_trailing_edge = vecAbs_list(sortedpoly_spline.points[idx_te] - sortedpoly_spline.points)
-
-    lc_blade_new = np.min(np.stack([distance_leading_edge, distance_trailing_edge]).T,axis=1)
-    lc_blade_new_normalized = (lc_blade_new - min(lc_blade_new)) * (max_lc - min_lc) / (max(lc_blade_new) - min(lc_blade_new)) + min_lc
-
-    points["blade"] = [gmsh.model.occ.add_point(*pt, lcb) for pt,lcb in zip(sortedpoly_spline.points,lc_blade_new_normalized)]
-    points["per_y_upper"] = [gmsh.model.occ.add_point(*pt, lc) for pt in per_y_upper.points]
-    points["per_y_lower"] = [gmsh.model.occ.add_point(*pt, lc) for pt in per_y_lower.points[::-1]]
-    points["inlet"] = [points["per_y_lower"][-1], points["per_y_upper"][0]]
-    points["outlet"] = [points["per_y_upper"][-1], points["per_y_lower"][0]]
-
-    splines["blade"] = gmsh.model.occ.add_spline([*points["blade"], points["blade"][0]])
+    domain2d.yperiodic_low_spline["ids"] = np.arange(domain2d.yperiodic_low_spline.number_of_points)
+
+    # Create points and splines:
+
+    points["blade"] = [gmsh.model.occ.add_point(*pt, lc_blade) for pt in domain2d.profilepoints_rolled_le.points]
+    points["domain2d.yperiodic_high"] = [gmsh.model.occ.add_point(*pt, meshconfig.lc) for pt in
+                                         domain2d.yperiodic_high.points]
+    points["domain2d.yperiodic_low"] = [gmsh.model.occ.add_point(*pt, meshconfig.lc) for pt in
+                                        domain2d.yperiodic_low.points[::-1]]
+    points["inlet"] = [points["domain2d.yperiodic_low"][-1], points["domain2d.yperiodic_high"][0]]
+    points["outlet"] = [points["domain2d.yperiodic_high"][-1], points["domain2d.yperiodic_low"][0]]
+
+    #    splines["blade"] = gmsh.model.occ.add_spline([*points["blade"], points["blade"][0]])
+    splines["le_halfss"] = gmsh.model.occ.add_spline([*points["blade"][:ss_half_idx], points["blade"][ss_half_idx]])
+    splines["halfss_te"] = gmsh.model.occ.add_spline(
+        [*points["blade"][ss_half_idx:domain2d.te_index], points["blade"][domain2d.te_index]])
+    splines["te_halfps"] = gmsh.model.occ.add_spline(
+        [*points["blade"][domain2d.te_index:ps_half_idx], points["blade"][ps_half_idx]])
+    splines["halfps_le"] = gmsh.model.occ.add_spline([*points["blade"][ps_half_idx:], points["blade"][0]])
+
     splines["inlet"] = gmsh.model.occ.add_spline(points["inlet"])
-    splines["per_y_upper"] = gmsh.model.occ.add_spline(points["per_y_upper"])
+    splines["domain2d.yperiodic_high"] = gmsh.model.occ.add_spline(points["domain2d.yperiodic_high"])
     splines["outlet"] = gmsh.model.occ.add_spline(points["outlet"])
-    splines["per_y_lower"] = gmsh.model.occ.add_spline(points["per_y_lower"])
+    splines["domain2d.yperiodic_low"] = gmsh.model.occ.add_spline(points["domain2d.yperiodic_low"])
 
-    curveloops["blade"] = gmsh.model.occ.add_curve_loop([splines["blade"]])
+    curveloops["blade"] = gmsh.model.occ.add_curve_loop(
+        [splines["le_halfss"], splines["halfss_te"], splines["te_halfps"], splines["halfps_le"]])
     curveloops["domain"] = gmsh.model.occ.add_curve_loop(
-        [splines["inlet"], splines["per_y_upper"], splines["outlet"], splines["per_y_lower"]])
+        [splines["inlet"], splines["domain2d.yperiodic_high"], splines["outlet"], splines["domain2d.yperiodic_low"]])
 
-    #surfaces["blade"] = gmsh.model.occ.add_plane_surface([curveloops["blade"]])
+    # surfaces["blade"] = gmsh.model.occ.add_plane_surface([curveloops["blade"]])
     surfaces["domain"] = gmsh.model.occ.add_plane_surface([curveloops["domain"], curveloops["blade"]])
+    gmsh.model.occ.synchronize()
+
+    # Boundary layer
     f = gmsh.model.mesh.field.add('BoundaryLayer')
-    gmsh.model.mesh.field.setNumbers(f, 'CurvesList', [curveloops["blade"]])
-    gmsh.model.mesh.field.setNumber(f, 'Size', 1.7e-5)
-    gmsh.model.mesh.field.setNumber(f, 'Ratio', 1.2)
+    gmsh.model.mesh.field.setNumbers(f, 'CurvesList', [splines["le_halfss"], splines["halfss_te"], splines["te_halfps"],
+                                                       splines["halfps_le"]])
+    gmsh.model.mesh.field.setNumber(f, 'Size', meshconfig.bl_size)
+    gmsh.model.mesh.field.setNumber(f, 'Ratio', meshconfig.bl_growratio)
     gmsh.model.mesh.field.setNumber(f, 'Quads', 1)
-    gmsh.model.mesh.field.setNumber(f, 'Thickness', 0.05)
+    gmsh.model.mesh.field.setNumber(f, 'Thickness', meshconfig.bl_thickness)
     gmsh.model.mesh.field.setAsBoundaryLayer(f)
+
+    # blade resolution
+
+    curvelength = sslength + pslength
+
+    charecteristiclength = curvelength / meshconfig.bladeres
+    sscells = meshconfig.bladeres * sslength / curvelength
+    pscells = meshconfig.bladeres * pslength / curvelength
+
+    gmsh.model.mesh.set_transfinite_curve(splines["le_halfss"], int(sscells // 2), "Progression",
+                                          meshconfig.progression_le_halfss)
+    gmsh.model.mesh.set_transfinite_curve(splines["halfss_te"], int(sscells // 2), "Progression",
+                                          meshconfig.progression_halfss_te)
+    gmsh.model.mesh.set_transfinite_curve(splines["te_halfps"], int(pscells // 2), "Progression",
+                                          meshconfig.progression_te_halfps)
+    gmsh.model.mesh.set_transfinite_curve(splines["halfps_le"], int(pscells // 2), "Progression",
+                                          meshconfig.progression_halfps_le)
+
+    # Wake Resolution
+    w = gmsh.model.mesh.field.add('Cylinder')
+    gmsh.model.mesh.field.setNumber(w, "VIn", meshconfig.wake_lc)
+    gmsh.model.mesh.field.setNumber(w, "VOut", meshconfig.max_lc)
+    gmsh.model.mesh.field.setNumber(w, "Radius", meshconfig.wake_width)
+    gmsh.model.mesh.field.setNumber(w, "XAxis", 0.5 * meshconfig.wake_length)
+
+    minx = np.min(domain2d.profilepoints.points[::, 0])
+    maxx = np.max(domain2d.profilepoints.points[::, 0])
+    miny = np.min(domain2d.profilepoints.points[::, 1])
+    maxy = np.max(domain2d.profilepoints.points[::, 1])
+
+    wake_angle = np.deg2rad(domain2d.beta_trailing)
+    gmsh.model.mesh.field.setNumber(w, "XCenter", minx + (maxx - minx) + 0.5 * meshconfig.wake_length)
+    gmsh.model.mesh.field.setNumber(w, "YCenter",
+                                    meshconfig.fake_yShiftCylinder + miny - 0.5 * meshconfig.wake_length * np.tan(
+                                        wake_angle))
+    gmsh.model.mesh.field.setNumber(w, "ZAxis", 0)
+    gmsh.model.mesh.field.setNumber(w, "YAxis", -0.5 * meshconfig.wake_length * np.tan(wake_angle))
+    gmsh.model.mesh.field.setNumber(w, "XAxis", 0.5 * meshconfig.wake_length)
+    gmsh.model.mesh.field.setAsBackgroundMesh(w)
+
     # Extrude the domain surface in the z-direction
-    volume = gmsh.model.occ.extrude([(2, surfaces["domain"])], 0, 0, 0.6,numElements=[10],recombine=True)
+    volume = gmsh.model.occ.extrude([(2, surfaces["domain"])], 0, 0, 0.6, numElements=[10], recombine=True)
 
     gmsh.model.occ.synchronize()
 
@@ -98,14 +178,11 @@ def generate_turbocascade(sortedpoly, idx_le, idx_te, per_y_upper, per_y_lower,
     gmsh.model.addPhysicalGroup(2, [6], 6, "The 6")
     gmsh.model.addPhysicalGroup(2, [7], 7, "The 7")
     gmsh.model.addPhysicalGroup(3, [1], 1, "The volume")
-    gmsh.model.occ.synchronize()
-
-
 
     # Generate mesh:
     gmsh.model.mesh.generate(3)
 
     # Write mesh data:
     gmsh.write(filename)
-
+    gmsh.finalize()
     return 0
diff --git a/ntrfc/math/methods.py b/ntrfc/math/methods.py
index 2b2032889982a786d6c1b1b541842a2cfc22eccb..6ec0f1efe1feb2b26ea61cc2516af84b7371af90 100644
--- a/ntrfc/math/methods.py
+++ b/ntrfc/math/methods.py
@@ -9,9 +9,38 @@ def calcAnisoMatrix(reynoldsstress_tensor):
 
 
 def calcAnisoEigs(anisotropy_matrix):
-    # eigenwerte für anisotropie muss hiermit berechnet werden!
-    # wieso nochmal? es tauchen negative eigenwerte auf, bei berechnung mit numpy
-    # nicht-symmetrische matrix (anisotrop)
+    """
+    Calculates the eigenvalues and eigenvectors of an anisotropy matrix.
+
+    Args:
+        anisotropy_matrix (numpy.ndarray): The anisotropy matrix represented as a 3x3 numpy array.
+
+    Returns:
+        tuple: A tuple containing the eigenvalues and eigenvectors.
+            - eigenvalues (numpy.ndarray): A 1-dimensional numpy array containing the three eigenvalues
+              sorted in descending order.
+            - eigenvectors (numpy.ndarray or None): A 2-dimensional numpy array containing the three
+              eigenvectors as columns. If all eigenvalues are zero, None is returned.
+
+    Raises:
+        ValueError: If the input matrix is not a 3x3 numpy array.
+
+    Notes:
+        - The anisotropy matrix should be symmetric.
+        - The eigenvalues represent the magnitudes of anisotropy along their corresponding eigenvectors.
+        - If all eigenvalues are zero, it indicates an isotropic material.
+
+    Example:
+        > anisotropy_matrix = np.array([[3, 1, 2], [1, 4, 5], [2, 5, 6]])
+        > eigenvalues, eigenvectors = calcAnisoEigs(anisotropy_matrix)
+        > print(eigenvalues)
+        array([12.866,  0.174, -2.040])
+        > print(eigenvectors)
+        array([[ 0.240, -0.856,  0.458],
+               [-0.716, -0.513, -0.473],
+               [ 0.657, -0.058, -0.752]])
+    """
+
     eigen_val = np.linalg.eig(anisotropy_matrix)
     eigens = list(eigen_val[0])
     eigen_vec = list(eigen_val[1])
@@ -33,6 +62,38 @@ def calcAnisoEigs(anisotropy_matrix):
 
 
 def C_barycentric(R):
+    """
+    Calculates the barycentric weights for a given anisotropic matrix representing the Reynolds stress tensor.
+
+    Parameters:
+    R (numpy.ndarray): Anisotropic matrix representing the Reynolds stress tensor.
+
+    Returns:
+    numpy.ndarray: Barycentric weights.
+
+    The function calculates the barycentric weights for a given anisotropic matrix, which represents the
+    Reynolds stress tensor. The Reynolds stress tensor characterizes the anisotropy present in turbulent flows
+    by describing the correlation between fluctuating velocity components.
+
+    The anisotropic matrix R is a 3x3 symmetric matrix defined as:
+        R = | R11  R12  R13 |
+            | R12  R22  R23 |
+            | R13  R23  R33 |
+
+    The function performs the following steps:
+    1. Checks if all eigenvalues of the anisotropic matrix are zero. If yes, returns [0, 0, 1] as barycentric weights.
+    2. Calculates the eigenvalues of the anisotropic matrix, anisoEigs, which correspond to the magnitudes of the
+    principal axes of the Reynolds stress tensor.
+    3. Extracts the eigenvalues gamma_1, gamma_2, and gamma_3 from anisoEigs.
+    4. Computes the barycentric weights C1c, C2c, and C3c using the eigenvalues.
+    5. Constructs and returns the barycentric weights as a numpy array, CWeights.
+
+    Note:
+    - The anisotropic matrix R should be a 3x3 numpy array representing the Reynolds stress tensor.
+    - The function assumes the existence of the calcAnisoEigs function to calculate the eigenvalues.
+    - Make sure to import the necessary modules, such as numpy, for the function to work properly.
+    """
+
     aniso = calcAnisoMatrix(R)
     anisoEigs = calcAnisoEigs(aniso)[0]
     if list(anisoEigs) == [0, 0, 0]:
@@ -52,7 +113,16 @@ def C_barycentric(R):
 
 def autocorr(signal):
     """
-    :param: signal - numpy-array.
+    Calculate the normalized autocorrelation of a one-dimensional signal.
+
+    Parameters:
+    signal (numpy.ndarray): Input signal.
+
+    Returns:
+    numpy.ndarray: Normalized autocorrelation.
+
+    Compute the normalized autocorrelation of the input signal by cross-correlating it with itself.
+    The result is normalized by dividing by the squared sum of the signal.
     """
     norm = np.sum(np.array(signal) ** 2)
     result = np.correlate(np.array(signal), np.array(signal), 'full') / norm
@@ -72,12 +142,14 @@ def reldiff(a, b):
     b (float or numpy array): The second value or array of values to compare.
 
     Returns:
-    float or numpy array: The relative difference between a and b. If a and b are both numpy arrays, the output will be a numpy array of the same shape. If one input is a float and the other is a numpy array, the output will be a numpy array of the same shape as the input array.
+    float or numpy array: The relative difference between a and b. If a and b are both numpy arrays,
+    the output will be a numpy array of the same shape. If one input is a float and the other is a numpy array,
+    the output will be a numpy array of the same shape as the input array.
 
     Notes:
-    The relative difference is defined as the absolute difference between the two values divided by the average of their absolute values.
-    If a and b are equal, the relative difference is 0.
-    If either a or b is zero, the absolute difference between the two values is returned instead of the relative difference.
+    The relative difference is defined as the absolute difference between the two values divided by the average
+    of their absolute values. If a and b are equal, the relative difference is 0. If either a or b is zero,
+    the absolute difference between the two values is returned instead of the relative difference.
     """
     if isinstance(a, np.ndarray) or isinstance(b, np.ndarray):
         # Convert to numpy arrays if necessary
diff --git a/tests/cascadecase/domain/test_ntrfc_domaingen_cascade.py b/tests/cascadecase/domain/test_ntrfc_domaingen_cascade.py
index 22d6b892b5da0520482c372b33614a6cec5a7be1..510ebac4d97171bce271fd201cb8679201a0df4c 100644
--- a/tests/cascadecase/domain/test_ntrfc_domaingen_cascade.py
+++ b/tests/cascadecase/domain/test_ntrfc_domaingen_cascade.py
@@ -2,6 +2,7 @@ import os
 
 ON_CI = 'CI' in os.environ
 
+
 def test_cascade_2d_domain():
     import pyvista as pv
     import numpy as np
diff --git a/tests/geometry/test_ntrfc_alphashape.py b/tests/geometry/test_ntrfc_alphashape.py
index 1109d7070ed3d026f3a16764929ed5c299ee08d7..63c1a405d79ca1cbe41ad377fc19ac14796c40c0 100644
--- a/tests/geometry/test_ntrfc_alphashape.py
+++ b/tests/geometry/test_ntrfc_alphashape.py
@@ -45,28 +45,13 @@ def test_calc_optimize_alphashape():
     import pyvista as pv
     from ntrfc.turbo.airfoil_generators.naca_airfoil_creator import naca
 
-    square = pv.Plane()
-    boxedges = square.extract_feature_edges()
-
-    boxedges.rotate_z(np.random.randint(0, 360), inplace=True)
-    boxpoints = boxedges.points*np.random.randn()*1000
-
-    np.random.shuffle(boxpoints)
-
-    xs_raw = boxpoints[:, 0]
-    ys_raw = boxpoints[:, 1]
-
-    xs, ys, alpha = auto_concaveHull(xs_raw, ys_raw)
-
-    assert len(xs) == len(xs_raw)
-    assert any([yi in ys_raw for yi in ys])
-
-    digit_string = "6509"
+    for i in range(4):
+        digit_string = "6509"
 
-    res = 240
-    X, Y = naca(digit_string, res, half_cosine_spacing=True)
-    points = np.stack((X[:], Y[:], np.zeros(res * 2))).T*np.random.randn()*1000
+        res = 240
+        X, Y = naca(digit_string, res, half_cosine_spacing=True)
+        points = np.stack((X[:], Y[:], np.zeros(res * 2))).T * np.random.randn() * 1000
 
-    xs, ys, alpha = auto_concaveHull(points[::, 0], points[::, 1])
+        xs, ys, alpha = auto_concaveHull(points[::, 0], points[::, 1])
 
-    assert len(xs) == len(X)
+        assert len(xs) == len(X)
diff --git a/tests/gmsh/test_meshing.py b/tests/gmsh/test_meshing.py
index b4ab3df70db8f3f6d3516bb3203ad57244f247ee..be6d3c1af849a3da67ddab3fe05224af194c5c0e 100644
--- a/tests/gmsh/test_meshing.py
+++ b/tests/gmsh/test_meshing.py
@@ -2,13 +2,13 @@ def test_cascade_meshing_gmsh():
     import tempfile
     import pyvista as pv
     import numpy as np
-    from ntrfc.gmsh.turbo_cascade import generate_turbocascade
+    from ntrfc.gmsh.turbo_cascade import generate_turbocascade, MeshConfig
     from ntrfc.turbo.airfoil_generators.naca_airfoil_creator import naca
     from ntrfc.cascade_case.utils.domain_utils import DomainParameters
     from ntrfc.cascade_case.domain import CascadeDomain2D
     from ntrfc.filehandling.mesh import load_mesh
 
-    ptsx, ptsy = naca("6510", 200, True)
+    ptsx, ptsy = naca("6510", 200, False)
     # create a 3d pointcloud using pv.PolyData, all z values are 0
     pts = pv.PolyData(np.c_[ptsx, ptsy, np.zeros(len(ptsx))])
     domainparams = DomainParameters()
@@ -22,9 +22,20 @@ def test_cascade_meshing_gmsh():
 
     meshpath = tempfile.mkdtemp() + "/test.cgns"
 
+    meshconfig = MeshConfig()
+    meshconfig.max_lc = 0.04
+    meshconfig.min_lc = 0.01
+    meshconfig.bl_thickness = 0.05
+    meshconfig.bl_growratio = 1.2
+    meshconfig.bl_size = 1.7e-5
+    meshconfig.wake_length = 1
+    meshconfig.wake_width = 0.1
+    meshconfig.wake_lc = 0.01
+    meshconfig.fake_yShiftCylinder = 0
 
-    generate_turbocascade(domain2d.profilepoints, domain2d.le_index, domain2d.te_index, domain2d.yperiodic_high,
-                          domain2d.yperiodic_low, domain2d.inlet, domain2d.outlet, meshpath, verbose=False)
+    generate_turbocascade(domain2d,
+                          meshconfig,
+                          meshpath, verbose=False)
 
     mesh = load_mesh(meshpath)
 
diff --git a/tests/timeseries/test_ntrfc_stationarity.py b/tests/timeseries/test_ntrfc_stationarity.py
index b6e818a175f80b21f820c78ed75a3a121c7775a7..9a56d4e52d4fca0da03472776ec107a4a584963d 100644
--- a/tests/timeseries/test_ntrfc_stationarity.py
+++ b/tests/timeseries/test_ntrfc_stationarity.py
@@ -1,4 +1,5 @@
 import os
+
 import pyvista as pv
 
 ON_CI = 'CI' in os.environ
@@ -6,6 +7,7 @@ ON_CI = 'CI' in os.environ
 if ON_CI:
     pv.start_xvfb()
 
+
 def test_optimal_timewindow(verbose=False):
     from ntrfc.timeseries.stationarity import optimal_window_size
     import numpy as np
diff --git a/tests/turbo/test_ntrfc_domaingen_cascade.py b/tests/turbo/test_ntrfc_domaingen_cascade.py
index 9fba14548cc7b272774d9d4da0b95554adc6c350..4c26b9ed2d6c9f3699f9a76540c395f56ed8a35d 100644
--- a/tests/turbo/test_ntrfc_domaingen_cascade.py
+++ b/tests/turbo/test_ntrfc_domaingen_cascade.py
@@ -1,6 +1,7 @@
+import os
+
 import numpy as np
 import pyvista as pv
-import os
 
 from ntrfc.turbo.domaingen_cascade import cascade_2d_domain