Newer
Older
import numpy as np
from BaseEvaluator import BaseEvaluator
class SumMeSummaryEvaluator(BaseEvaluator):
def __init__(self, generated_summaries, dataset, metric):
super().__init__(generated_summaries, dataset, metric)
def evaluate(self, metric='kendalltau'):
rc_func = self.get_rc_func(metric)
taus = []
for video_name in self.dataset.keys():
if video_name in self.summaries.keys():
tau, p_value = rc_func(self.dataset[video_name]['mean_user_score'], self.summaries[video_name])
taus.append(tau)
return np.asarray(taus).mean()