import numpy as np import pyvista as pv from scipy.spatial import Delaunay from itertools import product from ntrfc.utils.math.vectorcalc import calc_largedistant_idx, vecAngle from ntrfc.utils.pyvista_utils.line import polyline_from_points, refine_spline def calc_concavehull(x, y, alpha): """ origin: https://stackoverflow.com/questions/50549128/boundary-enclosing-a-given-set-of-points/50714300#50714300 """ points = [] for i in range(len(x)): points.append([x[i], y[i]]) points = np.asarray(points) def alpha_shape(points, alpha, only_outer=True): """ Compute the alpha shape (concave hull) of a set of points. :param points: np.array of shape (n,2) points. :param alpha: alpha value. :param only_outer: boolean value to specify if we keep only the outer border or also inner edges. :return: set of (i,j) pairs representing edges of the alpha-shape. (i,j) are the indices in the points array. """ assert points.shape[0] > 3, "Need at least four points" def add_edge(edges, i, j): """ Add an edge between the i-th and j-th points, if not in the list already """ if (i, j) in edges or (j, i) in edges: # already added assert (j, i) in edges, "Can't go twice over same directed edge right?" if only_outer: # if both neighboring triangles are in shape, it's not a boundary edge edges.remove((j, i)) return edges.add((i, j)) tri = Delaunay(points) edges = set() # Loop over triangles: # ia, ib, ic = indices of corner points of the triangle for ia, ib, ic in tri.vertices: pa = points[ia] pb = points[ib] pc = points[ic] # Computing radius of triangle circumcircle # www.mathalino.com/reviewer/derivation-of-formulas/derivation-of-formula-for-radius-of-circumcircle a = np.sqrt((pa[0] - pb[0]) ** 2 + (pa[1] - pb[1]) ** 2) b = np.sqrt((pb[0] - pc[0]) ** 2 + (pb[1] - pc[1]) ** 2) c = np.sqrt((pc[0] - pa[0]) ** 2 + (pc[1] - pa[1]) ** 2) s = (a + b + c) / 2.0 A = (s * (s - a) * (s - b) * (s - c)) if A > 0: area = np.sqrt(A) circum_r = a * b * c / (4.0 * area) if circum_r < alpha: add_edge(edges, ia, ib) add_edge(edges, ib, ic) add_edge(edges, ic, ia) return edges def find_edges_with(i, edge_set): i_first = [j for (x, j) in edge_set if x == i] i_second = [j for (j, x) in edge_set if x == i] return i_first, i_second def stitch_boundaries(edges): edge_set = edges.copy() boundary_lst = [] while len(edge_set) > 0: boundary = [] edge0 = edge_set.pop() boundary.append(edge0) last_edge = edge0 while len(edge_set) > 0: i, j = last_edge j_first, j_second = find_edges_with(j, edge_set) if j_first: edge_set.remove((j, j_first[0])) edge_with_j = (j, j_first[0]) boundary.append(edge_with_j) last_edge = edge_with_j elif j_second: edge_set.remove((j_second[0], j)) edge_with_j = (j, j_second[0]) # flip edge rep boundary.append(edge_with_j) last_edge = edge_with_j if edge0[0] == last_edge[1]: break boundary_lst.append(boundary) return boundary_lst edges = alpha_shape(points, alpha) boundary_lst = stitch_boundaries(edges) x_new = [] y_new = [] for i in range(len(boundary_lst[0])): x_new.append(points[boundary_lst[0][i][0]][0]) y_new.append(points[boundary_lst[0][i][0]][1]) return x_new, y_new def mid_length(ind_1, ind_2, sorted_poly): """ calc length of a midline. currently only used in the iterative computation of LE and TE index of a profile. probably this method is not necessary, as it is only two lines :param ind_1: index LE :param ind_2: index TE :param sorted_poly: pv.PolyData sorted :return: length """ ps_poly, ss_poly = extractSidePolys(ind_1, ind_2, sorted_poly) mids_poly = midline_from_sides(ps_poly, ss_poly) return mids_poly.length def midline_from_sides(ps_poly, ss_poly): x_ps, y_ps = ps_poly.points[::, 0], ps_poly.points[::, 1] x_ss, y_ss = ss_poly.points[::, 0], ss_poly.points[::, 1] z = ps_poly.points[0][2] midsres = 100 if x_ps[0] > x_ps[-1]: ax, ay = refine_spline(x_ps[::-1], y_ps[::-1], midsres) else: ax, ay = refine_spline(x_ps, y_ps, midsres) if x_ss[0] > x_ss[-1]: bx, by = refine_spline(x_ss[::-1], y_ss[::-1], midsres) else: bx, by = refine_spline(x_ss, y_ss, midsres) xmids, ymids = ((ax + bx) / 2, (ay + by) / 2) midsPoly = polyline_from_points(np.stack((xmids, ymids, z*np.ones(len(ymids)))).T) return midsPoly def extract_vk_hk(sorted_poly, verbose=False): """ This function is calculating the leading-edge and trailing edge of a long 2d-body The function is not 100% reliable yet. The computation is iterative and it can take a while Points in origPoly and sortedPoly have to have defined points on the LE and TE, otherwise a LE or TE is not defined and it will be random which point will be found near the LE / TE :param sorted_poly: sorted via calcConcaveHull :param verbose: bool (True -> plots, False -> silent) :return: returns indexes of LE(vk) and TE(hk) from sortedPoints """ def checklength(ind1, ind2, sorted_poly): """ calc length of a midline. currently only used in the iterative computation of LE and TE index of a profile. probably this method is not necessary, as it is only two lines :param ind1: index LE :param ind2: index TE :param sorted_poly: pv.PolyData sorted :return: length """ psPoly, ssPoly = extractSidePolys(ind1, ind2, sorted_poly) midsPoly = midline_from_sides(psPoly, ssPoly) return midsPoly.length xs, ys = sorted_poly.points[::, 0], sorted_poly.points[::, 1] ind_1, ind_2 = calc_largedistant_idx(xs, ys) allowed_shift = 1 midLength0 = checklength(ind_1, ind_2, sorted_poly) nopt = sorted_poly.number_of_points checked_combs = {} found = True while (found): shifts = np.arange(-allowed_shift, allowed_shift + 1) ind_1_ts = (shifts + ind_1) % nopt ind_2_ts = (shifts + ind_2) % nopt combs = list(product(ind_1_ts, ind_2_ts)) # add combs entry to check weather the index combination was checked already for key in combs: if key not in checked_combs.keys(): checked_combs[key] = False midLengths = [] for ind_1_t, ind2_t in combs: if checked_combs[(ind_1_t, ind2_t)] == False: checked_combs[(ind_1_t, ind2_t)] = True midLengths.append(checklength(ind_1_t, ind2_t, sorted_poly)) else: midLengths.append(0) cids = midLengths.index(max(midLengths)) ind_1_n, ind_2_n = combs[cids] midLength_new = checklength(ind_1_n, ind_2_n, sorted_poly) if midLength_new > midLength0: ind_1, ind_2 = ind_1_n, ind_2_n midLength0 = midLength_new allowed_shift += 1 found = True else: found = False return ind_1, ind_2 def extractSidePolys(ind_1, ind_2, sortedPoly): # xs, ys = list(sortedPoly.points[::, 0]), list(sortedPoly.points[::, 1]) indices = np.arange(0, sortedPoly.number_of_points) # we have to split the spline differently, depending on weather the number of points is even or not if len(indices)%2==0: if ind_2 > ind_1: side_one_idx = indices[ind_1:ind_2+1] side_two_idx = np.concatenate((indices[:ind_1+1][::-1], indices[ind_2:][::-1])) if ind_1 > ind_2: side_one_idx = indices[ind_2:ind_1+1] side_two_idx = np.concatenate((indices[:ind_2+1][::-1], indices[ind_1:][::-1])) else: if ind_2 > ind_1: side_one_idx = indices[ind_1:ind_2+1] side_two_idx = np.concatenate((indices[:ind_1][::-1], indices[ind_2:][::-1])) if ind_1 > ind_2: side_one_idx = indices[ind_2:ind_1+1] side_two_idx = np.concatenate((indices[:ind_2][::-1], indices[ind_1:][::-1])) side_one = extract_points_fromsortedpoly(side_one_idx, sortedPoly) side_two = extract_points_fromsortedpoly(side_two_idx, sortedPoly) side_one_spline = polyline_from_points(side_one.points) side_two_spline = polyline_from_points(side_two.points) if side_one_spline.length > side_two_spline.length: psPoly = side_two ssPoly = side_one else: psPoly = side_one ssPoly = side_two return ssPoly, psPoly def extract_points_fromsortedpoly(sorted_indices, sorted_poly): side_two = pv.PolyData(sorted_poly.points[sorted_indices]) # polyblade.extract_cells(index_sort) for arr in sorted_poly.array_names: if side_two.number_of_points == len(sorted_poly[arr]): side_two[arr] = sorted_poly.point_data[arr][sorted_indices] return side_two def extract_geo_paras(polyblade, alpha, verbose=False): """ This function is extracting profile-data as stagger-angle, midline, psPoly, ssPoly and more from a set of points Be careful, you need a suitable alpha-parameter in order to get the right geometry The calculation of the leading-edge and trailing-edge index needs time and its not 100% reliable (yet) Keep in mind, to check the results! :param polyblade: pyvista polymesh of the blade :param alpha: nondimensional alpha-coefficient (calcConcaveHull) :param verbose: bool for plots :return: points, psPoly, ssPoly, ind_vk, ind_hk, midsPoly, beta_leading, beta_trailing """ points = polyblade.points xs, ys = calc_concavehull(points[:, 0], points[:, 1], alpha) index_sort = [np.where(points[:, 0] == xs[i])[0][0] for i in range(len(xs)) if len(np.where(points[:, 0] == xs[i])) == 1 and np.where(points[:, 0] == xs[i])[0][0] == np.where( points[:, 1] == ys[i])[0][0]] sortedPoly = pv.PolyData(polyblade.points[index_sort]) # polyblade.extract_cells(index_sort) for arr in polyblade.array_names: if sortedPoly.number_of_points==len(polyblade[arr]): sortedPoly[arr]=polyblade.point_data[arr][index_sort] ind_hk, ind_vk = extract_vk_hk(sortedPoly) psPoly, ssPoly = extractSidePolys(ind_hk, ind_vk, sortedPoly) midsPoly = midline_from_sides(psPoly, ssPoly) # compute angles from 2d-midline xmids, ymids = midsPoly.points[::, 0], midsPoly.points[::, 1] vk_tangent = np.stack((xmids[0] - xmids[1], ymids[0] - ymids[1], 0)).T hk_tangent = np.stack((xmids[-2] - xmids[-1], ymids[-2] - ymids[-1], 0)).T camber = np.stack((xmids[0] - xmids[-1], ymids[0] - ymids[-1], 0)).T[::-1] beta_leading = vecAngle(vk_tangent, np.array([0, 1, 0])) / np.pi * 180 beta_trailing = vecAngle(hk_tangent, np.array([0, 1, 0])) / np.pi * 180 camber_angle = vecAngle(camber, np.array([0, 1, 0])) / np.pi * 180 if verbose: p = pv.Plotter() p.add_mesh(points, color="orange", label="points") p.add_mesh(psPoly, color="green", label="psPoly") p.add_mesh(ssPoly, color="black", label="ssPoly") p.add_mesh(midsPoly, color="black", label="midsPoly") p.add_mesh(pv.Line((0, 0, 0), (midsPoly.length, 0, 0))) p.add_mesh(sortedPoly.points[ind_hk],color="red",point_size=5) p.add_mesh(sortedPoly.points[ind_vk],color="orange",point_size=5) p.add_legend() p.show() return sortedPoly, psPoly, ssPoly, ind_vk, ind_hk, midsPoly, beta_leading, beta_trailing, camber_angle def calcMidPassageStreamLine(x_mcl, y_mcl, beta1, beta2, x_inlet, x_outlet, t): """ Returns mid-passage line from sceletal-line Returns two lists of Points representing a curve through the passage Input: x_mcl, y_mcl = Tuple beta1, beta2 = Angle in deg - Beta = Anströmwinkel x_inlet, x_outlet = scalar - representing position x-component of in/outlet t = scalar pitch """ delta_x_vk = x_mcl[0] - x_inlet delta_y_vk = np.tan(np.deg2rad(beta1 - 90)) * delta_x_vk p_inlet_x = x_mcl[0] - delta_x_vk p_inlet_y = y_mcl[0] - delta_y_vk delta_x_hk = x_outlet - x_mcl[-1] delta_y_hk = delta_x_hk * np.tan(np.deg2rad(beta2 - 90)) p_outlet_x = x_mcl[-1] + delta_x_hk p_outlet_y = y_mcl[-1] + delta_y_hk x_mpsl = [p_inlet_x] + list(x_mcl) + [p_outlet_x] y_mpsl = [p_inlet_y] + list(y_mcl) + [p_outlet_y] for i in range(len(x_mpsl)): y_mpsl[i] = y_mpsl[i] + 0.5 * t return refine_spline(x_mpsl, y_mpsl, 1000)