Skip to content
Snippets Groups Projects
mapOptmization.cpp 59 KiB
Newer Older
TixiaoShan's avatar
TixiaoShan committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
#include "utility.h"
#include "lio_sam/cloud_info.h"

#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>

#include <gtsam/nonlinear/ISAM2.h>

using namespace gtsam;

using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
using symbol_shorthand::V; // Vel   (xdot,ydot,zdot)
using symbol_shorthand::B; // Bias  (ax,ay,az,gx,gy,gz)
using symbol_shorthand::G; // GPS pose

/*
    * A point cloud type that has 6D pose info ([x,y,z,roll,pitch,yaw] intensity is time stamp)
    */
struct PointXYZIRPYT
{
    PCL_ADD_POINT4D
    PCL_ADD_INTENSITY;                  // preferred way of adding a XYZ+padding
    float roll;
    float pitch;
    float yaw;
    double time;
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW   // make sure our new allocators are aligned
} EIGEN_ALIGN16;                    // enforce SSE padding for correct memory alignment

POINT_CLOUD_REGISTER_POINT_STRUCT (PointXYZIRPYT,
                                   (float, x, x) (float, y, y)
                                   (float, z, z) (float, intensity, intensity)
                                   (float, roll, roll) (float, pitch, pitch) (float, yaw, yaw)
                                   (double, time, time))

typedef PointXYZIRPYT  PointTypePose;


class mapOptimization : public ParamServer
{

public:

    // gtsam
    NonlinearFactorGraph gtSAMgraph;
    Values initialEstimate;
    Values optimizedEstimate;
    ISAM2 *isam;
    Values isamCurrentEstimate;
    Eigen::MatrixXd poseCovariance;

    ros::Publisher pubLaserCloudSurround;
    ros::Publisher pubOdomAftMappedROS;
    ros::Publisher pubKeyPoses;
    ros::Publisher pubPath;

    ros::Publisher pubHistoryKeyFrames;
    ros::Publisher pubIcpKeyFrames;
    ros::Publisher pubRecentKeyFrames;
    ros::Publisher pubRecentKeyFrame;
    ros::Publisher pubCloudRegisteredRaw;

    ros::Subscriber subLaserCloudInfo;
    ros::Subscriber subGPS;

    std::deque<nav_msgs::Odometry> gpsQueue;
    lio_sam::cloud_info cloudInfo;

    vector<pcl::PointCloud<PointType>::Ptr> cornerCloudKeyFrames;
    vector<pcl::PointCloud<PointType>::Ptr> surfCloudKeyFrames;
    
    pcl::PointCloud<PointType>::Ptr cloudKeyPoses3D;
    pcl::PointCloud<PointTypePose>::Ptr cloudKeyPoses6D;

    pcl::PointCloud<PointType>::Ptr laserCloudCornerLast; // corner feature set from odoOptimization
    pcl::PointCloud<PointType>::Ptr laserCloudSurfLast; // surf feature set from odoOptimization
    pcl::PointCloud<PointType>::Ptr laserCloudCornerLastDS; // downsampled corner featuer set from odoOptimization
    pcl::PointCloud<PointType>::Ptr laserCloudSurfLastDS; // downsampled surf featuer set from odoOptimization

    pcl::PointCloud<PointType>::Ptr laserCloudOri;
    pcl::PointCloud<PointType>::Ptr coeffSel;

    std::vector<PointType> laserCloudOriCornerVec; // corner point holder for parallel computation
    std::vector<PointType> coeffSelCornerVec;
    std::vector<bool> laserCloudOriCornerFlag;
    std::vector<PointType> laserCloudOriSurfVec; // surf point holder for parallel computation
    std::vector<PointType> coeffSelSurfVec;
    std::vector<bool> laserCloudOriSurfFlag;

    pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMap;
    pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMap;
    pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMapDS;
    pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMapDS;

    pcl::KdTreeFLANN<PointType>::Ptr kdtreeCornerFromMap;
    pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurfFromMap;

    pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurroundingKeyPoses;
    pcl::KdTreeFLANN<PointType>::Ptr kdtreeHistoryKeyPoses;

    pcl::PointCloud<PointType>::Ptr latestKeyFrameCloud;
    pcl::PointCloud<PointType>::Ptr nearHistoryKeyFrameCloud;

    pcl::VoxelGrid<PointType> downSizeFilterCorner;
    pcl::VoxelGrid<PointType> downSizeFilterSurf;
    pcl::VoxelGrid<PointType> downSizeFilterICP;
    pcl::VoxelGrid<PointType> downSizeFilterSurroundingKeyPoses; // for surrounding key poses of scan-to-map optimization
    
    ros::Time timeLaserInfoStamp;
    double timeLaserCloudInfoLast;

    float transformTobeMapped[6];

    std::mutex mtx;

    double timeLastProcessing = -1;

    bool isDegenerate = false;
    Eigen::Matrix<float, 6, 6> matP;

    int laserCloudCornerFromMapDSNum = 0;
    int laserCloudSurfFromMapDSNum = 0;
    int laserCloudCornerLastDSNum = 0;
    int laserCloudSurfLastDSNum = 0;

    bool aLoopIsClosed = false;
    int imuPreintegrationResetId = 0;

    nav_msgs::Path globalPath;

    Eigen::Affine3f transPointAssociateToMap;

    Eigen::Affine3f lastImuTransformation;

    mapOptimization()
    {
        ISAM2Params parameters;
        parameters.relinearizeThreshold = 0.1;
        parameters.relinearizeSkip = 1;
        isam = new ISAM2(parameters);

        pubKeyPoses = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/trajectory", 1);
        pubLaserCloudSurround = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_global", 1);
        pubOdomAftMappedROS = nh.advertise<nav_msgs::Odometry> ("lio_sam/mapping/odometry", 1);
        pubPath = nh.advertise<nav_msgs::Path>("lio_sam/mapping/path", 1);

        subLaserCloudInfo = nh.subscribe<lio_sam::cloud_info>("lio_sam/feature/cloud_info", 1, &mapOptimization::laserCloudInfoHandler, this, ros::TransportHints().tcpNoDelay());
        subGPS = nh.subscribe<nav_msgs::Odometry> (gpsTopic, 200, &mapOptimization::gpsHandler, this, ros::TransportHints().tcpNoDelay());

        pubHistoryKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_history_cloud", 1);
        pubIcpKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_corrected_cloud", 1);

        pubRecentKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_local", 1);
        pubRecentKeyFrame = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered", 1);
        pubCloudRegisteredRaw = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered_raw", 1);

        downSizeFilterCorner.setLeafSize(mappingCornerLeafSize, mappingCornerLeafSize, mappingCornerLeafSize);
        downSizeFilterSurf.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
        downSizeFilterICP.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
        downSizeFilterSurroundingKeyPoses.setLeafSize(surroundingKeyframeDensity, surroundingKeyframeDensity, surroundingKeyframeDensity); // for surrounding key poses of scan-to-map optimization

        allocateMemory();
    }

    void allocateMemory()
    {
        cloudKeyPoses3D.reset(new pcl::PointCloud<PointType>());
        cloudKeyPoses6D.reset(new pcl::PointCloud<PointTypePose>());

        kdtreeSurroundingKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());
        kdtreeHistoryKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());

        laserCloudCornerLast.reset(new pcl::PointCloud<PointType>()); // corner feature set from odoOptimization
        laserCloudSurfLast.reset(new pcl::PointCloud<PointType>()); // surf feature set from odoOptimization
        laserCloudCornerLastDS.reset(new pcl::PointCloud<PointType>()); // downsampled corner featuer set from odoOptimization
        laserCloudSurfLastDS.reset(new pcl::PointCloud<PointType>()); // downsampled surf featuer set from odoOptimization

        laserCloudOri.reset(new pcl::PointCloud<PointType>());
        coeffSel.reset(new pcl::PointCloud<PointType>());

        laserCloudOriCornerVec.resize(N_SCAN * Horizon_SCAN);
        coeffSelCornerVec.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriCornerFlag.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriSurfVec.resize(N_SCAN * Horizon_SCAN);
        coeffSelSurfVec.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriSurfFlag.resize(N_SCAN * Horizon_SCAN);

        std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false);
        std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);

        laserCloudCornerFromMap.reset(new pcl::PointCloud<PointType>());
        laserCloudSurfFromMap.reset(new pcl::PointCloud<PointType>());
        laserCloudCornerFromMapDS.reset(new pcl::PointCloud<PointType>());
        laserCloudSurfFromMapDS.reset(new pcl::PointCloud<PointType>());

        kdtreeCornerFromMap.reset(new pcl::KdTreeFLANN<PointType>());
        kdtreeSurfFromMap.reset(new pcl::KdTreeFLANN<PointType>());

        latestKeyFrameCloud.reset(new pcl::PointCloud<PointType>());
        nearHistoryKeyFrameCloud.reset(new pcl::PointCloud<PointType>());

        for (int i = 0; i < 6; ++i){
            transformTobeMapped[i] = 0;
        }

        matP.setZero();
    }

    void laserCloudInfoHandler(const lio_sam::cloud_infoConstPtr& msgIn)
    {
        // extract time stamp
        timeLaserInfoStamp = msgIn->header.stamp;
        timeLaserCloudInfoLast = msgIn->header.stamp.toSec();

        // extract info and feature cloud
        cloudInfo = *msgIn;
        pcl::fromROSMsg(msgIn->cloud_corner,  *laserCloudCornerLast);
        pcl::fromROSMsg(msgIn->cloud_surface, *laserCloudSurfLast);

        std::lock_guard<std::mutex> lock(mtx);

        if (timeLaserCloudInfoLast - timeLastProcessing >= mappingProcessInterval) {

            timeLastProcessing = timeLaserCloudInfoLast;

            updateInitialGuess();

            extractSurroundingKeyFrames();

            downsampleCurrentScan();

            scan2MapOptimization();

            saveKeyFramesAndFactor();

            correctPoses();

            publishOdometry();

            publishFrames();
        }
    }

    void gpsHandler(const nav_msgs::Odometry::ConstPtr& gpsMsg)
    {
        gpsQueue.push_back(*gpsMsg);
    }

    void pointAssociateToMap(PointType const * const pi, PointType * const po)
    {
        po->x = transPointAssociateToMap(0,0) * pi->x + transPointAssociateToMap(0,1) * pi->y + transPointAssociateToMap(0,2) * pi->z + transPointAssociateToMap(0,3);
        po->y = transPointAssociateToMap(1,0) * pi->x + transPointAssociateToMap(1,1) * pi->y + transPointAssociateToMap(1,2) * pi->z + transPointAssociateToMap(1,3);
        po->z = transPointAssociateToMap(2,0) * pi->x + transPointAssociateToMap(2,1) * pi->y + transPointAssociateToMap(2,2) * pi->z + transPointAssociateToMap(2,3);
        po->intensity = pi->intensity;
    }

    pcl::PointCloud<PointType>::Ptr transformPointCloud(pcl::PointCloud<PointType>::Ptr cloudIn, PointTypePose* transformIn)
    {
        pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());

        PointType *pointFrom;

        int cloudSize = cloudIn->size();
        cloudOut->resize(cloudSize);

        Eigen::Affine3f transCur = pcl::getTransformation(transformIn->x, transformIn->y, transformIn->z, transformIn->roll, transformIn->pitch, transformIn->yaw);
        
        for (int i = 0; i < cloudSize; ++i){

            pointFrom = &cloudIn->points[i];
            cloudOut->points[i].x = transCur(0,0) * pointFrom->x + transCur(0,1) * pointFrom->y + transCur(0,2) * pointFrom->z + transCur(0,3);
            cloudOut->points[i].y = transCur(1,0) * pointFrom->x + transCur(1,1) * pointFrom->y + transCur(1,2) * pointFrom->z + transCur(1,3);
            cloudOut->points[i].z = transCur(2,0) * pointFrom->x + transCur(2,1) * pointFrom->y + transCur(2,2) * pointFrom->z + transCur(2,3);
            cloudOut->points[i].intensity = pointFrom->intensity;
        }
        return cloudOut;
    }

    gtsam::Pose3 pclPointTogtsamPose3(PointTypePose thisPoint)
    {
        return gtsam::Pose3(gtsam::Rot3::RzRyRx(double(thisPoint.roll), double(thisPoint.pitch), double(thisPoint.yaw)),
                                  gtsam::Point3(double(thisPoint.x),    double(thisPoint.y),     double(thisPoint.z)));
    }

    gtsam::Pose3 trans2gtsamPose(float transformIn[])
    {
        return gtsam::Pose3(gtsam::Rot3::RzRyRx(transformIn[0], transformIn[1], transformIn[2]), 
                                  gtsam::Point3(transformIn[3], transformIn[4], transformIn[5]));
    }

    Eigen::Affine3f pclPointToAffine3f(PointTypePose thisPoint)
    { 
        return pcl::getTransformation(thisPoint.x, thisPoint.y, thisPoint.z, thisPoint.roll, thisPoint.pitch, thisPoint.yaw);
    }

    Eigen::Affine3f trans2Affine3f(float transformIn[])
    {
        return pcl::getTransformation(transformIn[3], transformIn[4], transformIn[5], transformIn[0], transformIn[1], transformIn[2]);
    }

    PointTypePose trans2PointTypePose(float transformIn[])
    {
        PointTypePose thisPose6D;
        thisPose6D.x = transformIn[3];
        thisPose6D.y = transformIn[4];
        thisPose6D.z = transformIn[5];
        thisPose6D.roll  = transformIn[0];
        thisPose6D.pitch = transformIn[1];
        thisPose6D.yaw   = transformIn[2];
        return thisPose6D;
    }

    














    void visualizeGlobalMapThread()
    {
        ros::Rate rate(0.2);
        while (ros::ok()){
            rate.sleep();
            publishGlobalMap();
        }

        if (savePCD == false)
            return;

        cout << "****************************************************" << endl;
        cout << "Saving map to pcd files ..." << endl;
        // create directory and remove old files;
        savePCDDirectory = std::getenv("HOME") + savePCDDirectory;
        int unused = system((std::string("exec rm -r ") + savePCDDirectory).c_str());
        unused = system((std::string("mkdir ") + savePCDDirectory).c_str());
        // save key frame transformations
        pcl::io::savePCDFileASCII(savePCDDirectory + "trajectory.pcd", *cloudKeyPoses3D);
        pcl::io::savePCDFileASCII(savePCDDirectory + "transformations.pcd", *cloudKeyPoses6D);
        // extract global point cloud map        
        pcl::PointCloud<PointType>::Ptr globalCornerCloud(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalCornerCloudDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalSurfCloud(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalSurfCloudDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapCloud(new pcl::PointCloud<PointType>());
        for (int i = 0; i < cloudKeyPoses3D->size(); i++) {
            *globalCornerCloud += *transformPointCloud(cornerCloudKeyFrames[i],  &cloudKeyPoses6D->points[i]);
            *globalSurfCloud   += *transformPointCloud(surfCloudKeyFrames[i],    &cloudKeyPoses6D->points[i]);
            cout << "\r" << std::flush << "Processing feature cloud " << i << " of " << cloudKeyPoses6D->size() << " ...";
        }
        // down-sample and save corner cloud
        downSizeFilterCorner.setInputCloud(globalCornerCloud);
        downSizeFilterCorner.filter(*globalCornerCloudDS);
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudCorner.pcd", *globalCornerCloudDS);
        // down-sample and save surf cloud
        downSizeFilterSurf.setInputCloud(globalSurfCloud);
        downSizeFilterSurf.filter(*globalSurfCloudDS);
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudSurf.pcd", *globalSurfCloudDS);
        // down-sample and save global point cloud map
        *globalMapCloud += *globalCornerCloud;
        *globalMapCloud += *globalSurfCloud;
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudGlobal.pcd", *globalMapCloud);
        cout << "****************************************************" << endl;
        cout << "Saving map to pcd files completed" << endl;
    }

    void publishGlobalMap()
    {
        if (pubLaserCloudSurround.getNumSubscribers() == 0)
            return;

        if (cloudKeyPoses3D->points.empty() == true)
            return;

        pcl::KdTreeFLANN<PointType>::Ptr kdtreeGlobalMap(new pcl::KdTreeFLANN<PointType>());;
        pcl::PointCloud<PointType>::Ptr globalMapKeyPoses(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapKeyPosesDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapKeyFrames(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapKeyFramesDS(new pcl::PointCloud<PointType>());

        // kd-tree to find near key frames to visualize
        std::vector<int> pointSearchIndGlobalMap;
        std::vector<float> pointSearchSqDisGlobalMap;
        // search near key frames to visualize
        mtx.lock();
        kdtreeGlobalMap->setInputCloud(cloudKeyPoses3D);
        kdtreeGlobalMap->radiusSearch(cloudKeyPoses3D->back(), globalMapVisualizationSearchRadius, pointSearchIndGlobalMap, pointSearchSqDisGlobalMap, 0);
        mtx.unlock();

        for (int i = 0; i < pointSearchIndGlobalMap.size(); ++i)
            globalMapKeyPoses->push_back(cloudKeyPoses3D->points[pointSearchIndGlobalMap[i]]);
        // downsample near selected key frames
        pcl::VoxelGrid<PointType> downSizeFilterGlobalMapKeyPoses; // for global map visualization
        downSizeFilterGlobalMapKeyPoses.setLeafSize(globalMapVisualizationPoseDensity, globalMapVisualizationPoseDensity, globalMapVisualizationPoseDensity); // for global map visualization
        downSizeFilterGlobalMapKeyPoses.setInputCloud(globalMapKeyPoses);
        downSizeFilterGlobalMapKeyPoses.filter(*globalMapKeyPosesDS);

        // extract visualized and downsampled key frames
        for (int i = 0; i < globalMapKeyPosesDS->size(); ++i){
            if (pointDistance(globalMapKeyPosesDS->points[i], cloudKeyPoses3D->back()) > globalMapVisualizationSearchRadius)
                continue;
            int thisKeyInd = (int)globalMapKeyPosesDS->points[i].intensity;
            *globalMapKeyFrames += *transformPointCloud(cornerCloudKeyFrames[thisKeyInd],  &cloudKeyPoses6D->points[thisKeyInd]);
            *globalMapKeyFrames += *transformPointCloud(surfCloudKeyFrames[thisKeyInd],    &cloudKeyPoses6D->points[thisKeyInd]);
        }
        // downsample visualized points
        pcl::VoxelGrid<PointType> downSizeFilterGlobalMapKeyFrames; // for global map visualization
        downSizeFilterGlobalMapKeyFrames.setLeafSize(globalMapVisualizationLeafSize, globalMapVisualizationLeafSize, globalMapVisualizationLeafSize); // for global map visualization
        downSizeFilterGlobalMapKeyFrames.setInputCloud(globalMapKeyFrames);
        downSizeFilterGlobalMapKeyFrames.filter(*globalMapKeyFramesDS);
        publishCloud(&pubLaserCloudSurround, globalMapKeyFramesDS, timeLaserInfoStamp, "odom");    
    }












    void loopClosureThread()
    {
        if (loopClosureEnableFlag == false)
            return;

        ros::Rate rate(0.2);
        while (ros::ok())
        {
            rate.sleep();
            performLoopClosure();
        }
    }

    bool detectLoopClosure(int *latestID, int *closestID)
    {
        int latestFrameIDLoopCloure;
        int closestHistoryFrameID;

        latestKeyFrameCloud->clear();
        nearHistoryKeyFrameCloud->clear();

        std::lock_guard<std::mutex> lock(mtx);

        // find the closest history key frame
        std::vector<int> pointSearchIndLoop;
        std::vector<float> pointSearchSqDisLoop;
        kdtreeHistoryKeyPoses->setInputCloud(cloudKeyPoses3D);
        kdtreeHistoryKeyPoses->radiusSearch(cloudKeyPoses3D->back(), historyKeyframeSearchRadius, pointSearchIndLoop, pointSearchSqDisLoop, 0);
        
        closestHistoryFrameID = -1;
        for (int i = 0; i < pointSearchIndLoop.size(); ++i)
        {
            int id = pointSearchIndLoop[i];
            if (abs(cloudKeyPoses6D->points[id].time - timeLaserCloudInfoLast) > historyKeyframeSearchTimeDiff)
            {
                closestHistoryFrameID = id;
                break;
            }
        }

        if (closestHistoryFrameID == -1)
            return false;

        if (cloudKeyPoses3D->size() - 1 == closestHistoryFrameID)
            return false;

        // save latest key frames
        latestFrameIDLoopCloure = cloudKeyPoses3D->size() - 1;
        *latestKeyFrameCloud += *transformPointCloud(cornerCloudKeyFrames[latestFrameIDLoopCloure], &cloudKeyPoses6D->points[latestFrameIDLoopCloure]);
        *latestKeyFrameCloud += *transformPointCloud(surfCloudKeyFrames[latestFrameIDLoopCloure],   &cloudKeyPoses6D->points[latestFrameIDLoopCloure]);

        // save history near key frames
        bool nearFrameAvailable = false;
        for (int j = -historyKeyframeSearchNum; j <= historyKeyframeSearchNum; ++j)
        {
            if (closestHistoryFrameID + j < 0 || closestHistoryFrameID + j > latestFrameIDLoopCloure)
                continue;
            *nearHistoryKeyFrameCloud += *transformPointCloud(cornerCloudKeyFrames[closestHistoryFrameID+j], &cloudKeyPoses6D->points[closestHistoryFrameID+j]);
            *nearHistoryKeyFrameCloud += *transformPointCloud(surfCloudKeyFrames[closestHistoryFrameID+j],   &cloudKeyPoses6D->points[closestHistoryFrameID+j]);
            nearFrameAvailable = true;
        }

        if (nearFrameAvailable == false)
            return false;

        *latestID = latestFrameIDLoopCloure;
        *closestID = closestHistoryFrameID;

        return true;
    }

    void performLoopClosure()
    {
        if (cloudKeyPoses3D->points.empty() == true)
            return;

        int latestFrameIDLoopCloure;
        int closestHistoryFrameID;
        if (detectLoopClosure(&latestFrameIDLoopCloure, &closestHistoryFrameID) == false)
            return;


        // ICP Settings
        pcl::IterativeClosestPoint<PointType, PointType> icp;
        icp.setMaxCorrespondenceDistance(100);
        icp.setMaximumIterations(100);
        icp.setTransformationEpsilon(1e-6);
        icp.setEuclideanFitnessEpsilon(1e-6);
        icp.setRANSACIterations(0);

        // Downsample map cloud
        pcl::PointCloud<PointType>::Ptr cloud_temp(new pcl::PointCloud<PointType>());
        downSizeFilterICP.setInputCloud(nearHistoryKeyFrameCloud);
        downSizeFilterICP.filter(*cloud_temp);
        *nearHistoryKeyFrameCloud = *cloud_temp;
        // publish history near key frames
        publishCloud(&pubHistoryKeyFrames, nearHistoryKeyFrameCloud, timeLaserInfoStamp, "odom");

        // Align clouds
        icp.setInputSource(latestKeyFrameCloud);
        icp.setInputTarget(nearHistoryKeyFrameCloud);
        pcl::PointCloud<PointType>::Ptr unused_result(new pcl::PointCloud<PointType>());
        icp.align(*unused_result);

        // std::cout << "ICP converg flag:" << icp.hasConverged() << ". Fitness score: " << icp.getFitnessScore() << std::endl;    
        if (icp.hasConverged() == false || icp.getFitnessScore() > historyKeyframeFitnessScore)
            return;

        // publish corrected cloud
        if (pubIcpKeyFrames.getNumSubscribers() != 0){
            pcl::PointCloud<PointType>::Ptr closed_cloud(new pcl::PointCloud<PointType>());
            pcl::transformPointCloud(*latestKeyFrameCloud, *closed_cloud, icp.getFinalTransformation());
            publishCloud(&pubIcpKeyFrames, closed_cloud, timeLaserInfoStamp, "odom");
        }

        // Get pose transformation
        float x, y, z, roll, pitch, yaw;
        Eigen::Affine3f correctionLidarFrame;
        correctionLidarFrame = icp.getFinalTransformation();
        // transform from world origin to wrong pose
        Eigen::Affine3f tWrong = pclPointToAffine3f(cloudKeyPoses6D->points[latestFrameIDLoopCloure]);
        // transform from world origin to corrected pose
        Eigen::Affine3f tCorrect = correctionLidarFrame * tWrong;// pre-multiplying -> successive rotation about a fixed frame
        pcl::getTranslationAndEulerAngles (tCorrect, x, y, z, roll, pitch, yaw);
        gtsam::Pose3 poseFrom = Pose3(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z));
        gtsam::Pose3 poseTo = pclPointTogtsamPose3(cloudKeyPoses6D->points[closestHistoryFrameID]);
        gtsam::Vector Vector6(6);
        float noiseScore = icp.getFitnessScore();
        Vector6 << noiseScore, noiseScore, noiseScore, noiseScore, noiseScore, noiseScore;
        noiseModel::Diagonal::shared_ptr constraintNoise = noiseModel::Diagonal::Variances(Vector6);

        // Add pose constraint
        std::lock_guard<std::mutex> lock(mtx);
        gtSAMgraph.add(BetweenFactor<Pose3>(latestFrameIDLoopCloure, closestHistoryFrameID, poseFrom.between(poseTo), constraintNoise));
        isam->update(gtSAMgraph);
        isam->update();
        isam->update();
        isam->update();
        isam->update();
        isam->update();
        gtSAMgraph.resize(0);

        aLoopIsClosed = true;
    }







    



    void updateInitialGuess()
    {
        // initialization
        if (cloudKeyPoses3D->points.empty())
        {
            transformTobeMapped[0] = cloudInfo.imuRollInit;
            transformTobeMapped[1] = cloudInfo.imuPitchInit;
            transformTobeMapped[2] = cloudInfo.imuYawInit;

            if (!useImuHeadingInitialization)
                transformTobeMapped[2] = 0;

            lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
            return;
        }

        // use imu pre-integration estimation for pose guess
        if (cloudInfo.odomAvailable == true && cloudInfo.imuPreintegrationResetId == imuPreintegrationResetId)
        { 
            transformTobeMapped[0] = cloudInfo.initialGuessRoll;
            transformTobeMapped[1] = cloudInfo.initialGuessPitch;
            transformTobeMapped[2] = cloudInfo.initialGuessYaw;

            transformTobeMapped[3] = cloudInfo.initialGuessX;
            transformTobeMapped[4] = cloudInfo.initialGuessY;
            transformTobeMapped[5] = cloudInfo.initialGuessZ;

            lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
            return;
        }

        // use imu incremental estimation for pose guess (only rotation)
        if (cloudInfo.imuAvailable == true)
        {
            Eigen::Affine3f transBack = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit);
            Eigen::Affine3f transIncre = lastImuTransformation.inverse() * transBack;

            Eigen::Affine3f transTobe = trans2Affine3f(transformTobeMapped);
            Eigen::Affine3f transFinal = transTobe * transIncre;
            pcl::getTranslationAndEulerAngles(transFinal, transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5], 
                                                          transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);

            lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
            return;
        }
    }

    void extractForLoopClosure()
    {
        pcl::PointCloud<PointType>::Ptr cloudToExtract(new pcl::PointCloud<PointType>());
        int numPoses = cloudKeyPoses3D->size();
        for (int i = numPoses-1; i >= 0; --i)
        {
            if (cloudToExtract->size() <= surroundingKeyframeSize)
                cloudToExtract->push_back(cloudKeyPoses3D->points[i]);
            else
                break;
        }

        extractCloud(cloudToExtract);
    }

    void extractNearby()
    {
        pcl::PointCloud<PointType>::Ptr surroundingKeyPoses(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr surroundingKeyPosesDS(new pcl::PointCloud<PointType>());
        std::vector<int> pointSearchInd;
        std::vector<float> pointSearchSqDis;

        // extract all the nearby key poses and downsample them
        kdtreeSurroundingKeyPoses->setInputCloud(cloudKeyPoses3D); // create kd-tree
        kdtreeSurroundingKeyPoses->radiusSearch(cloudKeyPoses3D->back(), (double)surroundingKeyframeSearchRadius, pointSearchInd, pointSearchSqDis);
        for (int i = 0; i < pointSearchInd.size(); ++i)
        {
            int id = pointSearchInd[i];
            surroundingKeyPoses->push_back(cloudKeyPoses3D->points[id]);
        }

        downSizeFilterSurroundingKeyPoses.setInputCloud(surroundingKeyPoses);
        downSizeFilterSurroundingKeyPoses.filter(*surroundingKeyPosesDS);

        // also extract some latest key frames in case the robot rotates in one position
        int numPoses = cloudKeyPoses3D->size();
        for (int i = numPoses-1; i >= 0; --i)
        {
            if (timeLaserCloudInfoLast - cloudKeyPoses6D->points[i].time < 10.0)
                surroundingKeyPosesDS->push_back(cloudKeyPoses3D->points[i]);
            else
                break;
        }

        extractCloud(surroundingKeyPosesDS);
    }

    void extractCloud(pcl::PointCloud<PointType>::Ptr cloudToExtract)
    {
        std::vector<pcl::PointCloud<PointType>> laserCloudCornerSurroundingVec;
        std::vector<pcl::PointCloud<PointType>> laserCloudSurfSurroundingVec;

        laserCloudCornerSurroundingVec.resize(cloudToExtract->size());
        laserCloudSurfSurroundingVec.resize(cloudToExtract->size());

        // extract surrounding map
        #pragma omp parallel for num_threads(numberOfCores)
        for (int i = 0; i < cloudToExtract->size(); ++i)
        {
            if (pointDistance(cloudToExtract->points[i], cloudKeyPoses3D->back()) > surroundingKeyframeSearchRadius)
                continue;
            int thisKeyInd = (int)cloudToExtract->points[i].intensity;
            laserCloudCornerSurroundingVec[i]  = *transformPointCloud(cornerCloudKeyFrames[thisKeyInd],  &cloudKeyPoses6D->points[thisKeyInd]);
            laserCloudSurfSurroundingVec[i]    = *transformPointCloud(surfCloudKeyFrames[thisKeyInd],    &cloudKeyPoses6D->points[thisKeyInd]);
        }

        // fuse the map
        laserCloudCornerFromMap->clear();
        laserCloudSurfFromMap->clear(); 
        for (int i = 0; i < cloudToExtract->size(); ++i)
        {
            *laserCloudCornerFromMap += laserCloudCornerSurroundingVec[i];
            *laserCloudSurfFromMap   += laserCloudSurfSurroundingVec[i];
        }

        // Downsample the surrounding corner key frames (or map)
        downSizeFilterCorner.setInputCloud(laserCloudCornerFromMap);
        downSizeFilterCorner.filter(*laserCloudCornerFromMapDS);
        laserCloudCornerFromMapDSNum = laserCloudCornerFromMapDS->size();
        // Downsample the surrounding surf key frames (or map)
        downSizeFilterSurf.setInputCloud(laserCloudSurfFromMap);
        downSizeFilterSurf.filter(*laserCloudSurfFromMapDS);
        laserCloudSurfFromMapDSNum = laserCloudSurfFromMapDS->size();
    }

    void extractSurroundingKeyFrames()
    {
        if (cloudKeyPoses3D->points.empty() == true)
            return; 
        
        if (loopClosureEnableFlag == true)
        {
            extractForLoopClosure();    
        } else {
            extractNearby();
        }
    }

    void downsampleCurrentScan()
    {
        // Downsample cloud from current scan
        laserCloudCornerLastDS->clear();
        downSizeFilterCorner.setInputCloud(laserCloudCornerLast);
        downSizeFilterCorner.filter(*laserCloudCornerLastDS);
        laserCloudCornerLastDSNum = laserCloudCornerLastDS->size();

        laserCloudSurfLastDS->clear();
        downSizeFilterSurf.setInputCloud(laserCloudSurfLast);
        downSizeFilterSurf.filter(*laserCloudSurfLastDS);
        laserCloudSurfLastDSNum = laserCloudSurfLastDS->size();
    }

    void updatePointAssociateToMap()
    {
        transPointAssociateToMap = trans2Affine3f(transformTobeMapped);
    }

    void cornerOptimization()
    {
        updatePointAssociateToMap();

        #pragma omp parallel for num_threads(numberOfCores)
        for (int i = 0; i < laserCloudCornerLastDSNum; i++)
        {
            PointType pointOri, pointSel, coeff;
            std::vector<int> pointSearchInd;
            std::vector<float> pointSearchSqDis;

            pointOri = laserCloudCornerLastDS->points[i];
            pointAssociateToMap(&pointOri, &pointSel);
            kdtreeCornerFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);

            cv::Mat matA1(3, 3, CV_32F, cv::Scalar::all(0));
            cv::Mat matD1(1, 3, CV_32F, cv::Scalar::all(0));
            cv::Mat matV1(3, 3, CV_32F, cv::Scalar::all(0));
                    
            if (pointSearchSqDis[4] < 1.0) {
                float cx = 0, cy = 0, cz = 0;
                for (int j = 0; j < 5; j++) {
                    cx += laserCloudCornerFromMapDS->points[pointSearchInd[j]].x;
                    cy += laserCloudCornerFromMapDS->points[pointSearchInd[j]].y;
                    cz += laserCloudCornerFromMapDS->points[pointSearchInd[j]].z;
                }
                cx /= 5; cy /= 5;  cz /= 5;

                float a11 = 0, a12 = 0, a13 = 0, a22 = 0, a23 = 0, a33 = 0;
                for (int j = 0; j < 5; j++) {
                    float ax = laserCloudCornerFromMapDS->points[pointSearchInd[j]].x - cx;
                    float ay = laserCloudCornerFromMapDS->points[pointSearchInd[j]].y - cy;
                    float az = laserCloudCornerFromMapDS->points[pointSearchInd[j]].z - cz;

                    a11 += ax * ax; a12 += ax * ay; a13 += ax * az;
                    a22 += ay * ay; a23 += ay * az;
                    a33 += az * az;
                }
                a11 /= 5; a12 /= 5; a13 /= 5; a22 /= 5; a23 /= 5; a33 /= 5;

                matA1.at<float>(0, 0) = a11; matA1.at<float>(0, 1) = a12; matA1.at<float>(0, 2) = a13;
                matA1.at<float>(1, 0) = a12; matA1.at<float>(1, 1) = a22; matA1.at<float>(1, 2) = a23;
                matA1.at<float>(2, 0) = a13; matA1.at<float>(2, 1) = a23; matA1.at<float>(2, 2) = a33;

                cv::eigen(matA1, matD1, matV1);

                if (matD1.at<float>(0, 0) > 3 * matD1.at<float>(0, 1)) {

                    float x0 = pointSel.x;
                    float y0 = pointSel.y;
                    float z0 = pointSel.z;
                    float x1 = cx + 0.1 * matV1.at<float>(0, 0);
                    float y1 = cy + 0.1 * matV1.at<float>(0, 1);
                    float z1 = cz + 0.1 * matV1.at<float>(0, 2);
                    float x2 = cx - 0.1 * matV1.at<float>(0, 0);
                    float y2 = cy - 0.1 * matV1.at<float>(0, 1);
                    float z2 = cz - 0.1 * matV1.at<float>(0, 2);

                    float a012 = sqrt(((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) * ((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) 
                                    + ((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1)) * ((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1)) 
                                    + ((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1)) * ((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1)));

                    float l12 = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2) + (z1 - z2)*(z1 - z2));

                    float la = ((y1 - y2)*((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) 
                              + (z1 - z2)*((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1))) / a012 / l12;

                    float lb = -((x1 - x2)*((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) 
                               - (z1 - z2)*((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1))) / a012 / l12;

                    float lc = -((x1 - x2)*((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1)) 
                               + (y1 - y2)*((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1))) / a012 / l12;

                    float ld2 = a012 / l12;

                    float s = 1 - 0.9 * fabs(ld2);

                    coeff.x = s * la;
                    coeff.y = s * lb;
                    coeff.z = s * lc;
                    coeff.intensity = s * ld2;

                    if (s > 0.1) {
                        laserCloudOriCornerVec[i] = pointOri;
                        coeffSelCornerVec[i] = coeff;
                        laserCloudOriCornerFlag[i] = true;
                    }
                }
            }
        }
    }

    void surfOptimization()
    {
        updatePointAssociateToMap();

        #pragma omp parallel for num_threads(numberOfCores)
        for (int i = 0; i < laserCloudSurfLastDSNum; i++)
        {
            PointType pointOri, pointSel, coeff;
            std::vector<int> pointSearchInd;
            std::vector<float> pointSearchSqDis;

            pointOri = laserCloudSurfLastDS->points[i];
            pointAssociateToMap(&pointOri, &pointSel); 
            kdtreeSurfFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);

            Eigen::Matrix<float, 5, 3> matA0;
            Eigen::Matrix<float, 5, 1> matB0;
            Eigen::Vector3f matX0;

            matA0.setZero();
            matB0.fill(-1);
            matX0.setZero();

            if (pointSearchSqDis[4] < 1.0) {
                for (int j = 0; j < 5; j++) {
                    matA0(j, 0) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].x;
                    matA0(j, 1) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].y;
                    matA0(j, 2) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].z;
                }

                matX0 = matA0.colPivHouseholderQr().solve(matB0);

                float pa = matX0(0, 0);
                float pb = matX0(1, 0);
                float pc = matX0(2, 0);
                float pd = 1;

                float ps = sqrt(pa * pa + pb * pb + pc * pc);
                pa /= ps; pb /= ps; pc /= ps; pd /= ps;

                bool planeValid = true;
                for (int j = 0; j < 5; j++) {
                    if (fabs(pa * laserCloudSurfFromMapDS->points[pointSearchInd[j]].x +
                             pb * laserCloudSurfFromMapDS->points[pointSearchInd[j]].y +
                             pc * laserCloudSurfFromMapDS->points[pointSearchInd[j]].z + pd) > 0.2) {
                        planeValid = false;
                        break;
                    }
                }

                if (planeValid) {
                    float pd2 = pa * pointSel.x + pb * pointSel.y + pc * pointSel.z + pd;

                    float s = 1 - 0.9 * fabs(pd2) / sqrt(sqrt(pointSel.x * pointSel.x
                            + pointSel.y * pointSel.y + pointSel.z * pointSel.z));

                    coeff.x = s * pa;
                    coeff.y = s * pb;
                    coeff.z = s * pc;
                    coeff.intensity = s * pd2;

                    if (s > 0.1) {
                        laserCloudOriSurfVec[i] = pointOri;
                        coeffSelSurfVec[i] = coeff;
                        laserCloudOriSurfFlag[i] = true;
                    }
                }
            }
        }
    }

    void combineOptimizationCoeffs()
    {
        // combine corner coeffs
        for (int i = 0; i < laserCloudCornerLastDSNum; ++i){
            if (laserCloudOriCornerFlag[i] == true){
                laserCloudOri->push_back(laserCloudOriCornerVec[i]);
                coeffSel->push_back(coeffSelCornerVec[i]);
            }
        }
        // combine surf coeffs
        for (int i = 0; i < laserCloudSurfLastDSNum; ++i){
            if (laserCloudOriSurfFlag[i] == true){
                laserCloudOri->push_back(laserCloudOriSurfVec[i]);
                coeffSel->push_back(coeffSelSurfVec[i]);
            }
        }
        // reset flag for next iteration
        std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false);
        std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);
    }

    bool LMOptimization(int iterCount)
    {
        // This optimization is from the original loam_velodyne by Ji Zhang, need to cope with coordinate transformation
        // lidar <- camera      ---     camera <- lidar
        // x = z                ---     x = y
        // y = x                ---     y = z
        // z = y                ---     z = x
        // roll = yaw           ---     roll = pitch
        // pitch = roll         ---     pitch = yaw
        // yaw = pitch          ---     yaw = roll

        // lidar -> camera
        float srx = sin(transformTobeMapped[1]);
        float crx = cos(transformTobeMapped[1]);
        float sry = sin(transformTobeMapped[2]);
        float cry = cos(transformTobeMapped[2]);
        float srz = sin(transformTobeMapped[0]);
        float crz = cos(transformTobeMapped[0]);

        int laserCloudSelNum = laserCloudOri->size();
        if (laserCloudSelNum < 50) {
            return false;
        }

        cv::Mat matA(laserCloudSelNum, 6, CV_32F, cv::Scalar::all(0));
        cv::Mat matAt(6, laserCloudSelNum, CV_32F, cv::Scalar::all(0));
        cv::Mat matAtA(6, 6, CV_32F, cv::Scalar::all(0));
        cv::Mat matB(laserCloudSelNum, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matAtB(6, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matX(6, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matP(6, 6, CV_32F, cv::Scalar::all(0));

        PointType pointOri, coeff;

        for (int i = 0; i < laserCloudSelNum; i++) {
            // lidar -> camera
            pointOri.x = laserCloudOri->points[i].y;
            pointOri.y = laserCloudOri->points[i].z;
            pointOri.z = laserCloudOri->points[i].x;
            // lidar -> camera
            coeff.x = coeffSel->points[i].y;
            coeff.y = coeffSel->points[i].z;
            coeff.z = coeffSel->points[i].x;
            coeff.intensity = coeffSel->points[i].intensity;
            // in camera
            float arx = (crx*sry*srz*pointOri.x + crx*crz*sry*pointOri.y - srx*sry*pointOri.z) * coeff.x
                      + (-srx*srz*pointOri.x - crz*srx*pointOri.y - crx*pointOri.z) * coeff.y
                      + (crx*cry*srz*pointOri.x + crx*cry*crz*pointOri.y - cry*srx*pointOri.z) * coeff.z;

            float ary = ((cry*srx*srz - crz*sry)*pointOri.x 
                      + (sry*srz + cry*crz*srx)*pointOri.y + crx*cry*pointOri.z) * coeff.x
                      + ((-cry*crz - srx*sry*srz)*pointOri.x 
                      + (cry*srz - crz*srx*sry)*pointOri.y - crx*sry*pointOri.z) * coeff.z;

            float arz = ((crz*srx*sry - cry*srz)*pointOri.x + (-cry*crz-srx*sry*srz)*pointOri.y)*coeff.x