Skip to content
Snippets Groups Projects
mapOptmization.cpp 66.9 KiB
Newer Older
TixiaoShan's avatar
TixiaoShan committed
#include "utility.h"
#include "lio_sam/cloud_info.h"

#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>

#include <gtsam/nonlinear/ISAM2.h>

using namespace gtsam;

using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
using symbol_shorthand::V; // Vel   (xdot,ydot,zdot)
using symbol_shorthand::B; // Bias  (ax,ay,az,gx,gy,gz)
using symbol_shorthand::G; // GPS pose

/*
    * A point cloud type that has 6D pose info ([x,y,z,roll,pitch,yaw] intensity is time stamp)
    */
struct PointXYZIRPYT
{
    PCL_ADD_POINT4D
    PCL_ADD_INTENSITY;                  // preferred way of adding a XYZ+padding
    float roll;
    float pitch;
    float yaw;
    double time;
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW   // make sure our new allocators are aligned
} EIGEN_ALIGN16;                    // enforce SSE padding for correct memory alignment

POINT_CLOUD_REGISTER_POINT_STRUCT (PointXYZIRPYT,
                                   (float, x, x) (float, y, y)
                                   (float, z, z) (float, intensity, intensity)
                                   (float, roll, roll) (float, pitch, pitch) (float, yaw, yaw)
                                   (double, time, time))

typedef PointXYZIRPYT  PointTypePose;


class mapOptimization : public ParamServer
{

public:

    // gtsam
    NonlinearFactorGraph gtSAMgraph;
    Values initialEstimate;
    Values optimizedEstimate;
    ISAM2 *isam;
    Values isamCurrentEstimate;
    Eigen::MatrixXd poseCovariance;

    ros::Publisher pubLaserCloudSurround;
    ros::Publisher pubLaserOdometryGlobal;
    ros::Publisher pubLaserOdometryIncremental;
TixiaoShan's avatar
TixiaoShan committed
    ros::Publisher pubKeyPoses;
    ros::Publisher pubPath;

    ros::Publisher pubHistoryKeyFrames;
    ros::Publisher pubIcpKeyFrames;
    ros::Publisher pubRecentKeyFrames;
    ros::Publisher pubRecentKeyFrame;
    ros::Publisher pubCloudRegisteredRaw;
    ros::Publisher pubLoopConstraintEdge;
TixiaoShan's avatar
TixiaoShan committed

    ros::Subscriber subLaserCloudInfo;
    ros::Subscriber subGPS;

    std::deque<nav_msgs::Odometry> gpsQueue;
    lio_sam::cloud_info cloudInfo;

    vector<pcl::PointCloud<PointType>::Ptr> cornerCloudKeyFrames;
    vector<pcl::PointCloud<PointType>::Ptr> surfCloudKeyFrames;
    
    pcl::PointCloud<PointType>::Ptr cloudKeyPoses3D;
    pcl::PointCloud<PointTypePose>::Ptr cloudKeyPoses6D;
    pcl::PointCloud<PointType>::Ptr copy_cloudKeyPoses3D;
    pcl::PointCloud<PointTypePose>::Ptr copy_cloudKeyPoses6D;
TixiaoShan's avatar
TixiaoShan committed

TixiaoShan's avatar
TixiaoShan committed
    pcl::PointCloud<PointType>::Ptr laserCloudCornerLast; // corner feature set from odoOptimization
    pcl::PointCloud<PointType>::Ptr laserCloudSurfLast; // surf feature set from odoOptimization
TixiaoShan's avatar
TixiaoShan committed
    pcl::PointCloud<PointType>::Ptr laserCloudCornerLastDS; // downsampled corner featuer set from odoOptimization
    pcl::PointCloud<PointType>::Ptr laserCloudSurfLastDS; // downsampled surf featuer set from odoOptimization

    pcl::PointCloud<PointType>::Ptr laserCloudOri;
    pcl::PointCloud<PointType>::Ptr coeffSel;

    std::vector<PointType> laserCloudOriCornerVec; // corner point holder for parallel computation
    std::vector<PointType> coeffSelCornerVec;
    std::vector<bool> laserCloudOriCornerFlag;
    std::vector<PointType> laserCloudOriSurfVec; // surf point holder for parallel computation
    std::vector<PointType> coeffSelSurfVec;
    std::vector<bool> laserCloudOriSurfFlag;

    pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMap;
    pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMap;
    pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMapDS;
    pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMapDS;

    pcl::KdTreeFLANN<PointType>::Ptr kdtreeCornerFromMap;
    pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurfFromMap;

    pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurroundingKeyPoses;
    pcl::KdTreeFLANN<PointType>::Ptr kdtreeHistoryKeyPoses;

    pcl::PointCloud<PointType>::Ptr latestKeyFrameCloud;
    pcl::PointCloud<PointType>::Ptr nearHistoryKeyFrameCloud;

    pcl::VoxelGrid<PointType> downSizeFilterCorner;
    pcl::VoxelGrid<PointType> downSizeFilterSurf;
    pcl::VoxelGrid<PointType> downSizeFilterICP;
    pcl::VoxelGrid<PointType> downSizeFilterSurroundingKeyPoses; // for surrounding key poses of scan-to-map optimization
    
    ros::Time timeLaserInfoStamp;
TixiaoShan's avatar
TixiaoShan committed
    double timeLaserInfoCur;
TixiaoShan's avatar
TixiaoShan committed

    float transformTobeMapped[6];

    std::mutex mtx;

    bool isDegenerate = false;
    Eigen::Matrix<float, 6, 6> matP;

    int laserCloudCornerFromMapDSNum = 0;
    int laserCloudSurfFromMapDSNum = 0;
    int laserCloudCornerLastDSNum = 0;
    int laserCloudSurfLastDSNum = 0;

    bool aLoopIsClosed = false;
    map<int, int> loopIndexContainer; // from new to old
TixiaoShan's avatar
TixiaoShan committed
    vector<pair<int, int>> loopIndexQueue;
    vector<gtsam::Pose3> loopPoseQueue;
    vector<gtsam::noiseModel::Diagonal::shared_ptr> loopNoiseQueue;
TixiaoShan's avatar
TixiaoShan committed

    nav_msgs::Path globalPath;

    Eigen::Affine3f transPointAssociateToMap;
    Eigen::Affine3f incrementalOdometryAffineFront;
    Eigen::Affine3f incrementalOdometryAffineBack;
TixiaoShan's avatar
TixiaoShan committed

    mapOptimization()
    {
        ISAM2Params parameters;
        parameters.relinearizeThreshold = 0.1;
        parameters.relinearizeSkip = 1;
        isam = new ISAM2(parameters);

        pubKeyPoses = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/trajectory", 1);
        pubLaserCloudSurround = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_global", 1);
        pubLaserOdometryGlobal = nh.advertise<nav_msgs::Odometry> ("lio_sam/mapping/odometry", 1);
        pubLaserOdometryIncremental = nh.advertise<nav_msgs::Odometry> ("lio_sam/mapping/odometry_incremental", 1);
TixiaoShan's avatar
TixiaoShan committed
        pubPath = nh.advertise<nav_msgs::Path>("lio_sam/mapping/path", 1);

TixiaoShan's avatar
TixiaoShan committed
        subLaserCloudInfo = nh.subscribe<lio_sam::cloud_info>("lio_sam/feature/cloud_info", 1, &mapOptimization::laserCloudInfoHandler, this, ros::TransportHints().tcpNoDelay());
TixiaoShan's avatar
TixiaoShan committed
        subGPS = nh.subscribe<nav_msgs::Odometry> (gpsTopic, 200, &mapOptimization::gpsHandler, this, ros::TransportHints().tcpNoDelay());

        pubHistoryKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_history_cloud", 1);
        pubIcpKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_corrected_cloud", 1);
        pubLoopConstraintEdge = nh.advertise<visualization_msgs::MarkerArray>("/lio_sam/mapping/loop_closure_constraints", 1);
TixiaoShan's avatar
TixiaoShan committed

        pubRecentKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_local", 1);
        pubRecentKeyFrame = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered", 1);
        pubCloudRegisteredRaw = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered_raw", 1);

        downSizeFilterCorner.setLeafSize(mappingCornerLeafSize, mappingCornerLeafSize, mappingCornerLeafSize);
        downSizeFilterSurf.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
        downSizeFilterICP.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
        downSizeFilterSurroundingKeyPoses.setLeafSize(surroundingKeyframeDensity, surroundingKeyframeDensity, surroundingKeyframeDensity); // for surrounding key poses of scan-to-map optimization

        allocateMemory();
    }

    void allocateMemory()
    {
        cloudKeyPoses3D.reset(new pcl::PointCloud<PointType>());
        cloudKeyPoses6D.reset(new pcl::PointCloud<PointTypePose>());
        copy_cloudKeyPoses3D.reset(new pcl::PointCloud<PointType>());
        copy_cloudKeyPoses6D.reset(new pcl::PointCloud<PointTypePose>());
TixiaoShan's avatar
TixiaoShan committed

        kdtreeSurroundingKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());
        kdtreeHistoryKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());

TixiaoShan's avatar
TixiaoShan committed
        laserCloudCornerLast.reset(new pcl::PointCloud<PointType>()); // corner feature set from odoOptimization
        laserCloudSurfLast.reset(new pcl::PointCloud<PointType>()); // surf feature set from odoOptimization
TixiaoShan's avatar
TixiaoShan committed
        laserCloudCornerLastDS.reset(new pcl::PointCloud<PointType>()); // downsampled corner featuer set from odoOptimization
        laserCloudSurfLastDS.reset(new pcl::PointCloud<PointType>()); // downsampled surf featuer set from odoOptimization

        laserCloudOri.reset(new pcl::PointCloud<PointType>());
        coeffSel.reset(new pcl::PointCloud<PointType>());

        laserCloudOriCornerVec.resize(N_SCAN * Horizon_SCAN);
TixiaoShan's avatar
TixiaoShan committed
        coeffSelCornerVec.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriCornerFlag.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriSurfVec.resize(N_SCAN * Horizon_SCAN);
        coeffSelSurfVec.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriSurfFlag.resize(N_SCAN * Horizon_SCAN);

        std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false);
        std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);

        laserCloudCornerFromMap.reset(new pcl::PointCloud<PointType>());
        laserCloudSurfFromMap.reset(new pcl::PointCloud<PointType>());
        laserCloudCornerFromMapDS.reset(new pcl::PointCloud<PointType>());
        laserCloudSurfFromMapDS.reset(new pcl::PointCloud<PointType>());

        kdtreeCornerFromMap.reset(new pcl::KdTreeFLANN<PointType>());
        kdtreeSurfFromMap.reset(new pcl::KdTreeFLANN<PointType>());

        latestKeyFrameCloud.reset(new pcl::PointCloud<PointType>());
        nearHistoryKeyFrameCloud.reset(new pcl::PointCloud<PointType>());

        for (int i = 0; i < 6; ++i){
            transformTobeMapped[i] = 0;
        }

        matP.setZero();
    }

    void laserCloudInfoHandler(const lio_sam::cloud_infoConstPtr& msgIn)
    {
        // extract time stamp
        timeLaserInfoStamp = msgIn->header.stamp;
TixiaoShan's avatar
TixiaoShan committed
        timeLaserInfoCur = msgIn->header.stamp.toSec();
TixiaoShan's avatar
TixiaoShan committed

        // extract info and feature cloud
        cloudInfo = *msgIn;
TixiaoShan's avatar
TixiaoShan committed
        pcl::fromROSMsg(msgIn->cloud_corner,  *laserCloudCornerLast);
        pcl::fromROSMsg(msgIn->cloud_surface, *laserCloudSurfLast);
TixiaoShan's avatar
TixiaoShan committed

        std::lock_guard<std::mutex> lock(mtx);

        static double timeLastProcessing = -1;
TixiaoShan's avatar
TixiaoShan committed
        if (timeLaserInfoCur - timeLastProcessing >= mappingProcessInterval)
TixiaoShan's avatar
TixiaoShan committed
            timeLastProcessing = timeLaserInfoCur;
TixiaoShan's avatar
TixiaoShan committed

TixiaoShan's avatar
TixiaoShan committed
            updateInitialGuess();
TixiaoShan's avatar
TixiaoShan committed

TixiaoShan's avatar
TixiaoShan committed
            extractSurroundingKeyFrames();
TixiaoShan's avatar
TixiaoShan committed

TixiaoShan's avatar
TixiaoShan committed
            downsampleCurrentScan();

            scan2MapOptimization();

            saveKeyFramesAndFactor();

            correctPoses();
TixiaoShan's avatar
TixiaoShan committed

TixiaoShan's avatar
TixiaoShan committed
            publishOdometry();
TixiaoShan's avatar
TixiaoShan committed

TixiaoShan's avatar
TixiaoShan committed
            publishFrames();
        }
TixiaoShan's avatar
TixiaoShan committed
    }

    void gpsHandler(const nav_msgs::Odometry::ConstPtr& gpsMsg)
    {
        gpsQueue.push_back(*gpsMsg);
    }

    void pointAssociateToMap(PointType const * const pi, PointType * const po)
    {
        po->x = transPointAssociateToMap(0,0) * pi->x + transPointAssociateToMap(0,1) * pi->y + transPointAssociateToMap(0,2) * pi->z + transPointAssociateToMap(0,3);
        po->y = transPointAssociateToMap(1,0) * pi->x + transPointAssociateToMap(1,1) * pi->y + transPointAssociateToMap(1,2) * pi->z + transPointAssociateToMap(1,3);
        po->z = transPointAssociateToMap(2,0) * pi->x + transPointAssociateToMap(2,1) * pi->y + transPointAssociateToMap(2,2) * pi->z + transPointAssociateToMap(2,3);
        po->intensity = pi->intensity;
    }

    pcl::PointCloud<PointType>::Ptr transformPointCloud(pcl::PointCloud<PointType>::Ptr cloudIn, PointTypePose* transformIn)
    {
        pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());

        PointType *pointFrom;

        int cloudSize = cloudIn->size();
        cloudOut->resize(cloudSize);

        Eigen::Affine3f transCur = pcl::getTransformation(transformIn->x, transformIn->y, transformIn->z, transformIn->roll, transformIn->pitch, transformIn->yaw);
        
        for (int i = 0; i < cloudSize; ++i){

            pointFrom = &cloudIn->points[i];
            cloudOut->points[i].x = transCur(0,0) * pointFrom->x + transCur(0,1) * pointFrom->y + transCur(0,2) * pointFrom->z + transCur(0,3);
            cloudOut->points[i].y = transCur(1,0) * pointFrom->x + transCur(1,1) * pointFrom->y + transCur(1,2) * pointFrom->z + transCur(1,3);
            cloudOut->points[i].z = transCur(2,0) * pointFrom->x + transCur(2,1) * pointFrom->y + transCur(2,2) * pointFrom->z + transCur(2,3);
            cloudOut->points[i].intensity = pointFrom->intensity;
        }
        return cloudOut;
    }

    gtsam::Pose3 pclPointTogtsamPose3(PointTypePose thisPoint)
    {
        return gtsam::Pose3(gtsam::Rot3::RzRyRx(double(thisPoint.roll), double(thisPoint.pitch), double(thisPoint.yaw)),
                                  gtsam::Point3(double(thisPoint.x),    double(thisPoint.y),     double(thisPoint.z)));
    }

    gtsam::Pose3 trans2gtsamPose(float transformIn[])
    {
        return gtsam::Pose3(gtsam::Rot3::RzRyRx(transformIn[0], transformIn[1], transformIn[2]), 
                                  gtsam::Point3(transformIn[3], transformIn[4], transformIn[5]));
    }

    Eigen::Affine3f pclPointToAffine3f(PointTypePose thisPoint)
    { 
        return pcl::getTransformation(thisPoint.x, thisPoint.y, thisPoint.z, thisPoint.roll, thisPoint.pitch, thisPoint.yaw);
    }

    Eigen::Affine3f trans2Affine3f(float transformIn[])
    {
        return pcl::getTransformation(transformIn[3], transformIn[4], transformIn[5], transformIn[0], transformIn[1], transformIn[2]);
    }

    PointTypePose trans2PointTypePose(float transformIn[])
    {
        PointTypePose thisPose6D;
        thisPose6D.x = transformIn[3];
        thisPose6D.y = transformIn[4];
        thisPose6D.z = transformIn[5];
        thisPose6D.roll  = transformIn[0];
        thisPose6D.pitch = transformIn[1];
        thisPose6D.yaw   = transformIn[2];
        return thisPose6D;
    }

    














    void visualizeGlobalMapThread()
    {
        ros::Rate rate(0.2);
        while (ros::ok()){
            rate.sleep();
            publishGlobalMap();
        }

        if (savePCD == false)
            return;

        cout << "****************************************************" << endl;
        cout << "Saving map to pcd files ..." << endl;
        // create directory and remove old files;
        savePCDDirectory = std::getenv("HOME") + savePCDDirectory;
        int unused = system((std::string("exec rm -r ") + savePCDDirectory).c_str());
        unused = system((std::string("mkdir ") + savePCDDirectory).c_str());
        // save key frame transformations
        pcl::io::savePCDFileASCII(savePCDDirectory + "trajectory.pcd", *cloudKeyPoses3D);
        pcl::io::savePCDFileASCII(savePCDDirectory + "transformations.pcd", *cloudKeyPoses6D);
        // extract global point cloud map        
        pcl::PointCloud<PointType>::Ptr globalCornerCloud(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalCornerCloudDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalSurfCloud(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalSurfCloudDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapCloud(new pcl::PointCloud<PointType>());
TixiaoShan's avatar
TixiaoShan committed
        for (int i = 0; i < (int)cloudKeyPoses3D->size(); i++) {
TixiaoShan's avatar
TixiaoShan committed
            *globalCornerCloud += *transformPointCloud(cornerCloudKeyFrames[i],  &cloudKeyPoses6D->points[i]);
            *globalSurfCloud   += *transformPointCloud(surfCloudKeyFrames[i],    &cloudKeyPoses6D->points[i]);
            cout << "\r" << std::flush << "Processing feature cloud " << i << " of " << cloudKeyPoses6D->size() << " ...";
        }
        // down-sample and save corner cloud
        downSizeFilterCorner.setInputCloud(globalCornerCloud);
        downSizeFilterCorner.filter(*globalCornerCloudDS);
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudCorner.pcd", *globalCornerCloudDS);
        // down-sample and save surf cloud
        downSizeFilterSurf.setInputCloud(globalSurfCloud);
        downSizeFilterSurf.filter(*globalSurfCloudDS);
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudSurf.pcd", *globalSurfCloudDS);
        // down-sample and save global point cloud map
        *globalMapCloud += *globalCornerCloud;
        *globalMapCloud += *globalSurfCloud;
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudGlobal.pcd", *globalMapCloud);
        cout << "****************************************************" << endl;
        cout << "Saving map to pcd files completed" << endl;
    }

    void publishGlobalMap()
    {
        if (pubLaserCloudSurround.getNumSubscribers() == 0)
            return;

        if (cloudKeyPoses3D->points.empty() == true)
            return;

        pcl::KdTreeFLANN<PointType>::Ptr kdtreeGlobalMap(new pcl::KdTreeFLANN<PointType>());;
        pcl::PointCloud<PointType>::Ptr globalMapKeyPoses(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapKeyPosesDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapKeyFrames(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapKeyFramesDS(new pcl::PointCloud<PointType>());

        // kd-tree to find near key frames to visualize
        std::vector<int> pointSearchIndGlobalMap;
        std::vector<float> pointSearchSqDisGlobalMap;
        // search near key frames to visualize
        mtx.lock();
        kdtreeGlobalMap->setInputCloud(cloudKeyPoses3D);
        kdtreeGlobalMap->radiusSearch(cloudKeyPoses3D->back(), globalMapVisualizationSearchRadius, pointSearchIndGlobalMap, pointSearchSqDisGlobalMap, 0);
        mtx.unlock();

TixiaoShan's avatar
TixiaoShan committed
        for (int i = 0; i < (int)pointSearchIndGlobalMap.size(); ++i)
TixiaoShan's avatar
TixiaoShan committed
            globalMapKeyPoses->push_back(cloudKeyPoses3D->points[pointSearchIndGlobalMap[i]]);
        // downsample near selected key frames
        pcl::VoxelGrid<PointType> downSizeFilterGlobalMapKeyPoses; // for global map visualization
        downSizeFilterGlobalMapKeyPoses.setLeafSize(globalMapVisualizationPoseDensity, globalMapVisualizationPoseDensity, globalMapVisualizationPoseDensity); // for global map visualization
        downSizeFilterGlobalMapKeyPoses.setInputCloud(globalMapKeyPoses);
        downSizeFilterGlobalMapKeyPoses.filter(*globalMapKeyPosesDS);

        // extract visualized and downsampled key frames
TixiaoShan's avatar
TixiaoShan committed
        for (int i = 0; i < (int)globalMapKeyPosesDS->size(); ++i){
TixiaoShan's avatar
TixiaoShan committed
            if (pointDistance(globalMapKeyPosesDS->points[i], cloudKeyPoses3D->back()) > globalMapVisualizationSearchRadius)
                continue;
            int thisKeyInd = (int)globalMapKeyPosesDS->points[i].intensity;
            *globalMapKeyFrames += *transformPointCloud(cornerCloudKeyFrames[thisKeyInd],  &cloudKeyPoses6D->points[thisKeyInd]);
            *globalMapKeyFrames += *transformPointCloud(surfCloudKeyFrames[thisKeyInd],    &cloudKeyPoses6D->points[thisKeyInd]);
        }
        // downsample visualized points
        pcl::VoxelGrid<PointType> downSizeFilterGlobalMapKeyFrames; // for global map visualization
        downSizeFilterGlobalMapKeyFrames.setLeafSize(globalMapVisualizationLeafSize, globalMapVisualizationLeafSize, globalMapVisualizationLeafSize); // for global map visualization
        downSizeFilterGlobalMapKeyFrames.setInputCloud(globalMapKeyFrames);
        downSizeFilterGlobalMapKeyFrames.filter(*globalMapKeyFramesDS);
        publishCloud(&pubLaserCloudSurround, globalMapKeyFramesDS, timeLaserInfoStamp, odometryFrame);
TixiaoShan's avatar
TixiaoShan committed
    }












    void loopClosureThread()
    {
        if (loopClosureEnableFlag == false)
            return;

        ros::Rate rate(1);
TixiaoShan's avatar
TixiaoShan committed
        while (ros::ok())
        {
            rate.sleep();
            performLoopClosure();
TixiaoShan's avatar
TixiaoShan committed
            visualizeLoopClosure();
TixiaoShan's avatar
TixiaoShan committed
        }
    }

    bool detectLoopClosure(int *latestID, int *closestID)
    {
TixiaoShan's avatar
TixiaoShan committed
        int latestFrameIDLoopCloure = copy_cloudKeyPoses3D->size() - 1;
        int closestHistoryFrameID = -1;

        // check loop constraint added before
        auto it = loopIndexContainer.find(latestFrameIDLoopCloure);
        if (it != loopIndexContainer.end())
            return false;
TixiaoShan's avatar
TixiaoShan committed

        latestKeyFrameCloud->clear();
        nearHistoryKeyFrameCloud->clear();

        // find the closest history key frame
        std::vector<int> pointSearchIndLoop;
        std::vector<float> pointSearchSqDisLoop;
        kdtreeHistoryKeyPoses->setInputCloud(copy_cloudKeyPoses3D);
        kdtreeHistoryKeyPoses->radiusSearch(copy_cloudKeyPoses3D->back(), historyKeyframeSearchRadius, pointSearchIndLoop, pointSearchSqDisLoop, 0);
TixiaoShan's avatar
TixiaoShan committed
        
TixiaoShan's avatar
TixiaoShan committed
        for (int i = 0; i < (int)pointSearchIndLoop.size(); ++i)
TixiaoShan's avatar
TixiaoShan committed
        {
            int id = pointSearchIndLoop[i];
TixiaoShan's avatar
TixiaoShan committed
            if (abs(copy_cloudKeyPoses6D->points[id].time - timeLaserInfoCur) > historyKeyframeSearchTimeDiff)
TixiaoShan's avatar
TixiaoShan committed
            {
                closestHistoryFrameID = id;
                break;
            }
        }

        if (closestHistoryFrameID == -1)
            return false;

TixiaoShan's avatar
TixiaoShan committed
        if (latestFrameIDLoopCloure == closestHistoryFrameID)
TixiaoShan's avatar
TixiaoShan committed
            return false;

        // save latest key frames
        *latestKeyFrameCloud += *transformPointCloud(cornerCloudKeyFrames[latestFrameIDLoopCloure], &copy_cloudKeyPoses6D->points[latestFrameIDLoopCloure]);
        *latestKeyFrameCloud += *transformPointCloud(surfCloudKeyFrames[latestFrameIDLoopCloure],   &copy_cloudKeyPoses6D->points[latestFrameIDLoopCloure]);
TixiaoShan's avatar
TixiaoShan committed

        // save history near key frames
        bool nearFrameAvailable = false;
        for (int j = -historyKeyframeSearchNum; j <= historyKeyframeSearchNum; ++j)
        {
            if (closestHistoryFrameID + j < 0 || closestHistoryFrameID + j > latestFrameIDLoopCloure)
                continue;
            *nearHistoryKeyFrameCloud += *transformPointCloud(cornerCloudKeyFrames[closestHistoryFrameID+j], &copy_cloudKeyPoses6D->points[closestHistoryFrameID+j]);
            *nearHistoryKeyFrameCloud += *transformPointCloud(surfCloudKeyFrames[closestHistoryFrameID+j],   &copy_cloudKeyPoses6D->points[closestHistoryFrameID+j]);
TixiaoShan's avatar
TixiaoShan committed
            nearFrameAvailable = true;
        }

        if (nearFrameAvailable == false)
            return false;

        *latestID = latestFrameIDLoopCloure;
        *closestID = closestHistoryFrameID;

        return true;
    }

    void performLoopClosure()
    {
        if (cloudKeyPoses3D->points.empty() == true)
            return;

        mtx.lock();
        *copy_cloudKeyPoses3D = *cloudKeyPoses3D;
        *copy_cloudKeyPoses6D = *cloudKeyPoses6D;
        mtx.unlock();

TixiaoShan's avatar
TixiaoShan committed
        int latestFrameIDLoopCloure;
        int closestHistoryFrameID;
        if (detectLoopClosure(&latestFrameIDLoopCloure, &closestHistoryFrameID) == false)
            return;

        // ICP Settings
TixiaoShan's avatar
TixiaoShan committed
        static pcl::IterativeClosestPoint<PointType, PointType> icp;
        icp.setMaxCorrespondenceDistance(historyKeyframeSearchRadius*2);
TixiaoShan's avatar
TixiaoShan committed
        icp.setMaximumIterations(100);
        icp.setTransformationEpsilon(1e-6);
        icp.setEuclideanFitnessEpsilon(1e-6);
        icp.setRANSACIterations(0);

        // Downsample map cloud
        pcl::PointCloud<PointType>::Ptr cloud_temp(new pcl::PointCloud<PointType>());
        downSizeFilterICP.setInputCloud(nearHistoryKeyFrameCloud);
        downSizeFilterICP.filter(*cloud_temp);
        *nearHistoryKeyFrameCloud = *cloud_temp;
        // publish history near key frames
        publishCloud(&pubHistoryKeyFrames, nearHistoryKeyFrameCloud, timeLaserInfoStamp, odometryFrame);
TixiaoShan's avatar
TixiaoShan committed

        // Align clouds
        icp.setInputSource(latestKeyFrameCloud);
        icp.setInputTarget(nearHistoryKeyFrameCloud);
        pcl::PointCloud<PointType>::Ptr unused_result(new pcl::PointCloud<PointType>());
        icp.align(*unused_result);

        // std::cout << "ICP converg flag:" << icp.hasConverged() << ". Fitness score: " << icp.getFitnessScore() << std::endl;    
        if (icp.hasConverged() == false || icp.getFitnessScore() > historyKeyframeFitnessScore)
            return;

        // publish corrected cloud
        if (pubIcpKeyFrames.getNumSubscribers() != 0){
            pcl::PointCloud<PointType>::Ptr closed_cloud(new pcl::PointCloud<PointType>());
            pcl::transformPointCloud(*latestKeyFrameCloud, *closed_cloud, icp.getFinalTransformation());
            publishCloud(&pubIcpKeyFrames, closed_cloud, timeLaserInfoStamp, odometryFrame);
TixiaoShan's avatar
TixiaoShan committed
        }

        // Get pose transformation
        float x, y, z, roll, pitch, yaw;
        Eigen::Affine3f correctionLidarFrame;
        correctionLidarFrame = icp.getFinalTransformation();
        // transform from world origin to wrong pose
        Eigen::Affine3f tWrong = pclPointToAffine3f(copy_cloudKeyPoses6D->points[latestFrameIDLoopCloure]);
TixiaoShan's avatar
TixiaoShan committed
        // transform from world origin to corrected pose
        Eigen::Affine3f tCorrect = correctionLidarFrame * tWrong;// pre-multiplying -> successive rotation about a fixed frame
        pcl::getTranslationAndEulerAngles (tCorrect, x, y, z, roll, pitch, yaw);
        gtsam::Pose3 poseFrom = Pose3(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z));
        gtsam::Pose3 poseTo = pclPointTogtsamPose3(copy_cloudKeyPoses6D->points[closestHistoryFrameID]);
TixiaoShan's avatar
TixiaoShan committed
        gtsam::Vector Vector6(6);
        float noiseScore = icp.getFitnessScore();
        Vector6 << noiseScore, noiseScore, noiseScore, noiseScore, noiseScore, noiseScore;
        noiseModel::Diagonal::shared_ptr constraintNoise = noiseModel::Diagonal::Variances(Vector6);

        // Add pose constraint
TixiaoShan's avatar
TixiaoShan committed
        mtx.lock();
        loopIndexQueue.push_back(make_pair(latestFrameIDLoopCloure, closestHistoryFrameID));
        loopPoseQueue.push_back(poseFrom.between(poseTo));
        loopNoiseQueue.push_back(constraintNoise);
        mtx.unlock();
TixiaoShan's avatar
TixiaoShan committed
        // add loop constriant
        loopIndexContainer[latestFrameIDLoopCloure] = closestHistoryFrameID;
TixiaoShan's avatar
TixiaoShan committed
    }
TixiaoShan's avatar
TixiaoShan committed
    void visualizeLoopClosure()
    {
        visualization_msgs::MarkerArray markerArray;
        // loop nodes
        visualization_msgs::Marker markerNode;
TixiaoShan's avatar
TixiaoShan committed
        markerNode.header.frame_id = odometryFrame;
TixiaoShan's avatar
TixiaoShan committed
        markerNode.header.stamp = timeLaserInfoStamp;
        markerNode.action = visualization_msgs::Marker::ADD;
        markerNode.type = visualization_msgs::Marker::SPHERE_LIST;
        markerNode.ns = "loop_nodes";
        markerNode.id = 0;
        markerNode.pose.orientation.w = 1;
        markerNode.scale.x = 0.3; markerNode.scale.y = 0.3; markerNode.scale.z = 0.3; 
        markerNode.color.r = 0; markerNode.color.g = 0.8; markerNode.color.b = 1;
        markerNode.color.a = 1;
        // loop edges
        visualization_msgs::Marker markerEdge;
TixiaoShan's avatar
TixiaoShan committed
        markerEdge.header.frame_id = odometryFrame;
TixiaoShan's avatar
TixiaoShan committed
        markerEdge.header.stamp = timeLaserInfoStamp;
        markerEdge.action = visualization_msgs::Marker::ADD;
        markerEdge.type = visualization_msgs::Marker::LINE_LIST;
        markerEdge.ns = "loop_edges";
        markerEdge.id = 1;
        markerEdge.pose.orientation.w = 1;
        markerEdge.scale.x = 0.1; markerEdge.scale.y = 0.1; markerEdge.scale.z = 0.1;
        markerEdge.color.r = 0.9; markerEdge.color.g = 0.9; markerEdge.color.b = 0;
        markerEdge.color.a = 1;

        for (auto it = loopIndexContainer.begin(); it != loopIndexContainer.end(); ++it)
        {
            int key_cur = it->first;
            int key_pre = it->second;
            geometry_msgs::Point p;
            p.x = copy_cloudKeyPoses6D->points[key_cur].x;
            p.y = copy_cloudKeyPoses6D->points[key_cur].y;
            p.z = copy_cloudKeyPoses6D->points[key_cur].z;
            markerNode.points.push_back(p);
            markerEdge.points.push_back(p);
            p.x = copy_cloudKeyPoses6D->points[key_pre].x;
            p.y = copy_cloudKeyPoses6D->points[key_pre].y;
            p.z = copy_cloudKeyPoses6D->points[key_pre].z;
            markerNode.points.push_back(p);
            markerEdge.points.push_back(p);
TixiaoShan's avatar
TixiaoShan committed

        markerArray.markers.push_back(markerNode);
        markerArray.markers.push_back(markerEdge);
        pubLoopConstraintEdge.publish(markerArray);
        // save current transformation before any processing
        incrementalOdometryAffineFront = trans2Affine3f(transformTobeMapped);

        static Eigen::Affine3f lastImuTransformation;
TixiaoShan's avatar
TixiaoShan committed
        // initialization
        if (cloudKeyPoses3D->points.empty())
        {
            transformTobeMapped[0] = cloudInfo.imuRollInit;
            transformTobeMapped[1] = cloudInfo.imuPitchInit;
            transformTobeMapped[2] = cloudInfo.imuYawInit;

            if (!useImuHeadingInitialization)
                transformTobeMapped[2] = 0;

            lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
            return;
        }

        // use imu pre-integration estimation for pose guess
        static bool lastImuPreTransAvailable = false;
        static Eigen::Affine3f lastImuPreTransformation;
        if (cloudInfo.odomAvailable == true)
        {
            Eigen::Affine3f transBack = pcl::getTransformation(cloudInfo.initialGuessX,    cloudInfo.initialGuessY,     cloudInfo.initialGuessZ, 
                                                               cloudInfo.initialGuessRoll, cloudInfo.initialGuessPitch, cloudInfo.initialGuessYaw);
            if (lastImuPreTransAvailable == false)
            {
                lastImuPreTransformation = transBack;
                lastImuPreTransAvailable = true;
            } else {
                Eigen::Affine3f transIncre = lastImuPreTransformation.inverse() * transBack;
                Eigen::Affine3f transTobe = trans2Affine3f(transformTobeMapped);
                Eigen::Affine3f transFinal = transTobe * transIncre;
                pcl::getTranslationAndEulerAngles(transFinal, transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5], 
                                                              transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);

                lastImuPreTransformation = transBack;

                lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
                return;
            }
TixiaoShan's avatar
TixiaoShan committed
        }

        // use imu incremental estimation for pose guess (only rotation)
        if (cloudInfo.imuAvailable == true)
        {
            Eigen::Affine3f transBack = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit);
            Eigen::Affine3f transIncre = lastImuTransformation.inverse() * transBack;

            Eigen::Affine3f transTobe = trans2Affine3f(transformTobeMapped);
            Eigen::Affine3f transFinal = transTobe * transIncre;
            pcl::getTranslationAndEulerAngles(transFinal, transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5], 
                                                          transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);

            lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
            return;
        }
    }

    void extractForLoopClosure()
    {
        pcl::PointCloud<PointType>::Ptr cloudToExtract(new pcl::PointCloud<PointType>());
        int numPoses = cloudKeyPoses3D->size();
        for (int i = numPoses-1; i >= 0; --i)
        {
TixiaoShan's avatar
TixiaoShan committed
            if ((int)cloudToExtract->size() <= surroundingKeyframeSize)
TixiaoShan's avatar
TixiaoShan committed
                cloudToExtract->push_back(cloudKeyPoses3D->points[i]);
            else
                break;
        }

        extractCloud(cloudToExtract);
    }

    void extractNearby()
    {
        pcl::PointCloud<PointType>::Ptr surroundingKeyPoses(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr surroundingKeyPosesDS(new pcl::PointCloud<PointType>());
        std::vector<int> pointSearchInd;
        std::vector<float> pointSearchSqDis;

        // extract all the nearby key poses and downsample them
        kdtreeSurroundingKeyPoses->setInputCloud(cloudKeyPoses3D); // create kd-tree
        kdtreeSurroundingKeyPoses->radiusSearch(cloudKeyPoses3D->back(), (double)surroundingKeyframeSearchRadius, pointSearchInd, pointSearchSqDis);
TixiaoShan's avatar
TixiaoShan committed
        for (int i = 0; i < (int)pointSearchInd.size(); ++i)
TixiaoShan's avatar
TixiaoShan committed
        {
            int id = pointSearchInd[i];
            surroundingKeyPoses->push_back(cloudKeyPoses3D->points[id]);
        }

        downSizeFilterSurroundingKeyPoses.setInputCloud(surroundingKeyPoses);
        downSizeFilterSurroundingKeyPoses.filter(*surroundingKeyPosesDS);

        // also extract some latest key frames in case the robot rotates in one position
        int numPoses = cloudKeyPoses3D->size();
        for (int i = numPoses-1; i >= 0; --i)
        {
TixiaoShan's avatar
TixiaoShan committed
            if (timeLaserInfoCur - cloudKeyPoses6D->points[i].time < 10.0)
TixiaoShan's avatar
TixiaoShan committed
                surroundingKeyPosesDS->push_back(cloudKeyPoses3D->points[i]);
            else
                break;
        }

        extractCloud(surroundingKeyPosesDS);
    }

    void extractCloud(pcl::PointCloud<PointType>::Ptr cloudToExtract)
    {
        std::vector<pcl::PointCloud<PointType>> laserCloudCornerSurroundingVec;
        std::vector<pcl::PointCloud<PointType>> laserCloudSurfSurroundingVec;

        laserCloudCornerSurroundingVec.resize(cloudToExtract->size());
        laserCloudSurfSurroundingVec.resize(cloudToExtract->size());

        // extract surrounding map
        #pragma omp parallel for num_threads(numberOfCores)
TixiaoShan's avatar
TixiaoShan committed
        for (int i = 0; i < (int)cloudToExtract->size(); ++i)
TixiaoShan's avatar
TixiaoShan committed
        {
            if (pointDistance(cloudToExtract->points[i], cloudKeyPoses3D->back()) > surroundingKeyframeSearchRadius)
                continue;
            int thisKeyInd = (int)cloudToExtract->points[i].intensity;
            laserCloudCornerSurroundingVec[i]  = *transformPointCloud(cornerCloudKeyFrames[thisKeyInd],  &cloudKeyPoses6D->points[thisKeyInd]);
            laserCloudSurfSurroundingVec[i]    = *transformPointCloud(surfCloudKeyFrames[thisKeyInd],    &cloudKeyPoses6D->points[thisKeyInd]);
        }

        // fuse the map
        laserCloudCornerFromMap->clear();
        laserCloudSurfFromMap->clear(); 
TixiaoShan's avatar
TixiaoShan committed
        for (int i = 0; i < (int)cloudToExtract->size(); ++i)
TixiaoShan's avatar
TixiaoShan committed
        {
            *laserCloudCornerFromMap += laserCloudCornerSurroundingVec[i];
            *laserCloudSurfFromMap   += laserCloudSurfSurroundingVec[i];
        }

        // Downsample the surrounding corner key frames (or map)
        downSizeFilterCorner.setInputCloud(laserCloudCornerFromMap);
        downSizeFilterCorner.filter(*laserCloudCornerFromMapDS);
        laserCloudCornerFromMapDSNum = laserCloudCornerFromMapDS->size();
        // Downsample the surrounding surf key frames (or map)
        downSizeFilterSurf.setInputCloud(laserCloudSurfFromMap);
        downSizeFilterSurf.filter(*laserCloudSurfFromMapDS);
        laserCloudSurfFromMapDSNum = laserCloudSurfFromMapDS->size();
    }

    void extractSurroundingKeyFrames()
    {
        if (cloudKeyPoses3D->points.empty() == true)
            return; 
        
        if (loopClosureEnableFlag == true)
        {
            extractForLoopClosure();    
        } else {
            extractNearby();
        }
    }

TixiaoShan's avatar
TixiaoShan committed
    void downsampleCurrentScan()
    {
        // Downsample cloud from current scan
        laserCloudCornerLastDS->clear();
        downSizeFilterCorner.setInputCloud(laserCloudCornerLast);
        downSizeFilterCorner.filter(*laserCloudCornerLastDS);
        laserCloudCornerLastDSNum = laserCloudCornerLastDS->size();

        laserCloudSurfLastDS->clear();
        downSizeFilterSurf.setInputCloud(laserCloudSurfLast);
        downSizeFilterSurf.filter(*laserCloudSurfLastDS);
        laserCloudSurfLastDSNum = laserCloudSurfLastDS->size();
    }

TixiaoShan's avatar
TixiaoShan committed
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    void updatePointAssociateToMap()
    {
        transPointAssociateToMap = trans2Affine3f(transformTobeMapped);
    }

    void cornerOptimization()
    {
        updatePointAssociateToMap();

        #pragma omp parallel for num_threads(numberOfCores)
        for (int i = 0; i < laserCloudCornerLastDSNum; i++)
        {
            PointType pointOri, pointSel, coeff;
            std::vector<int> pointSearchInd;
            std::vector<float> pointSearchSqDis;

            pointOri = laserCloudCornerLastDS->points[i];
            pointAssociateToMap(&pointOri, &pointSel);
            kdtreeCornerFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);

            cv::Mat matA1(3, 3, CV_32F, cv::Scalar::all(0));
            cv::Mat matD1(1, 3, CV_32F, cv::Scalar::all(0));
            cv::Mat matV1(3, 3, CV_32F, cv::Scalar::all(0));
                    
            if (pointSearchSqDis[4] < 1.0) {
                float cx = 0, cy = 0, cz = 0;
                for (int j = 0; j < 5; j++) {
                    cx += laserCloudCornerFromMapDS->points[pointSearchInd[j]].x;
                    cy += laserCloudCornerFromMapDS->points[pointSearchInd[j]].y;
                    cz += laserCloudCornerFromMapDS->points[pointSearchInd[j]].z;
                }
                cx /= 5; cy /= 5;  cz /= 5;

                float a11 = 0, a12 = 0, a13 = 0, a22 = 0, a23 = 0, a33 = 0;
                for (int j = 0; j < 5; j++) {
                    float ax = laserCloudCornerFromMapDS->points[pointSearchInd[j]].x - cx;
                    float ay = laserCloudCornerFromMapDS->points[pointSearchInd[j]].y - cy;
                    float az = laserCloudCornerFromMapDS->points[pointSearchInd[j]].z - cz;

                    a11 += ax * ax; a12 += ax * ay; a13 += ax * az;
                    a22 += ay * ay; a23 += ay * az;
                    a33 += az * az;
                }
                a11 /= 5; a12 /= 5; a13 /= 5; a22 /= 5; a23 /= 5; a33 /= 5;

                matA1.at<float>(0, 0) = a11; matA1.at<float>(0, 1) = a12; matA1.at<float>(0, 2) = a13;
                matA1.at<float>(1, 0) = a12; matA1.at<float>(1, 1) = a22; matA1.at<float>(1, 2) = a23;
                matA1.at<float>(2, 0) = a13; matA1.at<float>(2, 1) = a23; matA1.at<float>(2, 2) = a33;

                cv::eigen(matA1, matD1, matV1);

                if (matD1.at<float>(0, 0) > 3 * matD1.at<float>(0, 1)) {

                    float x0 = pointSel.x;
                    float y0 = pointSel.y;
                    float z0 = pointSel.z;
                    float x1 = cx + 0.1 * matV1.at<float>(0, 0);
                    float y1 = cy + 0.1 * matV1.at<float>(0, 1);
                    float z1 = cz + 0.1 * matV1.at<float>(0, 2);
                    float x2 = cx - 0.1 * matV1.at<float>(0, 0);
                    float y2 = cy - 0.1 * matV1.at<float>(0, 1);
                    float z2 = cz - 0.1 * matV1.at<float>(0, 2);

                    float a012 = sqrt(((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) * ((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) 
                                    + ((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1)) * ((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1)) 
                                    + ((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1)) * ((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1)));

                    float l12 = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2) + (z1 - z2)*(z1 - z2));

                    float la = ((y1 - y2)*((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) 
                              + (z1 - z2)*((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1))) / a012 / l12;

                    float lb = -((x1 - x2)*((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) 
                               - (z1 - z2)*((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1))) / a012 / l12;

                    float lc = -((x1 - x2)*((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1)) 
                               + (y1 - y2)*((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1))) / a012 / l12;

                    float ld2 = a012 / l12;

                    float s = 1 - 0.9 * fabs(ld2);

                    coeff.x = s * la;
                    coeff.y = s * lb;
                    coeff.z = s * lc;
                    coeff.intensity = s * ld2;

                    if (s > 0.1) {
                        laserCloudOriCornerVec[i] = pointOri;
                        coeffSelCornerVec[i] = coeff;
                        laserCloudOriCornerFlag[i] = true;
                    }
                }
            }
        }
    }

    void surfOptimization()
    {
        updatePointAssociateToMap();

        #pragma omp parallel for num_threads(numberOfCores)
        for (int i = 0; i < laserCloudSurfLastDSNum; i++)
        {
            PointType pointOri, pointSel, coeff;
            std::vector<int> pointSearchInd;
            std::vector<float> pointSearchSqDis;

            pointOri = laserCloudSurfLastDS->points[i];
            pointAssociateToMap(&pointOri, &pointSel); 
            kdtreeSurfFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);

            Eigen::Matrix<float, 5, 3> matA0;
            Eigen::Matrix<float, 5, 1> matB0;
            Eigen::Vector3f matX0;

            matA0.setZero();
            matB0.fill(-1);
            matX0.setZero();

            if (pointSearchSqDis[4] < 1.0) {
                for (int j = 0; j < 5; j++) {
                    matA0(j, 0) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].x;
                    matA0(j, 1) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].y;
                    matA0(j, 2) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].z;
                }

                matX0 = matA0.colPivHouseholderQr().solve(matB0);

                float pa = matX0(0, 0);
                float pb = matX0(1, 0);
                float pc = matX0(2, 0);
                float pd = 1;

                float ps = sqrt(pa * pa + pb * pb + pc * pc);
                pa /= ps; pb /= ps; pc /= ps; pd /= ps;

                bool planeValid = true;
                for (int j = 0; j < 5; j++) {
                    if (fabs(pa * laserCloudSurfFromMapDS->points[pointSearchInd[j]].x +
                             pb * laserCloudSurfFromMapDS->points[pointSearchInd[j]].y +
                             pc * laserCloudSurfFromMapDS->points[pointSearchInd[j]].z + pd) > 0.2) {
                        planeValid = false;
                        break;
                    }
                }

                if (planeValid) {
                    float pd2 = pa * pointSel.x + pb * pointSel.y + pc * pointSel.z + pd;

                    float s = 1 - 0.9 * fabs(pd2) / sqrt(sqrt(pointSel.x * pointSel.x
                            + pointSel.y * pointSel.y + pointSel.z * pointSel.z));

                    coeff.x = s * pa;
                    coeff.y = s * pb;
                    coeff.z = s * pc;
                    coeff.intensity = s * pd2;

                    if (s > 0.1) {
                        laserCloudOriSurfVec[i] = pointOri;
                        coeffSelSurfVec[i] = coeff;
                        laserCloudOriSurfFlag[i] = true;
                    }
                }
            }
        }
    }

    void combineOptimizationCoeffs()
    {
        // combine corner coeffs
        for (int i = 0; i < laserCloudCornerLastDSNum; ++i){
            if (laserCloudOriCornerFlag[i] == true){
                laserCloudOri->push_back(laserCloudOriCornerVec[i]);
                coeffSel->push_back(coeffSelCornerVec[i]);
            }
        }
        // combine surf coeffs
        for (int i = 0; i < laserCloudSurfLastDSNum; ++i){
            if (laserCloudOriSurfFlag[i] == true){
                laserCloudOri->push_back(laserCloudOriSurfVec[i]);
                coeffSel->push_back(coeffSelSurfVec[i]);
            }
        }
        // reset flag for next iteration
        std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false);
        std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);
    }

    bool LMOptimization(int iterCount)
    {
        // This optimization is from the original loam_velodyne by Ji Zhang, need to cope with coordinate transformation
        // lidar <- camera      ---     camera <- lidar
        // x = z                ---     x = y
        // y = x                ---     y = z
        // z = y                ---     z = x
        // roll = yaw           ---     roll = pitch
        // pitch = roll         ---     pitch = yaw
        // yaw = pitch          ---     yaw = roll

        // lidar -> camera
        float srx = sin(transformTobeMapped[1]);
        float crx = cos(transformTobeMapped[1]);
        float sry = sin(transformTobeMapped[2]);
        float cry = cos(transformTobeMapped[2]);
        float srz = sin(transformTobeMapped[0]);
        float crz = cos(transformTobeMapped[0]);

        int laserCloudSelNum = laserCloudOri->size();
        if (laserCloudSelNum < 50) {
            return false;
        }

        cv::Mat matA(laserCloudSelNum, 6, CV_32F, cv::Scalar::all(0));
        cv::Mat matAt(6, laserCloudSelNum, CV_32F, cv::Scalar::all(0));
        cv::Mat matAtA(6, 6, CV_32F, cv::Scalar::all(0));
        cv::Mat matB(laserCloudSelNum, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matAtB(6, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matX(6, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matP(6, 6, CV_32F, cv::Scalar::all(0));

        PointType pointOri, coeff;

        for (int i = 0; i < laserCloudSelNum; i++) {
            // lidar -> camera
            pointOri.x = laserCloudOri->points[i].y;
            pointOri.y = laserCloudOri->points[i].z;
            pointOri.z = laserCloudOri->points[i].x;
            // lidar -> camera
            coeff.x = coeffSel->points[i].y;
            coeff.y = coeffSel->points[i].z;
            coeff.z = coeffSel->points[i].x;
            coeff.intensity = coeffSel->points[i].intensity;
            // in camera
            float arx = (crx*sry*srz*pointOri.x + crx*crz*sry*pointOri.y - srx*sry*pointOri.z) * coeff.x
                      + (-srx*srz*pointOri.x - crz*srx*pointOri.y - crx*pointOri.z) * coeff.y
                      + (crx*cry*srz*pointOri.x + crx*cry*crz*pointOri.y - cry*srx*pointOri.z) * coeff.z;

            float ary = ((cry*srx*srz - crz*sry)*pointOri.x 
                      + (sry*srz + cry*crz*srx)*pointOri.y + crx*cry*pointOri.z) * coeff.x
                      + ((-cry*crz - srx*sry*srz)*pointOri.x 
                      + (cry*srz - crz*srx*sry)*pointOri.y - crx*sry*pointOri.z) * coeff.z;

            float arz = ((crz*srx*sry - cry*srz)*pointOri.x + (-cry*crz-srx*sry*srz)*pointOri.y)*coeff.x
                      + (crx*crz*pointOri.x - crx*srz*pointOri.y) * coeff.y
                      + ((sry*srz + cry*crz*srx)*pointOri.x + (crz*sry-cry*srx*srz)*pointOri.y)*coeff.z;
            // lidar -> camera
            matA.at<float>(i, 0) = arz;
            matA.at<float>(i, 1) = arx;
            matA.at<float>(i, 2) = ary;
            matA.at<float>(i, 3) = coeff.z;
            matA.at<float>(i, 4) = coeff.x;
            matA.at<float>(i, 5) = coeff.y;
            matB.at<float>(i, 0) = -coeff.intensity;
        }

        cv::transpose(matA, matAt);
        matAtA = matAt * matA;
        matAtB = matAt * matB;
        cv::solve(matAtA, matAtB, matX, cv::DECOMP_QR);

        if (iterCount == 0) {

            cv::Mat matE(1, 6, CV_32F, cv::Scalar::all(0));
            cv::Mat matV(6, 6, CV_32F, cv::Scalar::all(0));
            cv::Mat matV2(6, 6, CV_32F, cv::Scalar::all(0));

            cv::eigen(matAtA, matE, matV);
            matV.copyTo(matV2);

            isDegenerate = false;
            float eignThre[6] = {100, 100, 100, 100, 100, 100};
            for (int i = 5; i >= 0; i--) {
                if (matE.at<float>(0, i) < eignThre[i]) {
                    for (int j = 0; j < 6; j++) {
                        matV2.at<float>(i, j) = 0;
                    }
                    isDegenerate = true;
                } else {
                    break;
                }
            }
            matP = matV.inv() * matV2;
        }

        if (isDegenerate) {
            cv::Mat matX2(6, 1, CV_32F, cv::Scalar::all(0));
            matX.copyTo(matX2);
            matX = matP * matX2;
        }

        transformTobeMapped[0] += matX.at<float>(0, 0);
        transformTobeMapped[1] += matX.at<float>(1, 0);
        transformTobeMapped[2] += matX.at<float>(2, 0);
        transformTobeMapped[3] += matX.at<float>(3, 0);
        transformTobeMapped[4] += matX.at<float>(4, 0);
        transformTobeMapped[5] += matX.at<float>(5, 0);

        float deltaR = sqrt(
                            pow(pcl::rad2deg(matX.at<float>(0, 0)), 2) +
                            pow(pcl::rad2deg(matX.at<float>(1, 0)), 2) +
                            pow(pcl::rad2deg(matX.at<float>(2, 0)), 2));
        float deltaT = sqrt(
                            pow(matX.at<float>(3, 0) * 100, 2) +
                            pow(matX.at<float>(4, 0) * 100, 2) +
                            pow(matX.at<float>(5, 0) * 100, 2));

        if (deltaR < 0.05 && deltaT < 0.05) {
            return true; // converged
        }
        return false; // keep optimizing
    }

    void scan2MapOptimization()
    {
        if (cloudKeyPoses3D->points.empty())
            return;

        if (laserCloudCornerLastDSNum > edgeFeatureMinValidNum && laserCloudSurfLastDSNum > surfFeatureMinValidNum)
        {
            kdtreeCornerFromMap->setInputCloud(laserCloudCornerFromMapDS);
            kdtreeSurfFromMap->setInputCloud(laserCloudSurfFromMapDS);

            for (int iterCount = 0; iterCount < 30; iterCount++)
            {
                laserCloudOri->clear();
                coeffSel->clear();

                cornerOptimization();
                surfOptimization();

                combineOptimizationCoeffs();

                if (LMOptimization(iterCount) == true)
                    break;              
            }

            transformUpdate();
        } else {
            ROS_WARN("Not enough features! Only %d edge and %d planar features available.", laserCloudCornerLastDSNum, laserCloudSurfLastDSNum);
        }
    }

    void transformUpdate()
    {
        if (cloudInfo.imuAvailable == true)
        {
            if (std::abs(cloudInfo.imuPitchInit) < 1.4)
            {
                double imuWeight = 0.01;
TixiaoShan's avatar
TixiaoShan committed
                tf::Quaternion imuQuaternion;
                tf::Quaternion transformQuaternion;
                double rollMid, pitchMid, yawMid;

                // slerp roll
                transformQuaternion.setRPY(transformTobeMapped[0], 0, 0);
                imuQuaternion.setRPY(cloudInfo.imuRollInit, 0, 0);
                tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
                transformTobeMapped[0] = rollMid;

                // slerp pitch
                transformQuaternion.setRPY(0, transformTobeMapped[1], 0);
                imuQuaternion.setRPY(0, cloudInfo.imuPitchInit, 0);
                tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
                transformTobeMapped[1] = pitchMid;
            }
        }

        transformTobeMapped[0] = constraintTransformation(transformTobeMapped[0], rotation_tollerance);
        transformTobeMapped[1] = constraintTransformation(transformTobeMapped[1], rotation_tollerance);
        transformTobeMapped[5] = constraintTransformation(transformTobeMapped[5], z_tollerance);

        incrementalOdometryAffineBack = trans2Affine3f(transformTobeMapped);
TixiaoShan's avatar
TixiaoShan committed
    }

    float constraintTransformation(float value, float limit)
    {
        if (value < -limit)
            value = -limit;
        if (value > limit)
            value = limit;

        return value;
    }

    bool saveFrame()
    {
        if (cloudKeyPoses3D->points.empty())
            return true;

        Eigen::Affine3f transStart = pclPointToAffine3f(cloudKeyPoses6D->back());
        Eigen::Affine3f transFinal = pcl::getTransformation(transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5], 
                                                            transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
        Eigen::Affine3f transBetween = transStart.inverse() * transFinal;
        float x, y, z, roll, pitch, yaw;
        pcl::getTranslationAndEulerAngles(transBetween, x, y, z, roll, pitch, yaw);

        if (abs(roll)  < surroundingkeyframeAddingAngleThreshold &&
            abs(pitch) < surroundingkeyframeAddingAngleThreshold && 
            abs(yaw)   < surroundingkeyframeAddingAngleThreshold &&
            sqrt(x*x + y*y + z*z) < surroundingkeyframeAddingDistThreshold)
            return false;

        return true;
    }

    void addOdomFactor()
    {
        if (cloudKeyPoses3D->points.empty())
        {
            noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Variances((Vector(6) << 1e-2, 1e-2, M_PI*M_PI, 1e8, 1e8, 1e8).finished()); // rad*rad, meter*meter
            gtSAMgraph.add(PriorFactor<Pose3>(0, trans2gtsamPose(transformTobeMapped), priorNoise));
            initialEstimate.insert(0, trans2gtsamPose(transformTobeMapped));
        }else{
            noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4).finished());
            gtsam::Pose3 poseFrom = pclPointTogtsamPose3(cloudKeyPoses6D->points.back());
            gtsam::Pose3 poseTo   = trans2gtsamPose(transformTobeMapped);
            gtSAMgraph.add(BetweenFactor<Pose3>(cloudKeyPoses3D->size()-1, cloudKeyPoses3D->size(), poseFrom.between(poseTo), odometryNoise));
            initialEstimate.insert(cloudKeyPoses3D->size(), poseTo);
        }
    }

    void addGPSFactor()
    {
        if (gpsQueue.empty())
            return;

        // wait for system initialized and settles down
        if (cloudKeyPoses3D->points.empty())
            return;
        else
        {
            if (pointDistance(cloudKeyPoses3D->front(), cloudKeyPoses3D->back()) < 5.0)
                return;
        }

        // pose covariance small, no need to correct
        if (poseCovariance(3,3) < poseCovThreshold && poseCovariance(4,4) < poseCovThreshold)
            return;

        // last gps position
        static PointType lastGPSPoint;

TixiaoShan's avatar
TixiaoShan committed
        while (!gpsQueue.empty())
        {
TixiaoShan's avatar
TixiaoShan committed
            if (gpsQueue.front().header.stamp.toSec() < timeLaserInfoCur - 0.2)
TixiaoShan's avatar
TixiaoShan committed
            {
                // message too old
                gpsQueue.pop_front();
            }
TixiaoShan's avatar
TixiaoShan committed
            else if (gpsQueue.front().header.stamp.toSec() > timeLaserInfoCur + 0.2)
TixiaoShan's avatar
TixiaoShan committed
            {
                // message too new
                break;
            }
            else
            {
                nav_msgs::Odometry thisGPS = gpsQueue.front();
                gpsQueue.pop_front();

                // GPS too noisy, skip
                float noise_x = thisGPS.pose.covariance[0];
                float noise_y = thisGPS.pose.covariance[7];
                float noise_z = thisGPS.pose.covariance[14];
                if (noise_x > gpsCovThreshold || noise_y > gpsCovThreshold)
                    continue;

                float gps_x = thisGPS.pose.pose.position.x;
                float gps_y = thisGPS.pose.pose.position.y;
                float gps_z = thisGPS.pose.pose.position.z;
                if (!useGpsElevation)
                {
                    gps_z = transformTobeMapped[5];
                    noise_z = 0.01;
                }

                // GPS not properly initialized (0,0,0)
                if (abs(gps_x) < 1e-6 && abs(gps_y) < 1e-6)
                    continue;

                // Add GPS every a few meters
                PointType curGPSPoint;
                curGPSPoint.x = gps_x;
                curGPSPoint.y = gps_y;
                curGPSPoint.z = gps_z;
                if (pointDistance(curGPSPoint, lastGPSPoint) < 5.0)
                    continue;
                else
                    lastGPSPoint = curGPSPoint;

TixiaoShan's avatar
TixiaoShan committed
                gtsam::Vector Vector3(3);
                Vector3 << max(noise_x, 1.0f), max(noise_y, 1.0f), max(noise_z, 1.0f);
TixiaoShan's avatar
TixiaoShan committed
                noiseModel::Diagonal::shared_ptr gps_noise = noiseModel::Diagonal::Variances(Vector3);
                gtsam::GPSFactor gps_factor(cloudKeyPoses3D->size(), gtsam::Point3(gps_x, gps_y, gps_z), gps_noise);
                gtSAMgraph.add(gps_factor);

                aLoopIsClosed = true;
                break;
            }
        }
    }

TixiaoShan's avatar
TixiaoShan committed
    void addLoopFactor()
    {
        if (loopIndexQueue.empty())
            return;

        for (int i = 0; i < (int)loopIndexQueue.size(); ++i)
        {
            int indexFrom = loopIndexQueue[i].first;
            int indexTo = loopIndexQueue[i].second;
            gtsam::Pose3 poseBetween = loopPoseQueue[i];
            gtsam::noiseModel::Diagonal::shared_ptr noiseBetween = loopNoiseQueue[i];
            gtSAMgraph.add(BetweenFactor<Pose3>(indexFrom, indexTo, poseBetween, noiseBetween));
        }

        loopIndexQueue.clear();
        loopPoseQueue.clear();
        loopNoiseQueue.clear();
        aLoopIsClosed = true;
    }

TixiaoShan's avatar
TixiaoShan committed
    void saveKeyFramesAndFactor()
    {
        if (saveFrame() == false)
            return;

        // odom factor
        addOdomFactor();

        // gps factor
        addGPSFactor();

TixiaoShan's avatar
TixiaoShan committed
        // loop factor
        addLoopFactor();

TixiaoShan's avatar
TixiaoShan committed
        // cout << "****************************************************" << endl;
        // gtSAMgraph.print("GTSAM Graph:\n");

        // update iSAM
        isam->update(gtSAMgraph, initialEstimate);
        isam->update();

TixiaoShan's avatar
TixiaoShan committed
        if (aLoopIsClosed == true)
        {
            isam->update();
            isam->update();
            isam->update();
            isam->update();
            isam->update();
        }
TixiaoShan's avatar
TixiaoShan committed
        gtSAMgraph.resize(0);
        initialEstimate.clear();

        //save key poses
        PointType thisPose3D;
        PointTypePose thisPose6D;
        Pose3 latestEstimate;

        isamCurrentEstimate = isam->calculateEstimate();
        latestEstimate = isamCurrentEstimate.at<Pose3>(isamCurrentEstimate.size()-1);
        // cout << "****************************************************" << endl;
        // isamCurrentEstimate.print("Current estimate: ");

        thisPose3D.x = latestEstimate.translation().x();
        thisPose3D.y = latestEstimate.translation().y();
        thisPose3D.z = latestEstimate.translation().z();
        thisPose3D.intensity = cloudKeyPoses3D->size(); // this can be used as index
        cloudKeyPoses3D->push_back(thisPose3D);

        thisPose6D.x = thisPose3D.x;
        thisPose6D.y = thisPose3D.y;
        thisPose6D.z = thisPose3D.z;
        thisPose6D.intensity = thisPose3D.intensity ; // this can be used as index
        thisPose6D.roll  = latestEstimate.rotation().roll();
        thisPose6D.pitch = latestEstimate.rotation().pitch();
        thisPose6D.yaw   = latestEstimate.rotation().yaw();
TixiaoShan's avatar
TixiaoShan committed
        thisPose6D.time = timeLaserInfoCur;
TixiaoShan's avatar
TixiaoShan committed
        cloudKeyPoses6D->push_back(thisPose6D);

        // cout << "****************************************************" << endl;
        // cout << "Pose covariance:" << endl;
        // cout << isam->marginalCovariance(isamCurrentEstimate.size()-1) << endl << endl;
        poseCovariance = isam->marginalCovariance(isamCurrentEstimate.size()-1);

        // save updated transform
        transformTobeMapped[0] = latestEstimate.rotation().roll();
        transformTobeMapped[1] = latestEstimate.rotation().pitch();
        transformTobeMapped[2] = latestEstimate.rotation().yaw();
        transformTobeMapped[3] = latestEstimate.translation().x();
        transformTobeMapped[4] = latestEstimate.translation().y();
        transformTobeMapped[5] = latestEstimate.translation().z();

        // save all the received edge and surf points
        pcl::PointCloud<PointType>::Ptr thisCornerKeyFrame(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr thisSurfKeyFrame(new pcl::PointCloud<PointType>());
        pcl::copyPointCloud(*laserCloudCornerLastDS,  *thisCornerKeyFrame);
        pcl::copyPointCloud(*laserCloudSurfLastDS,    *thisSurfKeyFrame);

        // save key frame cloud
        cornerCloudKeyFrames.push_back(thisCornerKeyFrame);
        surfCloudKeyFrames.push_back(thisSurfKeyFrame);

        // save path for visualization
        updatePath(thisPose6D);
    }

    void correctPoses()
    {
        if (cloudKeyPoses3D->points.empty())
            return;

        if (aLoopIsClosed == true)
        {
            // clear path
            globalPath.poses.clear();
            // update key poses
            int numPoses = isamCurrentEstimate.size();
            for (int i = 0; i < numPoses; ++i)
            {
                cloudKeyPoses3D->points[i].x = isamCurrentEstimate.at<Pose3>(i).translation().x();
                cloudKeyPoses3D->points[i].y = isamCurrentEstimate.at<Pose3>(i).translation().y();
                cloudKeyPoses3D->points[i].z = isamCurrentEstimate.at<Pose3>(i).translation().z();

                cloudKeyPoses6D->points[i].x = cloudKeyPoses3D->points[i].x;
                cloudKeyPoses6D->points[i].y = cloudKeyPoses3D->points[i].y;
                cloudKeyPoses6D->points[i].z = cloudKeyPoses3D->points[i].z;
                cloudKeyPoses6D->points[i].roll  = isamCurrentEstimate.at<Pose3>(i).rotation().roll();
                cloudKeyPoses6D->points[i].pitch = isamCurrentEstimate.at<Pose3>(i).rotation().pitch();
                cloudKeyPoses6D->points[i].yaw   = isamCurrentEstimate.at<Pose3>(i).rotation().yaw();

                updatePath(cloudKeyPoses6D->points[i]);
            }

            aLoopIsClosed = false;
        }
    }

    void updatePath(const PointTypePose& pose_in)
    {
        geometry_msgs::PoseStamped pose_stamped;
TixiaoShan's avatar
TixiaoShan committed
        pose_stamped.header.stamp = ros::Time().fromSec(pose_in.time);
        pose_stamped.header.frame_id = odometryFrame;
TixiaoShan's avatar
TixiaoShan committed
        pose_stamped.pose.position.x = pose_in.x;
        pose_stamped.pose.position.y = pose_in.y;
        pose_stamped.pose.position.z = pose_in.z;
        tf::Quaternion q = tf::createQuaternionFromRPY(pose_in.roll, pose_in.pitch, pose_in.yaw);
        pose_stamped.pose.orientation.x = q.x();
        pose_stamped.pose.orientation.y = q.y();
        pose_stamped.pose.orientation.z = q.z();
        pose_stamped.pose.orientation.w = q.w();

        globalPath.poses.push_back(pose_stamped);
    }

    void publishOdometry()
    {
        // Publish odometry for ROS (global)
TixiaoShan's avatar
TixiaoShan committed
        nav_msgs::Odometry laserOdometryROS;
        laserOdometryROS.header.stamp = timeLaserInfoStamp;
        laserOdometryROS.header.frame_id = odometryFrame;
TixiaoShan's avatar
TixiaoShan committed
        laserOdometryROS.child_frame_id = "odom_mapping";
        laserOdometryROS.pose.pose.position.x = transformTobeMapped[3];
        laserOdometryROS.pose.pose.position.y = transformTobeMapped[4];
        laserOdometryROS.pose.pose.position.z = transformTobeMapped[5];
        laserOdometryROS.pose.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
        pubLaserOdometryGlobal.publish(laserOdometryROS);
TixiaoShan's avatar
TixiaoShan committed
        // Publish TF
        static tf::TransformBroadcaster br;
        tf::Transform t_odom_to_lidar = tf::Transform(tf::createQuaternionFromRPY(transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]),
                                                      tf::Vector3(transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5]));
tixiaoshan's avatar
tixiaoshan committed
        tf::StampedTransform trans_odom_to_lidar = tf::StampedTransform(t_odom_to_lidar, timeLaserInfoStamp, odometryFrame, "lidar_link");
TixiaoShan's avatar
TixiaoShan committed
        br.sendTransform(trans_odom_to_lidar);

        // Publish odometry for ROS (incremental)
        static bool lastIncreOdomPubFlag = false;
        static nav_msgs::Odometry laserOdomIncremental; // incremental odometry msg
        static Eigen::Affine3f increOdomAffine; // incremental odometry in affine
        if (lastIncreOdomPubFlag == false)
        {
            lastIncreOdomPubFlag = true;
            laserOdomIncremental = laserOdometryROS;
            increOdomAffine = trans2Affine3f(transformTobeMapped);
        } else {
            Eigen::Affine3f affineIncre = incrementalOdometryAffineFront.inverse() * incrementalOdometryAffineBack;
            increOdomAffine = increOdomAffine * affineIncre;
            float x, y, z, roll, pitch, yaw;
            pcl::getTranslationAndEulerAngles (increOdomAffine, x, y, z, roll, pitch, yaw);
            if (cloudInfo.imuAvailable == true)
            {
                if (std::abs(cloudInfo.imuPitchInit) < 1.4)
                {
                    double imuWeight = 0.01;
                    tf::Quaternion imuQuaternion;
                    tf::Quaternion transformQuaternion;
                    double rollMid, pitchMid, yawMid;
                    transformQuaternion.setRPY(roll, pitch, 0);
                    imuQuaternion.setRPY(cloudInfo.imuRollInit, cloudInfo.imuPitchInit, 0);
                    tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
                    roll = rollMid;
                    pitch = pitchMid;
                }
            }
            laserOdomIncremental.header.stamp = timeLaserInfoStamp;
            laserOdomIncremental.header.frame_id = odometryFrame;
            laserOdomIncremental.child_frame_id = "odom_mapping";
            laserOdomIncremental.pose.pose.position.x = x;
            laserOdomIncremental.pose.pose.position.y = y;
            laserOdomIncremental.pose.pose.position.z = z;
            laserOdomIncremental.pose.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(roll, pitch, yaw);
        }
        pubLaserOdometryIncremental.publish(laserOdomIncremental);
TixiaoShan's avatar
TixiaoShan committed
    }

    void publishFrames()
    {
        if (cloudKeyPoses3D->points.empty())
            return;
        // publish key poses
        publishCloud(&pubKeyPoses, cloudKeyPoses3D, timeLaserInfoStamp, odometryFrame);
TixiaoShan's avatar
TixiaoShan committed
        // Publish surrounding key frames
        publishCloud(&pubRecentKeyFrames, laserCloudSurfFromMapDS, timeLaserInfoStamp, odometryFrame);
TixiaoShan's avatar
TixiaoShan committed
        // publish registered key frame
        if (pubRecentKeyFrame.getNumSubscribers() != 0)
        {
            pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
            PointTypePose thisPose6D = trans2PointTypePose(transformTobeMapped);
            *cloudOut += *transformPointCloud(laserCloudCornerLastDS,  &thisPose6D);
            *cloudOut += *transformPointCloud(laserCloudSurfLastDS,    &thisPose6D);
            publishCloud(&pubRecentKeyFrame, cloudOut, timeLaserInfoStamp, odometryFrame);
TixiaoShan's avatar
TixiaoShan committed
        }
        // publish registered high-res raw cloud
        if (pubCloudRegisteredRaw.getNumSubscribers() != 0)
        {
            pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
            pcl::fromROSMsg(cloudInfo.cloud_deskewed, *cloudOut);
            PointTypePose thisPose6D = trans2PointTypePose(transformTobeMapped);
            *cloudOut = *transformPointCloud(cloudOut,  &thisPose6D);
            publishCloud(&pubCloudRegisteredRaw, cloudOut, timeLaserInfoStamp, odometryFrame);
TixiaoShan's avatar
TixiaoShan committed
        }
        // publish path
        if (pubPath.getNumSubscribers() != 0)
        {
            globalPath.header.stamp = timeLaserInfoStamp;
            globalPath.header.frame_id = odometryFrame;
TixiaoShan's avatar
TixiaoShan committed
            pubPath.publish(globalPath);
        }
    }
};


int main(int argc, char** argv)
{
    ros::init(argc, argv, "lio_sam");

    mapOptimization MO;

    ROS_INFO("\033[1;32m----> Map Optimization Started.\033[0m");
    
    std::thread loopthread(&mapOptimization::loopClosureThread, &MO);
    std::thread visualizeMapThread(&mapOptimization::visualizeGlobalMapThread, &MO);

    ros::spin();

TixiaoShan's avatar
TixiaoShan committed
    loopthread.join();
    visualizeMapThread.join();

TixiaoShan's avatar
TixiaoShan committed
    return 0;