Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#pragma once
#ifndef _UTILITY_LIDAR_ODOMETRY_H_
#define _UTILITY_LIDAR_ODOMETRY_H_
#include <ros/ros.h>
#include <std_msgs/Header.h>
#include <sensor_msgs/Imu.h>
#include <sensor_msgs/PointCloud2.h>
#include <sensor_msgs/NavSatFix.h>
#include <nav_msgs/Odometry.h>
#include <nav_msgs/Path.h>
#include <opencv/cv.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/search/impl/search.hpp>
#include <pcl/range_image/range_image.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/common/common.h>
#include <pcl/common/transforms.h>
#include <pcl/registration/icp.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/filter.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/crop_box.h>
#include <pcl_conversions/pcl_conversions.h>
#include <tf/LinearMath/Quaternion.h>
#include <tf/transform_listener.h>
#include <tf/transform_datatypes.h>
#include <tf/transform_broadcaster.h>
#include <vector>
#include <cmath>
#include <algorithm>
#include <queue>
#include <deque>
#include <iostream>
#include <fstream>
#include <ctime>
#include <cfloat>
#include <iterator>
#include <sstream>
#include <string>
#include <limits>
#include <iomanip>
#include <array>
#include <thread>
#include <mutex>
using namespace std;
typedef pcl::PointXYZI PointType;
class ParamServer
{
public:
ros::NodeHandle nh;
std::string robot_id;
string pointCloudTopic;
string imuTopic;
string odomTopic;
string gpsTopic;
// GPS Settings
bool useImuHeadingInitialization;
bool useGpsElevation;
float gpsCovThreshold;
float poseCovThreshold;
// Save pcd
bool savePCD;
string savePCDDirectory;
// Velodyne Sensor Configuration: Velodyne
int N_SCAN;
int Horizon_SCAN;
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// IMU
float imuAccNoise;
float imuGyrNoise;
float imuAccBiasN;
float imuGyrBiasN;
float imuGravity;
vector<double> extRotV;
vector<double> extRPYV;
vector<double> extTransV;
Eigen::Matrix3d extRot;
Eigen::Matrix3d extRPY;
Eigen::Vector3d extTrans;
Eigen::Quaterniond extQRPY;
// LOAM
float edgeThreshold;
float surfThreshold;
int edgeFeatureMinValidNum;
int surfFeatureMinValidNum;
// voxel filter paprams
float mappingCornerLeafSize;
float mappingSurfLeafSize ;
float z_tollerance;
float rotation_tollerance;
// CPU Params
int numberOfCores;
double mappingProcessInterval;
// Surrounding map
float surroundingkeyframeAddingDistThreshold;
float surroundingkeyframeAddingAngleThreshold;
float surroundingKeyframeDensity;
float surroundingKeyframeSearchRadius;
// Loop closure
bool loopClosureEnableFlag;
int surroundingKeyframeSize;
float historyKeyframeSearchRadius;
float historyKeyframeSearchTimeDiff;
int historyKeyframeSearchNum;
float historyKeyframeFitnessScore;
// global map visualization radius
float globalMapVisualizationSearchRadius;
float globalMapVisualizationPoseDensity;
float globalMapVisualizationLeafSize;
ParamServer()
{
nh.param<std::string>("/robot_id", robot_id, "roboat");
nh.param<std::string>("lio_sam/pointCloudTopic", pointCloudTopic, "points_raw");
nh.param<std::string>("lio_sam/imuTopic", imuTopic, "imu_correct");
nh.param<std::string>("lio_sam/odomTopic", odomTopic, "odometry/imu");
nh.param<std::string>("lio_sam/gpsTopic", gpsTopic, "odometry/gps");
nh.param<bool>("lio_sam/useImuHeadingInitialization", useImuHeadingInitialization, false);
nh.param<bool>("lio_sam/useGpsElevation", useGpsElevation, false);
nh.param<float>("lio_sam/gpsCovThreshold", gpsCovThreshold, 2.0);
nh.param<float>("lio_sam/poseCovThreshold", poseCovThreshold, 25.0);
nh.param<bool>("lio_sam/savePCD", savePCD, false);
nh.param<std::string>("lio_sam/savePCDDirectory", savePCDDirectory, "/Downloads/LOAM/");
nh.param<int>("lio_sam/N_SCAN", N_SCAN, 16);
nh.param<int>("lio_sam/Horizon_SCAN", Horizon_SCAN, 1800);
nh.param<std::string>("lio_sam/timeField", timeField, "time");
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
nh.param<float>("lio_sam/imuAccNoise", imuAccNoise, 0.01);
nh.param<float>("lio_sam/imuGyrNoise", imuGyrNoise, 0.001);
nh.param<float>("lio_sam/imuAccBiasN", imuAccBiasN, 0.0002);
nh.param<float>("lio_sam/imuGyrBiasN", imuGyrBiasN, 0.00003);
nh.param<float>("lio_sam/imuGravity", imuGravity, 9.80511);
nh.param<vector<double>>("lio_sam/extrinsicRot", extRotV, vector<double>());
nh.param<vector<double>>("lio_sam/extrinsicRPY", extRPYV, vector<double>());
nh.param<vector<double>>("lio_sam/extrinsicTrans", extTransV, vector<double>());
extRot = Eigen::Map<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>>(extRotV.data(), 3, 3);
extRPY = Eigen::Map<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>>(extRPYV.data(), 3, 3);
extTrans = Eigen::Map<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>>(extTransV.data(), 3, 1);
extQRPY = Eigen::Quaterniond(extRPY);
nh.param<float>("lio_sam/edgeThreshold", edgeThreshold, 0.1);
nh.param<float>("lio_sam/surfThreshold", surfThreshold, 0.1);
nh.param<int>("lio_sam/edgeFeatureMinValidNum", edgeFeatureMinValidNum, 10);
nh.param<int>("lio_sam/surfFeatureMinValidNum", surfFeatureMinValidNum, 100);
nh.param<float>("lio_sam/mappingCornerLeafSize", mappingCornerLeafSize, 0.2);
nh.param<float>("lio_sam/mappingSurfLeafSize", mappingSurfLeafSize, 0.2);
nh.param<float>("lio_sam/z_tollerance", z_tollerance, FLT_MAX);
nh.param<float>("lio_sam/rotation_tollerance", rotation_tollerance, FLT_MAX);
nh.param<int>("lio_sam/numberOfCores", numberOfCores, 2);
nh.param<double>("lio_sam/mappingProcessInterval", mappingProcessInterval, 0.15);
nh.param<float>("lio_sam/surroundingkeyframeAddingDistThreshold", surroundingkeyframeAddingDistThreshold, 1.0);
nh.param<float>("lio_sam/surroundingkeyframeAddingAngleThreshold", surroundingkeyframeAddingAngleThreshold, 0.2);
nh.param<float>("lio_sam/surroundingKeyframeDensity", surroundingKeyframeDensity, 1.0);
nh.param<float>("lio_sam/surroundingKeyframeSearchRadius", surroundingKeyframeSearchRadius, 50.0);
nh.param<bool>("lio_sam/loopClosureEnableFlag", loopClosureEnableFlag, false);
nh.param<int>("lio_sam/surroundingKeyframeSize", surroundingKeyframeSize, 50);
nh.param<float>("lio_sam/historyKeyframeSearchRadius", historyKeyframeSearchRadius, 10.0);
nh.param<float>("lio_sam/historyKeyframeSearchTimeDiff", historyKeyframeSearchTimeDiff, 30.0);
nh.param<int>("lio_sam/historyKeyframeSearchNum", historyKeyframeSearchNum, 25);
nh.param<float>("lio_sam/historyKeyframeFitnessScore", historyKeyframeFitnessScore, 0.3);
nh.param<float>("lio_sam/globalMapVisualizationSearchRadius", globalMapVisualizationSearchRadius, 1e3);
nh.param<float>("lio_sam/globalMapVisualizationPoseDensity", globalMapVisualizationPoseDensity, 10.0);
nh.param<float>("lio_sam/globalMapVisualizationLeafSize", globalMapVisualizationLeafSize, 1.0);
usleep(100);
}
sensor_msgs::Imu imuConverter(const sensor_msgs::Imu& imu_in)
{
sensor_msgs::Imu imu_out = imu_in;
// rotate acceleration
Eigen::Vector3d acc(imu_in.linear_acceleration.x, imu_in.linear_acceleration.y, imu_in.linear_acceleration.z);
acc = extRot * acc;
imu_out.linear_acceleration.x = acc.x();
imu_out.linear_acceleration.y = acc.y();
imu_out.linear_acceleration.z = acc.z();
// rotate gyroscope
Eigen::Vector3d gyr(imu_in.angular_velocity.x, imu_in.angular_velocity.y, imu_in.angular_velocity.z);
gyr = extRot * gyr;
imu_out.angular_velocity.x = gyr.x();
imu_out.angular_velocity.y = gyr.y();
imu_out.angular_velocity.z = gyr.z();
// rotate roll pitch yaw
Eigen::Quaterniond q_from(imu_in.orientation.w, imu_in.orientation.x, imu_in.orientation.y, imu_in.orientation.z);
Eigen::Quaterniond q_final = q_from * extQRPY;
imu_out.orientation.x = q_final.x();
imu_out.orientation.y = q_final.y();
imu_out.orientation.z = q_final.z();
imu_out.orientation.w = q_final.w();
if (sqrt(q_final.x()*q_final.x() + q_final.y()*q_final.y() + q_final.z()*q_final.z() + q_final.w()*q_final.w()) < 0.1)
{
ROS_ERROR("Invalid quaternion, please use a 9-axis IMU!");
ros::shutdown();
}
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
return imu_out;
}
};
sensor_msgs::PointCloud2 publishCloud(ros::Publisher *thisPub, pcl::PointCloud<PointType>::Ptr thisCloud, ros::Time thisStamp, std::string thisFrame)
{
sensor_msgs::PointCloud2 tempCloud;
pcl::toROSMsg(*thisCloud, tempCloud);
tempCloud.header.stamp = thisStamp;
tempCloud.header.frame_id = thisFrame;
if (thisPub->getNumSubscribers() != 0)
thisPub->publish(tempCloud);
return tempCloud;
}
template<typename T>
double ROS_TIME(T msg)
{
return msg->header.stamp.toSec();
}
template<typename T>
void imuAngular2rosAngular(sensor_msgs::Imu *thisImuMsg, T *angular_x, T *angular_y, T *angular_z)
{
*angular_x = thisImuMsg->angular_velocity.x;
*angular_y = thisImuMsg->angular_velocity.y;
*angular_z = thisImuMsg->angular_velocity.z;
}
template<typename T>
void imuAccel2rosAccel(sensor_msgs::Imu *thisImuMsg, T *acc_x, T *acc_y, T *acc_z)
{
*acc_x = thisImuMsg->linear_acceleration.x;
*acc_y = thisImuMsg->linear_acceleration.y;
*acc_z = thisImuMsg->linear_acceleration.z;
}
template<typename T>
void imuRPY2rosRPY(sensor_msgs::Imu *thisImuMsg, T *rosRoll, T *rosPitch, T *rosYaw)
{
double imuRoll, imuPitch, imuYaw;
tf::Quaternion orientation;
tf::quaternionMsgToTF(thisImuMsg->orientation, orientation);
tf::Matrix3x3(orientation).getRPY(imuRoll, imuPitch, imuYaw);
*rosRoll = imuRoll;
*rosPitch = imuPitch;
*rosYaw = imuYaw;
}
float pointDistance(PointType p)
{
return sqrt(p.x*p.x + p.y*p.y + p.z*p.z);
}
float pointDistance(PointType p1, PointType p2)
{
return sqrt((p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y) + (p1.z-p2.z)*(p1.z-p2.z));
}
#endif