Skip to content
Snippets Groups Projects
create_cascadedomain2d.ipynb 45 KiB
Newer Older
Malte Nyhuis's avatar
Malte Nyhuis committed
  {
   "cell_type": "markdown",
   "source": [
    "In the following, we want to define a geometry of a cascade case domain.\n",
    "The domain should use profilepoints to define the shape of the airfoil.\n",
    "In this case, the airfoil is generated using the naca_airfoil_creator function from ntrfc.\n",
    "\n",
    "Lets start with importing all necessary modules"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   }
  },
Malte Nyhuis's avatar
Malte Nyhuis committed
   "execution_count": 1,
   "outputs": [],
   "source": [
    "import pyvista as pv\n",
    "import numpy as np\n",
Malte Nyhuis's avatar
Malte Nyhuis committed
    "import os\n",
    "\n",
Malte Nyhuis's avatar
Malte Nyhuis committed
    "from ntrfc.cascade_case.domain import DomainParameters\n",
    "from ntrfc.cascade_case.domain import CascadeDomain2D\n",
    "from ntrfc.turbo.airfoil_generators.naca_airfoil_creator import naca"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
Malte Nyhuis's avatar
Malte Nyhuis committed
  {
   "cell_type": "markdown",
   "source": [
    "Lets set the jupyter backend for this jupyternotebook.\n",
    "This is not necessary for the work in a normal shell"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   }
  },
Malte Nyhuis's avatar
Malte Nyhuis committed
   "execution_count": 2,
Malte Nyhuis's avatar
Malte Nyhuis committed
    "pv.set_jupyter_backend(\"static\")\n",
    "\n",
    "if os.getenv('DISPLAY') is None:\n",
    "    pv.start_xvfb()  # Start X virtual framebuffer (Xvfb)"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
Malte Nyhuis's avatar
Malte Nyhuis committed
  {
   "cell_type": "markdown",
   "source": [
    "Define the profile points and define an alpha value for the alpha-shape of the airfoil"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   }
  },
Malte Nyhuis's avatar
Malte Nyhuis committed
   "execution_count": 3,
   "outputs": [],
   "source": [
    "xs,ys = naca(\"6510\",256)\n",
    "points = pv.PolyData(np.stack([xs,ys,np.zeros(len(xs))]).T)\n",
    "alpha = 1"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
Malte Nyhuis's avatar
Malte Nyhuis committed
  {
   "cell_type": "markdown",
   "source": [
    "Lets compute the airfoil and define domain parameters"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%% md\n"
    }
   }
  },
Malte Nyhuis's avatar
Malte Nyhuis committed
   "execution_count": 4,
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "ratio of cleaned sites: 0.8973384030418251\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
Malte Nyhuis's avatar
Malte Nyhuis committed
      "/home/many/miniconda3/envs/NTRfC/lib/python3.10/site-packages/pyvista/core/filters/poly_data.py:2848: PyVistaFutureWarning: The default value of the ``capping`` keyword argument will change in a future version to ``True`` to match the behavior of VTK. We recommend passing the keyword explicitly to prevent future surprises.\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "domainparas = DomainParameters()\n",
many's avatar
many committed
    "domainparas.generate_params_by_pointcloud(points)\n",
    "domainparas.xinlet=-3\n",
    "domainparas.xoutlet=4\n",
    "domainparas.pitch=2\n",
    "domainparas.blade_yshift=0.1"
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  },
  {
Malte Nyhuis's avatar
Malte Nyhuis committed
   "cell_type": "markdown",
Malte Nyhuis's avatar
Malte Nyhuis committed
    "You can define a domain with the CascadeDomain2D class and its method 'from_cascade_parameters'.\n",
    "The Class has a plot-method which can be used to illustrate the domain."
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
Malte Nyhuis's avatar
Malte Nyhuis committed
     "name": "#%% md\n"
Malte Nyhuis's avatar
Malte Nyhuis committed
   "execution_count": 5,
Malte Nyhuis's avatar
Malte Nyhuis committed
   "outputs": [],
Malte Nyhuis's avatar
Malte Nyhuis committed
   "source": [
    "domain2d = CascadeDomain2D()\n",
    "domain2d.generate_from_cascade_parameters( domainparas)\n",
Malte Nyhuis's avatar
Malte Nyhuis committed
    "figpath = domainparas.plot_domainparas()\n"
Malte Nyhuis's avatar
Malte Nyhuis committed
   ],
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
many's avatar
many committed
  },
  {
   "cell_type": "code",
Malte Nyhuis's avatar
Malte Nyhuis committed
   "execution_count": 6,
Malte Nyhuis's avatar
Malte Nyhuis committed
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAZACAIAAACubhnwAAB4FUlEQVR4nOzdWXRc5YHo+10aLFmDbdlYthM8ggcsgrHB2HjAjjEJgWAIQ9IdOjk9pPuu9M1Lr17rPPVawMN9yVr39Ms5fU7fTieEBhKICVNwCBhjCHjC2Ay24wnLI3jAkyZr1n3YpiKsqSSVpK9Kv9/TlrRr165dUtXef317V6KtrS0CAAAAgFDlDPUKAAAAAEB3BCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEHLG+oVAAAAYGg89thjQ70KQB898sgjQ70Kg8oILAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKDlDfUKAAAAwHD37LMP7dkzN4qi++//7Q03fNxxhm3bFq5bd1cURQsW7Fiz5uXBXr/ADMTWeO21OzZtWhJF0cqVG1eufCstyySNjMACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQXMQdAAAAQve1r+2aNu1wFEUjR9YP9boMPVtjGBKwAAAAIHQjR14aOfLSUK9FKGyNYUjAAgAAIPPU1xds2rTk+PGrT56cmJfXPGHC6enTDy1atDU3t3WQ1+T48av37Zt1+PC06upRNTUlubnNxcW1kyZ9ds01h2644aO8vOa03Et9fWFNTXEURYWFDSUlNd3M2dKSe+jQjH37Zp04cXVNTUld3ciiokslJdVXX31i1qx9M2ZU5ua29OquGxvz9+69bvfuijNnxldXl+blNY0aVT1p0mdz5+655pqDadzgqT+nqW+N1tbEkSNT9++fdfTolOrq0tra4pEj60tLqyZMOFVRsXvGjEN9WP/m5txDh2bs3Xvdp59Oqq4ubWgoGDPmYlnZufLy0/Pn77zqqrO9XSCpSLS1tQ31OgAAADAEHnvssaFehT765JNrXnxxTVXVqCu+X15++oEHfjthwqn239y2beG6dXdFUbRgwY41a15OZflPP/2X+/fPiqLowQfXXn/97q5mO3Roxvr1t3/66Ve6mqGkpHbx4i033/xeYWHDFT/asOHrb799W49r8u1v/+7mm99P8VG0tSU+/PCGN9/8+sWLo7ta4JgxF1et2vC1r32cSHReA664o/37Z77yyt1dLXDcuLN3371uxoxDPT6QHg3Ec7pnz3UbNtz++efjupqhpKTmzjv/cP31u6Ioeu21OzZtWhJF0cqVG1eufKvT+dvaEh99dMOGDasuXrxyPZNmzDi0YsVbU6ce7WqGdHnkkUcG+i6C4iLuAAAAZJJz58p+/evvJUvHmDEXk2NwTp8uf+aZ7zU25g/0OrS05L788j1PPPGD9vWqqKiuvPxMSUlNInH5OzU1xevX3/5v//Z/nzkzfqBX6dKlwief/KsXXrgvGZtyctpKS6snTDhdUlKTzFUXLoz+7W+/8+tf/0Vj44gel7lly+Knn/5+vMBEoq20tKa8/HRJSW3yAZ49O+6JJ34Qd5/+SPtz2tiY/8wz33322e8m61UiERUX15aXny4trc7Jubw1ampK1q594Omnv9/U1PPy6+sLnnrq4eefvy9Zr3JzW8aMuTBhwunS0j+PAjt0aMYvf/nX7767tFcrTI+cQggAAEAmeemlNXFumDjx1AMPPDd+/Jkoio4enbx27UNVVaXnzpW9+ebXv/nN1wZuBZqa8p588q+OHJkaf1lWduHWWzddd93e0tLq5AyHD0/btu2WgwdntrVFVVWlP//53zz88NNXX308uZCysgvxZchjZ86U19YWRVE0fvznxcV/riHJZXavtrb45z//27Nnx8ZfXn31icWLt8yceaCg4PLIr7q6kfv3z3733SVxStu3b9bPf/63f/M3v0jO0NGBA7N27FgQRVFpac3y5W9XVOwuLq6Lf1RVNWrXruv/+Mdlly6NjKLotdfuyM9vWrjwvVRWtVPpfU7r6wsef/yvT56cGH85btzZJUs2zZmzN7n+DQ0jDh6cuW3bwvhJ3L9/5pNPPjx+/OfdLLOubuQvfvE3yRA5ceLJVavenD69Mj+/Kf5OTU3Jnj3XvfXWytraotbWxOuvr/7ss0kPPLA2GfvoJwELAACAjFFdXXL48LQoivLzm7/3vV+XlV2Ivz9lyrFvfWvdM898L4qiffvmDGjAevHF+5L1avnyP65Y8VZe3peuKpWf3zxz5sGZMw9+8smMtWsfunSp8NKlkb/85Q9/9KOfTZhwOp5n/vyd8+fvTN7k2Wcf2rNnbhRFy5e/fcMNH/dqfVpacp555rtxvcrNbbn77lcWLNh5xTxFRZduvPGDG2746J13lr355tfb2qKTJye88MJ93/3uM10VlurqkiiKrrnm0EMP/aaw8Esf9jdqVNWSJZtuvPGDp5/+/vHjX42i6PXX75g1a9/o0VW9WvPkHaXxOW1rSzz33INxvUokopUr31y+/J2cnC9d6KqgoLGiYndFxe7du+e+9NK9DQ0jjhyZevTolK6W2dqa+M1vHorrVUFB46pVGxYu3JYcxhUrKam55Zb3brjh440bV27ZsiiKol27KiZN+nTp0k292BZ0zSmEAAAAZIxTpy4Pq7n66uPJ0hGbNetAfHnyc+fK6upGDtAKbN9+065dFfH0vfe+dPvtG66oV+1dc82hf/iH/y8eRdXUlP/qq3cOxCr98Y/L4/iSm9v6V3/1VMd6lZST03rbbW/fc8/li0b96U9zPvzwxm6WPH7859/73q+vqFdJRUV1P/jBfxUV1UVR1NiYv2XL4r6tf3qf0y1bFh04cG0URYlE9J3v/HbFirevqFftVVTs+bu/+1n8ENrauhwrtWnT0srK6VEUJRJtDz30m0WLtl5Rr5IKC+vvvPPV5cv/GH/5xhu3Hzt2dSqrTY8ELAAAADLGhQtj4omRIy9d8aPc3JZ//Mf//Y//+G//+I//NmJE00Dce2Nj/saNK+PpW2/d3H4IVVfKys7ff/9v40tQVVZO37t3TnpXqba2aPPmy5eguuOO16ZPr+zxJgsW7EhGrrfeuq21tcsysHTpO91vyYKChkWLtsbTH3/8tVRX+svS+Jw2NIz44x8vXxp/2bJ3UhnLVl5+5qGHftNVkIqiqL6+8J13Ll/QatWqDddee7DHZa5atWH27P1RFLW25rz55qoe5ycVAhYAAAAZ46qrLl+o6MiRKR0vvD1u3Nny8jPl5Wfy8poH4t4/+GB+TU1JFEUlJTWrVr2Z4q2mTz/80ENrV69ev3r1+ubmNF/JZ8eOmxoaRkRRdNVVZxct2pbirVavXh9fvOn8+bJ9+2Z3Os/IkZfij+fr3i23bIvHoNXUlHTz2XzdSONzunPn/Hig1qhRVStWbExxBaZPP3zjjV22yB07FtTXF0ZRNHHiyWXL3kllgYlEdN99L8SbpbJyejcfCknqBCwAAAAyxoQJJ3NzW6Moqq0tXrv2wYaGgsG89+T4qcWLtyav3p2KuXP3LFv27rJl76aShHpl375ZX6zSluRHDfaoqKhu3rwP4+mDB6/tdJ6JE091c3Zk0siR9ckC1bcPW0zjc5qMcbfeuiWVlU9aseLtrq4FllzmvHkfpX5F9pEjL82ZszeKora26MMP56W+JnRFwAIAACBjjBxZv2LFW/H0vn2z/uf//MmWLYvjIUgDrakpL3nt9rhNDLmGhhEnTnw1np4580Cvbjtz5uVT4Q4dmt7pDCUlNZ1+v6MxYy7EE/X1fbn0WLqe06amvKNHLz9Bs2f37gkaPfriV77yacfvNzbmHzs2OYqiRKKtoqJ38TF5hunBg9f06oZ0yqcQAgAAkEmWLfvj0aNT4ihQXV3y6qvffPPNr9944wcLF2676qqzA3e/1dWjWlpyoigqLGxIjjkaWtXVpfGlx4uKLo0efbFXt/3qV0/EE1VVo9vaoo5ji/LyUh1iNmJEYzzR2HjlCYApSstzWl1dGj9BI0fWjx17vrfrcPXVx0+c+ErHZba2JqIoys1teeGF+3q1wLa2y2OGzp0b19uVoSMBCwAAgEySk9P2/e8/9e67yzZtWnLpUmEURQ0NI7ZuvWXbtlvmzftg9er1JSW1A3G/1dUl8URJSfVALL8P4gtyRVFUXJzqaKmkoqLaRCJqa4taWnLq60d2vIB66ickJq9O1f4KX0888YNDh2Z0c6v77nvhxhsvn8aYluc0uTVSHzvWXmlpVTfLbG7O6/7hdKOurqhvN6Q9pxACAACQfo8++sjALTwnp2358j/+0z/9j7vvfmX8+MuDodraog8+uPH//J8fnzs3tp/Lj4c1dbzTfi427XJzL1/mqdMV7l4i0ZZItMbT8SCjfkjDlknHc3r5UfTt4SQHTH15rVr7sKgrtLYmWlpy+7+cYc4ILAAAANIsrlePPvrIo48+NnD3MmJE08KF22++efvBgzPfeuu248evjqKopqb4yScf/slP/lcyPSQnmptTPcGt0zmTA6+So3KGXHHx5XFJtbW9XqX6+pGtrTlRFOXktBUVXTn8qv9mzdo/duy5bmbo9NzAFJ/TTiUHXvXtCaquLu1mmRMmnP7xj/93HxZLughYAAAADJSBblhRFCUS0cyZB2bOPLBx48qNG1dEUXTu3Ng9e+YmP+9vxIjL13KqrS1OcZn19Z18EF5paXVeXktzc259feHnn48b0Ottpai0tDo3t7WlJefSpcLz58eUlV1I/banT5fHEyUlNamfLZi6xYu39vm2PT6nnSotrcrJaW1tzWloKDh9enx5+Zle3enRo5M7W+blJ/3s2XEtLTnxpyUyJJxCCAAAQDoN6MmD3Vi5cuM11xyKpz/55M+XKyosvDy8qKYm1YDV6VW38/Japk2rjKf37r2u7yuaPvn5zVOmHI2nDx6c2avbfvLJ5Y/GmzbtcHrXKo26ek47lZ/fPHXqkXh67945vbqj8+fLTp6c2PH7ySe9uTn3wIHebeGGhoK6upF1dSPbXxqMPhOwAAAASJuO9SqNPau+vvDw4amHD089eXJCpzPMnHkgnrhwoSz5zeQnBp4/P7apqeezCI8endLQMKLTH82Zszee2Lx5ca8+ce/zz6+K1/zEia+mfqtUzJy5P57YsmVR6lfCam7O27Fjfjx97bUH07tKvdK357Qrc+bsiye2bl3Uqyfo7beXp7DMxakvsLa2+F//9Z9++tP//tOf/vczZ65K/YZ0RcACAABgYKWrYZ07V/b443/9+ON//cwz3+t0hk4/H7Cs7EJhYX0URY2N+Xv3zu7xXrZtu6WrH91444ejRlVFUVRbW7x+/R0prvann37l3//9/4rXfP/+3o3i6dGCBTvjR3f27LitW7tc8yts2nRrfKGokpKa667bk95V6pW+PaddmT9/Z3xdsNra4jfeWJ3irQ4fnvbhhzd29dN58z4oLa2OoqiyctpHH92Q4jLXr18dn4g6c+bBSZNOpngruiFgAQAAkB4DffLgmDEXEokoiqLz58s6vVD36dOXR/GMHn0x+c1Eoi05iGbbtkXxlcu7cvLkhD/9qcvTA/PymletevOLRS3sJnUlXbgw+le/+sumprwoikaPrlq6dFOPN+mVwsL6JUsuL/P1179RWTmtx5tUVk7buHFlPL1s2Tv5+c3pXaVe6dtz2pURIxpXrnwrnt669Zbt22/u8SZnz45bu/bBbj64MD+/ObnMl1++5+jRKT0uc9u2hR98cGMURTk5bbfd9laP85MKAQsAAIA06L5epaVtFRVdmjTps3j6jTduv+Knly6NfP/9m+Lp6dMPtf/RokVb40py7NjVr7xyV1cN69SpCU8++VctLd0dKd944wfz5n0YT69b960//OEb3VzhqLJy2n/8x99XV5dEUZST03rvvS+OGNHYzcL7ZunSd+NrP7W05Dz11F/t3HljNzN//PH1Tz31cLwFpk07fMst29K+Pr3S5+e0Kzff/N7cuX+Kp3/3u7tff311c3NuVzN/8smM//zPv4svjjZ+fJcXfb/ppvcrKvZEUdTUlPfEEz/YuXN+V3O2tORs2PD1devuamuLoij6xjdemzz5eCqrTY9cSAwAAID+SqVPpeUTCVevXv/EEz+Iomjnzhvz8ppWr36joKAhiqIzZ656/vnv1NYWRVFUXn7mio+rmzTps0WLtm7ZsiiKovffv+nTT7+yfPkfZ806kJd3efDRuXNjd+xYsHnz4paW3DFjLoweXXXkSJcDbe655+WamtL4muKbN9+6e3fFkiWbrrvuT6NHVyXnOXbs6u3bb/744xvioT05OW333//8jBkpJZjeys1t/e53n/3FL/7288/HNTfnvvjive+/f/PixZuvvfZgYWFDPE9zc96hQ9O3bLn10KHp8XfKys4/9NDanJz0f/5gb/XtOe1KIhF95zvP19QUx0Ol3n136a5d1y9Zsum66/bGp39GUdTamlNZOW379oV/+tPla72vXPlWY2P+mTPju1rsvfe+UF1devTo5ObmvBdfXLN9+01Llmy+9tqD8apGUVRbW7xnz9x331164cLo+Dvz5+9cvHhL37YJHQlYAAAADJL+N6wZMw7Nn/9BPMjovfcWbt9+c1nZhZaW3IsXR8UzJBLRPfe8nJvbesUNv/nNP9TUlOzaVRFF0WefTXr22e/m5bWUllYVFDTU1JQmP6AwN7fl/vuff+edpd2sQ15ey8MPP/Xaa3ds2bI4iqKqqlGvvnrnq6/eWVJSW1JS09iYX1U1qv2wrIKChjVrXq6o2N2fB9694uK6H/3oZ2vXPnjw4DVRFB0//tW1ax/MyWkrLa0uKqpraCioqhrVfiDS5MnH/+IvflVcXDdwq5S6Pj+nXcnPb/pv/+2Jdevuev/9BVEUXbw4+ve//9bvf/+t+AlqasqrqhrV/nL+N930/ooVG19/vbuLmo0Y0fTDH/7ypZfWxJfBOnHiq7/5zYM5Oa2jRlUVFjZcuDC6vr6w/fxLlmxevXp9L7YCPRGwAAAA6JeBvvTVFe6665WiotrNm29tbc1pa0ucO/fnD6crLa2+557fTZ58rOOtEom2Bx54bvLkYxs2rIo/ZLC5Off8+S99sF1pafV3v/vs5MnHo6i7gBVFUU5O6513/uG66/60YcPtybFaNTXFyRCWnK2iYs8dd7yeHPszcAoL6x9++KmPP/7am2+ujB9Xa2vi4sVRyQwUKyq6dNttby9c+F5ubstAr1Lq+vacdiM3t+Wee16uqNi9YcOq48cvf/JjxyeooKDx7rtfueGGj1JZZl5ey/33P19RsXv9+jviDxZsbc25cGHMFbNNnHjq9tvXz5w5lJ/tmJUSbW1DP1wQAACAwffYY/09oS/qU73q/4mEURSdPDlx8+bFR49OrakpSSRax4y5MHPmgWXL3hk5sr77G9bVjdy797q9e2efPTuupqaktTWnpKRm7NjzFRW7Kir2xGeE7dkzN24os2fvGz/+8+4X+NlnE/fvn3Xo0IyqqlE1NSWJRFRUVFdefnratMMVFbvan1c4OFpacg4fnn7gwMxjxyZXV5fU1RXn5zeWltZMmHBq9ux9M2fuLyhI/3W40qLPz2n3Tpz4yoEDsyorp8dPUE5OS2lpTVnZ+blzd8+duye5NSorp5048dUoiqZMOTplSne9rLU1ceTI1H375hw9Orm6urSurqiwsL60tHrq1KOzZu2bMeNQossrwqfTI48MajgecgIWAADAMDVUAStKU8OC4Wy4BSyfQggAAEAfDfLJg8CwJWABAADQF/2pV8oX0CsCFgAAAL3W/wKlYQGpE7AAAAAYGhoWkCIBCwAAgN4RnoBBJmABAADQC+mtV1oYkAoBCwAAgKGkYQE9yhvqFQAAACCTPProY0O9CsCwYwQWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGh5Q70CAAAAAINn4bZtd61bF0XRjgULXl6zJi3LvOO115Zs2hRF0caVK99auTIty6Q9I7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0F3EHAAAAhpFdX/va4WnToiiqHzlyqNeFVAlYAAAAwDByaeTIS9JVphGwAAAAyCQTT56cfuhQFEWnJ0z45Jpr4m/mtLbOOHTo+l27xp8+Paq6emRdXV1xcXVp6dHJk/fNmXNkypS2nN5dQmfCqVMLduz46vHjo6uq/t9//udO58ltbp5x6NB1e/dO+vTT0urqgoaGi2PGnCsrO11evnP+/LNXXZXKHRXU1y/ZtOnq48cnnjzZnJd3esKEQ9Onb120qDU3Ny3zD5BB2z6pS33LFNbXF9fURFHUUFhYU1LSzTITra1TjxyZtX//lKNHS6uri2tr60eOrCotPTVhwu6KikMzZvRhsw/yZskaiba2tqFeBwAAAIbAY489NtSr0BcLt227a926KIp2LFjw8po1URRd96c/3bVuXUl1dVc3+Xz8+PWrV++bPTuVZf7u29/+xuuvL968Of5Rc17e//Mv/3LF/Im2ths++mjVhg2jLl7sapmHZsx4a8WKo1OndvNYrvnkkzUvvjiqquqK758uL//tAw+cmjChP/N33FA9+sunn561f38URWsffHD39dd3uqjB3D6pG4gtc92ePbdv2DDu88+7mqGmpOQPd9656/rroyi647XXlmzaFEXRxpUr31q5stP507tZHnnkkR7nySYu4g4AAECmSrS23vfCC9995plkvWrJzb04Zszp8vK6oqLkbFedOfMXv/rV/c89l9fc3OMy73z11WSd6VRBff3DTz113/PPJzNES27uhTFjTk+YUFNampxtxqFDf/3LXy59992ullN27tz3fv3rZHO5OGZMcjRQ+enT33vmmfzGxv7MP0AGbfukLu1bJr+x8bvPPPPdZ5/9c71KJGqLi0+Xl1eXliZH85XU1Dywdu33n346v6mpx2UO/mbJMk4hBAAAICMlouiu3/9+3gcfxF/unTNnx003HZo+vSXv8qFuaXX17L17l2zeXHbuXBRFX/v447Lz55/44Q+bRozoaplXHz9efuZMFEUteXkfzpt3eNq0I18eCzOyru5vfvGL8WfOxF+enDjxzVWrKqdPb8rPj79TUlNz3Z49K996q6i2NtHauvr11yd99tnaBx6IEokr7mvNSy/F4ePUxInPPfDAmfHjoyiafPToQ2vXllZVlZ079/U333ztm9/s8/wDYTC3T+rSu2UK6uv/+vHHJ548GX95dty4TUuW7J0zp664OP7OiIaGmQcPLty2beqRI1EUzdy//+Enn/x8/PhuljkkmyXLCFgAAABkpNn79hXV1kZRVFNauvbBB490OOuqurR0+8KFOxcsuO3tt297660oiq4+fvzeF19c+9BDXS2z/PTpKIpOTpz4/P33ny4vv+KnidbWh37zmzhDNBYUbFi1atvChVdcXaumpOS9W275+IYbVm7cuGjLliiKKnbt+nTSpE1Ll7afraS6etrhw1EUNefn//p737tQVhZ//9iUKeu+9a3vPfNMFEVz9u1LZpfezj9ABm37pC69WybR1vbgc89drleJxJsrV76zfHnrlx9CY0HB7oqK3RUVc3fvvvell0Y0NEw9cmTK0aNdLnMoNkv2cQohAAAAGSmuVxfKyv7j7/++Y71KasnNffPrX3/x3nvjLyt2756/c2c3i60eNernf/u3HetMFEVLN22aXlkZRVFbIvGbhx7aumhRV9eGry8sfPXOO/+4fHn85e1vvHH1sWPtZ5h46lQ8cfzqq5PNJXZg1qyW3NwoisrOnRtZV9e3+QfO4Gyf1KV3yyzasuXaAweiKIoSid9+5ztvr1jR2vXl//dUVPzs7/4uPlk10fUVxodks2QfI7AAAADIVM35+b/+i7+oGjWqxzk/mD9/4smTi7ZujaJo5caNH33ta8kzDa/w+urVnZ5jWFhfv/Sdd+LpDatWHbz22h7vdMOqVRNOn561b19Oa+uqN9984oc/TP5ozIUL8cSlkSOvuFVLbu7//sd/zGlpiaIouSa9nX/gDM72SV0at8yIhobb/vjHePqdZcs+vuGGHm9yprz8Nw899MP/+q9Ea2unMwzVZsk+RmABAACQqbYsWtTxo/q6suH22+PBMqMuXvzarl2dztNYUPDx177W6Y8W7NhRWF8fRdHJiRPfWbYspbtMJF647764lE2vrBzd7rPnPr/qqnhiypEjHS8BfnbcuDPl5WfKy5u/qGy9nX+ADNr2SV0at8z8nTvjgVpVo0ZtXLEixRU4PH36zhtv7OqnQ7VZso+ABQAAQEZqzcnZtGRJ6vM3jhjx3sKF8fTsffs6nefc2LFdXTY7eZOP5s1L/dLal0aO3DtnThRFUVvbvA8/TH7/5IQJrbm5URQV19Y+uHZtQUND98vp7fwDZNC2T+rSuGWSD2HLrbd2NUCvU2+vWBHaZsk+AhYAAAAZ6ejUqZeKinp1k/2zZ8cTMz75JOrsokXnxo7t9Ib5jY2Tjx2LoqgtkdhVUdGrO905f348cc3Bg8lv1o8c+dYXY3xm7dv3k//5Pxdv2TKi6/jS2/kHyKBtn9Sla8vkNTVN/eJC7Hu/+D1J0cXRoz/9ylc6fn8IN0v2cQ0sAAAAMtKJzpJB9z6bNKk1JyentXVEY2NRXV1dcfEVM9QXFHR6w9Lq6vgiRy25ufe98EKv7jTni1I27ty59t//47JlU44ejfNESXX1N1999etvvvnBjTduW7jw7BenxfVn/oEwmNsndWnZMqXV1fHVsupHjjzfRafrxvGrr/7KiRMdlzmEmyXLCFgAAABkpJqSkt7epC2RqC0uLq2ujqKopKamY8DqSklNTTyR19w849Ch3t5vrOjLH4TXlpPz1Pe/v+zdd5ds2lR46VIURSMaGm7ZuvWWbds+mDdv/erVtV9+gL2dfzClffv84Iknul/OC/fd9+EXV55Ky5ZJPoQ+/F5FUVRVWtrNMtP4azNsOYUQAACA9Hvk0UcH+i5yOjsHsEdtOZcPhHO6+Ni4TrXmpOHwOdHamtvScsXK/HH58v/xT//0yt13fz5+/Bffbbvxgw9+/H/+z9gOQ296O3+v17BPmzQasO2Tuv5vmeTlqbr6PMHudfrbOOSbJZsYgQUAAECaxfXqkUcffWwgM1ZyeEuvFCcH2nQ2ZKYryVE5pydM+N8//nEf7rcbTSNGbF+4cPvNN888ePC2t966+vjxeD0ffvLJ//WTn3SMICnOn5zIb25OcU1Sn/MKad8++2fN6up6W7FOzw3s7ZZsL/kQ+vZ7FQ/r62qZA/FrM9wIWAAAAAyUAW1YXz1+vLc3KT91Kh7M0pyfX5vy+YNRFFWXlrbk5eU2N487ezanpSX+2Ls0SyQOzJx5YObMlRs3rti4MYqisefOzd2zZ9f11/dt/qYRI+KJ4traFFehoL6+b+ue9u2zdfHivt+4t1syiqIoqiotja+PVtDQMP706TPl5b26z8lfXAC+vcH4tRk2nEIIAABAOg3CyYOxycePF6WcZmKz9u+PJw5Nn96WSHQ/c3steXmV06ZFUZTb3DzzwIFe3WlBQ8PIurqRdXV5qY1v2rhy5aFrromnZ3zySZ/nv1RYGE8UpzykqM/XCx/M7ZO6Xm3J5vz8I1OnxtNz9u7t1R2VnT8/8eTJjt8Pc7NkKAELAACAtOlYrwauZyVaW2/dvDn1+fOamhZt2xZP75s9u7d3t2/OnHhi8datqd+quLb2n/71X//7T3/633/606vOnIm/WVhfP/Xw4amHD0/orHpEUXRg5sx4ouzChT7MH/v8i5Psxp4/n9/U1OOqTjl6dERDQwqPqXNp3D6p69uW6UryISzaujW/sTH11Vj+9ts9LnMwN0tWErAAAAAYWAPXsBZt3Tr+9OkUZ17x9tsl1dVRFFWXln50ww29va8P5s2rLi2NomhaZeUNH32U4q1Wr18fn5d3cObMk5Mmxd8sO3furx9//K8ff/x7zzzT6a2qv/xBeL2dP3ahrKy+sDCKovzGxtkpDCm65Yu61zdp3D6p69uW6crO+fPjE0uLa2tXv/FGireadvjwjR9+2NVPh2SzZCUBCwAAgPQYtJMHk/Kbmv7imWdSuep2xa5dy955J57e+PWvN+fn9/a+mvPz31q5Mp6+5+WXp3R2zaMrLNy27cYPPoiiqC0n563bbkt+/8KYMVEiEUVR2fnzna78hC+q3MXRo/swf6wtkfjzkKJt27r/1MUJJ09e96c/9fiIupHG7ZO6vm2ZrjSOGJF8CLds3Xrz9u093mTc2bMPrl3bzQcXDslmyUoCFgAAAGnQfb0aiLZ1qagoiqKxZ8/+6D/+4ysnTnQ1W6K1dek77zzw3HNRW1sURXsqKnYsWNC3e3z/ppv2VFREUZTX1PSDJ56Yv3NnV3PmtLR8fcOGu9ati+/0tW984/jkye3X/LMvhtXc3mGkz8hLl256//14+tD06X2YP2nrokVx37n62LG7Xnmlq4Y14dSpv3ryyZyWlq4fekrStX1S1+ct05X3br75T3PnxtN3/+53q19/PbfrS1DN+OSTv/vP/4wvMXZm/PiuZhv8zZKVfAohAAAA/ZVKn0r7JxLunTOnJTf35vfeG33x4t//7Ge7rr9+x/z5R6ZOTX7WW1Fd3ax9+5Zs2jT+i6sIHZs8+YX77uvPnb5w772l1dWTjx7Na25e8+KLN23fvnnJkoPXXttQUBDPUFxbO3fPnqXvvjv6i4su7Zw/f0uHz9Rbv3r1D554IoqiG3fubMrLe2P16ngJV505853nn48vTn+mvDz5wXm9nT/22aRJWxctWrRlSxRFN73//lc+/fSPy5cfmDWrOe9yDRh77tyCHTsWb96c29JyYcyYqtGjpxw5EsL2SV3ftkyXEonnv/Od4pqaeKjU0nffvX7Xrk1Lluy97rqqUaPiWXJaW6dVVi7cvn3OF2PW3lq5Mr+xcXzXF6sa/M2SfQQsAAAABkl6G1ZbFK371rfyGxvnffhh1NZ2/ccfX//xx835+dWlpQ0FBcW1tSXV1Ym2tuT8H86b9/I997Tk9etAuGnEiF/+8IdrXnopvp7RV0+cePA3v2nNyakaNaqhsHD0hQuF9fXt59+8ZMn61as7LufQjBkfzJ9/486dURQtfO+9m7dvv1BWltvSMurixctzJBIv33NPMsb1dv6kP3zzmyU1NRW7dkVRNOmzz7777LMteXlVpaUNBQWlNTXJDyhsyc19/v77l35xluWQb5/U9XnLdPkQ8vOf+G//7a516xa8/34URaMvXvzW73//rd//vrakpKakJK+paVRVVfuL4r9/000bV6y44/XXu1vmoG+W7CNgAQAA0C+Df+mrpLacnBe+8539s2fftW5d3GLymprKzp27YrbTEya8cfvt+2fNSsudtuTlPX///bsrKu5Yvz7+hLic1tYxHT7k7tTEietvv/3gF5+C19Erd91VW1R06+bNOa2tiba29qtdXVr6u3vuOfbl08d6O3+sLZF47oEHjk2evGrDhvhDBnObm8vOn28/T3Vp6bPf/e7xyZOXpr4Vupau7ZO6vm2ZbrTk5r58zz27KypWbdjw1ePH428Wt+t9scaCglfuvjvFDwQY/M2SZRJt7Wo0AAAAw8djjz3W/4X0oV71cxDWwm3b7lq3LoqiHQsWvLxmTfzNnJaWaw8evH737vFnzpRWVRXW19cWF1eXlh6ZOnX/7NlHp0xpSyT6c6edSrS2Tj1yZM6+fZOPHi2tri6qq6svLKwuLT06deq+WbMOzZgRpXCnE0+eXLx589SjR0tqaloTiQtjxhyYOfOdZcvqR45My/xJI+vqrtu7d/bevePOni2pqclpba0pKTk/duyuioo9FRXxuWxz9+yJ68++2bM/7/qiTilKy/ZJXZ+3TPe+cuLErAMHpldWjqqqKqmpacnJqSktPV9Wtnvu3D1z5zZ+cQ7gtMrKr544EUXR0SlTjk2Z0s0C07VZHnnkkf48rowjYAEAAAxTQxWwov41rE4DFgw3wy1g+RRCAAAA+mgITx4EhhUBCwAAgL7oT71SvoBeEbAAAADotf4XKA0LSJ2ABQAAwNDQsIAUCVgAAAD0jvAEDDIBCwAAgF5Ib73SwoBU5A31CgAAADCsPfLoo4/1JmO9d8st791yy4CtDhAiAQsAAIBe6FVsAkgLpxACAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgpY31CsAAAAA9Ne2bdvWrVsXRdGCBQvWrFkz1KsDaWYEFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoOUN9QoAAABAfx0/fnzfvn2HDx+urq6uqanJzc0tLi6eNGnSNddcc8MNN+Tl9e7gt6WlpbKyct++fcePH6+pqamrqysqKiotLZ0wYcK8efOmTp2aSCR6u4Z79+79+OOPT5w4UVtbm5eXN2rUqIkTJ950001Tpky5Ys7W1tYDBw58+OGHn3/+eVVVVWtra3zXc+fOnTNnTq8eS2tra2Vl5a5du06fPl1VVVVXV1dcXFxaWjplypTZs2f34YE0NzcfOnRo7969n376aXV1dUNDw5gxY8rKysrLy+fPn3/VVVf1amlRFJ06dWrHjh3Hjx+vqqr653/+597enOEj0dbWNtTrAAAAwBB47LHHhnoV0uDQoUPr16//9NNPu5qhpKRk8eLFN998c2FhYY9La2tr+/jjjzds2HDhwoWu5hk/fvyDDz44YcKEKIpeeOGFDz74IIqib3/72zfffHNynm3btq1bty6KogULFtxxxx3PP//8/v37O13a7Nmz77///oKCgvjLU6dOPfvss2fPnu105rKysrvvvvvaa6/t+KP297hmzZooivbt2/fKK69UVVV19UDKy8tXr149a9asrmZor62t7aOPPtqwYcPFixe7mmfGjBkrVqyYOnVqVzO0X8lvf/vbr7/++ubNm+Mf5eXl/cu//Esqa0LskUceGepVGFROIQQAACAjtbS0vPzyy0888UT7elVUVFReXl5SUpIcW1RTU7N+/fp/+7d/O3PmTPcLbGhoePrpp3/7298m61UikSguLi4vLx81alROzuUj6DNnzvzsZz/76KOPUlnJpqamp556KlmvcnJyrrrqqtGjRydXb9++ff/5n//Z0NAQRdHBgwd/9rOfJevViBEjrrrqqrFjxyZHXZ0/f/6pp56Kk1k32traXnrppV/96lfJepWbmzt69Ojy8vLi4uLkXZ8+ffrpp59+/vnnm5ubu19gfX39U0899fzzzyfrVW5u7pgxYyZMmFBaWpqc7dChQ7/85S/ffffdVLbMq6++mqxX0COnEAIAAJB5mpqannzyySNHjsRflpWV3Xrrrdddd12ypzQ1NR0+fHjbtm0HDx5sa2urqqr6+c9//vDDD1999dWdLrCuru4Xv/hFMnKNHTt2yZIlc+bMKSkpib/T2Nh48ODBbdu2HT58uKmp6YUXXhg9enSP67lr1674zKdrr7121apV5eXlcY2qrq7etm3bO++809bWdvr06VdeeeXrX//6c88919TUFEXR1KlTb7vtthkzZsSxqamp6U9/+tPvf//7S5cutbW1vfjii6NHj54+fXpXd/r73/9+x44d8fTs2bNvuummGTNmJCtYbW3tvn37Nm/eHD/YDz/88Ny5cz/84Q/z8/NT2TITJ05ctWrV9OnTk/PX1NTs2bPnrbfeqq2tbW1tff311z/77LMHHnigm/MTjx8/Hi8wLy9v3rx506ZN62bcFkROIQQAABi2MvoUwrVr1+7atSueXr58+YoVK7q6ONQnn3yydu3aS5cuRVGUn5//ox/9KD77r73W1tYnn3zy0KFDURQlEokVK1YsX748Nze30wXu3r37xRdfbGxsLCkpmThx4sGDB6OuTyGM3X777cuWLesYdCorK5977rmampooikpKSuKJW2+99Rvf+EbHmc+fP//ss89+9tlnURSNGzfuJz/5Sft5kvdYXFxcW1sbL/DBBx+cNm1ap4+itbV18+bN69evj7PA9ddf/+CDD3Y623/9139VVlZGUVRQULBq1aqFCxcmB6O1V19fv3Hjxi1btsRf3nHHHUuXLr1inis2y8SJE++///7y8vJO15DuOYUQAAAAgrZ9+/Zkvbr33ntvv/32bi5tfs011/zDP/xDPDKrqanp1Vdf7TjP5s2b43oVRdF99923cuXKrupVFEUVFRV/8zd/U1BQUFNTE9er7k2ZMmX58uWdDkeaPn36N7/5zXg6rlfTpk3rtF5FUVRWVvbggw/GPzp79mxyha8Q16sxY8b8/d//fVf1KoqinJycpUuXPvTQQ/ECd+3atXPnzo6zbdq0Ka5XiUTioYceWrRoUaf1KoqiwsLCO++8c/ny5fGXb7zxxrFjx7q69yiKRo0a9bd/+7fqFSkSsAAAAMgkjY2NGzdujKdvvfXW+fPn93iTsrKy+++/Py41lZWVe/fubf/ThoaGd955J55etmzZvHnzelzgpEmT7r333hRXePXq1d389Prrrx8/fnzyy1tvvbWbM+/GjRt3zTXXxNOffPJJV7Pl5+f/5V/+ZSpnOM6dO/e2226Lp998880rLoZVX1+f3DKrVq3q9OLxV1i1atXs2bOjKGptbX3zzTe7mXP16tUjRozocYEQE7AAAADIJB988EHynLtVq1aleKvp06c/9NBDq1evXr169RWZZseOHfEJhqNGjVq5cmWKC5w7d26yJXWjsLBwypQp3cyQSCTmzJkTTxcUFPT4mYAzZ86MJ06dOtXVPIsWLep4mmRXli9fPmrUqCiKqqqqPv744/Y/2rFjR319fRRFEydOXLZsWSpLSyQS9913XzwgrrKysquPLCwoKPja176W4hpCJGABAACQWZLjpxYvXtzVdcc7NXfu3GXLli1btuz6669v//3kRwTeeuut3ZyK2FHHazx1NHbs2B7nGTduXDxRVlbWzfCrWPIq9fGpgh3l5OQsWbKkxztNysvLW7RoUTy9b9++9j9Kfjlv3rweVyxp5MiRcZJra2v78MMPO51n7NixqS8QIgELAACADNLU1JT85MHkwKX+aG5uPnr0aN8WOG3atIKCgu7nKSsr63E5yYUUFhb2OHMyYDU2NnY6w9SpU4uKinpcTnvJUV2HDh1KftRbY2NjfBGrRCJRUVHRqwUmz+vs6hphqXQ9aK8XaRkAAACGVnV1dUtLSxRFhYWFV111Vf8XWFVVFS9w5MiRqcSm9nJyciZOnJgMap3qsXBFUZS8YHxX10fvdIGtra2dzvCVr3ylx4Vcoby8PDc3t6WlpbGxsa6urri4OIqi6urq+C5yc3NfeOGFXi0wWcHOnTvX6QypbBZoT8ACAAAgY1RXV8cTJSUlaVlg8kS8vi0wXauRRn1+IPH1qqqrq+OAFV9oLIqi5ubmrj7xsEd1dXV9uyFcwSmEAAAApN+jjz46EItNZYxSryTHMXU1oCnFm4cjOfqpV5IPJHlpqrRs6tbW1niAG/STEVgAAACkWVyvHn300bRnrOTwouT4oKFdYLpWI426urh7N9ra2jqOREtOTJgw4cc//nG6Vg/6xggsAAAABkraA1ZpaWn8QYH19fWff/55WhYYjzlqaGg4depUr27b3Nx88uTJ/q9Deh0/fry3N/n000/jEVj5+fnJC8AnN/XZs2eNomLICVgAAACk0wCdPBjLy8ubNm1aPL13797+L3DEiBFXX3113xZYWVnZ1NTU/3VIr2PHjvV2ENb+/fvjienTpydPIUxu6ubm5gMHDvRqgQ0NDXV1dXV1dc3Nzb26IXRFwAIAACBtOtartPesOXPmxBObN29ubGxM/Yaff/754cOHDx8+fOLEifbfnz17djyxdevWXi3w3XffTX3mQdPa2vrOO++kPn9jY+N7770XT8+aNav9j5KbeuvWrakvsLa29l//9V9/+tOf/vSnPz1z5kzqN4RuCFgAAAAMrPQ2rBtvvHHUqFFRFNXW1q5fvz7FW3366af//u///vjjjz/++OPJAUexBQsWFBQURFFUV1eX+gJ37dp1+PDhXqz3INq2bduxY8dSnPmNN96IPyuwuLj4hhtuaP+jefPmlZaWRlFUWVn50UcfpbjA9evX19fXR1E0c+bMSZMm9WK9oWsCFgAAAOkxoCcPJuXl5a1atSqe3rZt27Zt23q8yYULF371q1/Fp/uNHj166dKl7X9aVFS0ZMmS5AK3b9/e4wI/++yzl19+uderPlhaWlqeffbZc+fO9Tjnzp07k6OrbrvtthEjRrT/aX5+/sqVK+Ppl19++ejRoz0ucNu2bR988EEURTk5ObfddlsvVxy6JGABAACQBt3Xq7QPwpo3b148vW7duj/84Q/dXGupsrLyP/7jP6qrq6MoysnJuffee6/INFEULVu2bOrUqfH07373u/Xr13ezwH379j3++OMNDQ1RFMVjwYISX4W9urr6Zz/7WTdjxFpaWjZu3PjSSy/FX1577bW33HJLx9luuummioqKKIqampqeeOKJnTt3drPADRs2rFu3rq2tLYqib3zjG5MnT+7fQ4E/yxvqFQAAACDjpdKnHn300TRmrHvuuaempuaTTz6Jomjz5s27d+9esmTJddddN3r06OQ8x44d2759+8cffxx/xF5OTs79998/Y8aMjkvLzc393ve+9/Of/zz+ZMN33nln165dS5cunTNnTnwOXRRFLS0tlZWV27ZtS56BuGrVqnPnzsUDjsIxZ86c3Nzc9957r66u7vHHH6+oqLj55punTp2ak3N5CEttbe3evXs3bdp09uzZ+DsTJkx48MEHk5dvv8K9995bXV199OjR5ubmF198cfv27UuWLLn22mvj8y7jBe7Zs+fdd9+9cOFC/J358+cvXrx4YB8nw4yABQAAwCBJY8PKy8t7+OGHX3vttS1btkRRVFVV9eqrr7766qslJSUlJSWNjY1VVVXtR1EVFBSsWbMmHkzUqaKioh/96EfPPfdc/Il7Fy5ceOWVV9atW1dcXNzpAhcvXnzbbbe98MILaXk46fWtb32rpaVlx44dURTt3r179+7d+fn5o0aNys/Pr62trampiQdJxWbPnv3AAw90HJWWNGLEiB/+8IcvvfRSfBmsEydO/OY3v8nJyRk1alRhYeGFCxfiK14lLVmyZPXq1QP24BimBCwAAAD6ZXAufdVRTk7OnXfeed11123YsOHIkSPxN2tqampqaq6YraKi4o477ujxdL/CwsLvf//7u3btevPNN+MLSLW1tXVcYFFR0Zo1a5Kf0BegnJycNWvWzJ49+5VXXqmqqoqiqKmpKTneKmns2LGrVq2qqKjoauxVUl5e3v33319RUbF+/fr4gwVbW1uT462SJk6cePvtt8+cOTNtjwS+kGifXQEAABg+Hnvssf4vpA/1aiCC12effbZ///5Dhw5VVVXV1NQkEomioqLy8vJp06ZVVFS0P68wFa2trYcPHz5w4MDRo0erq6vr6ury8/NLSkrGjRtXUVExZ86c/Pz8eM4DBw6cOnUqiqJrr7124sSJaX9cqfvss8/iEyonTJiQTEitra2VlZW7du06ffr0xYsXL126VFRUVFpaOnny5FmzZk2fPj15XmGKWltbjxw5sm/fvuSWKSwsLC0tnTp16qxZs2bMmNFjCyNdHnnkkaFehUElYAEAAAxTQxWw+nwrIGm4BSyfQggAAEAf6VDA4BCwAAAA6Iv+1CvlC+gVAQsAAIBe63+B0rCA1AlYAAAADA0NC0iRgAUAAEDvCE/AIBOwAAAA6IX01istDEiFgAUAAMBQ0rCAHuUN9QoAAACQSfQmYPAZgQUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoCXa2tqGeh0AAAAAoEtGYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAIWt5QrwAAZJRE4ktftrWl+lM3HIgbAgAwPAhYAGSvAeopBEUXAwAYBgQsADKB2MQg8ysHABASAQuAwaULkN38hgMADAABC4B0c5QOfeCERwCArglYAHTNWJKOun+k3fzUDQfihkTD+I8RABhOBCyAYS+Lj34HqKcQFF2sezI0AJAVBCyALJLFR6piE4PMr1ymv2gAANlFwALINJl+VKkLkN2Gw294pr8KAQAZSMACCFXmHiJm0KpCOLLmhMfMfe0CAAImYAEMqcCP9IbDWBLIdBn0x+iTFgGAvhKwAAZe4Edloa0PkEbZkaEDfxUFAAaegAWQJiEcX2XHkSoQggx60Qjh5RcAGGACFkAvDfmRkmMzYGhl0KvQkL9iAwBpImABdCaEYx4HWkAmyqDXrhBe6gGA1AhYwPA25EcvjpeA4SODPmlxyN8dAIAvE7CAYWDIj0Mc+QD0h1dRABj2BCwgiwxtqHJ8BTAkBvnld8j/KQIAw5KABWQgoQqAVAz+K7a8BQADQ8ACQqVSATCgDN0CgMwhYAHDm+MHADrStgAgMAIWMNQGYa/dkQAAGUrbAoAoigQsYPAIVQBkgaDea+QtAIYNAQtIN6EKgGHLOxQADAwBCwiVYwAAsonragFAPwhYQF/ZMwaAtNC2AKAnAhbQk4HezbXfDABd0bYAIIoiAQv4M6EKADKL91YAhg0BC0g3O9MAkH0MzgJgSAlYMPzYAQWArDeY7+92LQAYeAIWZLUB3aG0ewoAmUjbAiADCVhAT+xrAsAw4U0fgFAJWJAV0vLvTfusAMCgMTgLgN4QsCCj2NUDAIaEEw8BGFICFgw/9gIBgDSyawHAwBOwIFTOCgQAMl3ad0UMzgIYrgQsCIBdMQCA/rA3BZDtBCzICvbSAIDMYu8FgN4QsGAQ9f9/g3b1AICsl94dHoOzALKCgAUDw64SAEDg7LABZA4BC0JlFwoA4Ap2kACGKwEL+s2JgQAAQ8tZhwDZLmeoVwAAAAAAumMEFvRGP/8d5993AACDzOAsgKwgYEEXtCoAgOymbQFkDqcQAgAAABA0I7DAYCsAANoxMgsgPAIWAADAoBO2AHpDwGKYMdgKAIA+szcIMEQELLKXVgUAwKBJ496jwVkAHbiIOwAAAABBMwKLbNGf/1P5pxYAAAPEyCyAdBCwAAAABp2wBdAbAhYZyGArAAAAGE4ELLKXVgUAQCYyOAugAwGL4HnTBQAAgOFNwCIkzg0EAICuGJkFDGMCFgAAQCaTn4BhQMBi6PT53z7eoQEAYCAYmQWESsACAADIUukqUMIWMNQELAaL8VYAAABAnwhYhESrAgCAQWBkFpBpBCwGhncyAAAAIE0ELIaOqgUAAEFJyy66f2YDA0DAIh28RQEAQBazhw8MNQGLweI9DwAAhjP/9gb6QcCi97zxAAAAkVMOgcEjYNGTvr2deNcBAAAA0kTAAgAAIH3S9c9sI7OAdgQsvsx4KwAAACAwAhYAAAADzwWzgH4QsIa9K94AUuFNAgAASBfHF0AKBCx64u0EgEyQ6MO/ZIaZNu/pQBYzMguynYA1zHhZByDdAilH6kyPAnmmIk8WkCKvFUA7AhZf5k0CIHsNUL8QIzJFOM+UX0VgkPj/PWQRASvbBfO/VgD6LF1H+w7vCcQA/Sqm5S/FnwmErv9/pKoWZCYBa9jzeg0wKPpzaO2IGlKRlr+UflYwf60AMEAErOzinwkAA6zPB7cOayEj9PNPtW8vEV4fIA2MzIJsJ2ANM16FAb6st0ebjjOBbvTtJcILEQD0SMDKcC5xBdBBrw4FHQcCQ663L0SCF6TKsCzIIgJWtvMKC2QFTQogaeCCl9dPhgW/55CZBKxMY8gVkF1SPKxyTAXQZ6m/hHpNhpQYlgVDQcDKLl46gWA4CgLIOCm+JnuFJzv5jYWwCVjBM+QKCE8qhy6OWwCyVRo7lzcLsodhWTDABKwM52URSDfHGwCkRSpvFt50CJ1fPwiGgBUeQ66AgdTjoYLjBAAGTVoil3cuwmVYFqSPgBWG1KOVlzygW/byAcgyPb5zdf/e542P9OvnL5WqBX0iYAFkGLvpANBe9+99/rUDkB0ErCFiyBXQNYkKANLFAC4GiWFZMMAELIAhYF8ZAALR5wFc3q8BBpOANVh6dWl274WQ+SQqAMgC3bxle6+nZ/35NTAmC75MwAqDFyPITP4rCwDDlqFb9JFfAOgTAWsg9WrUFRAqO6AAQG/1beiWXQt6YFgWw5iANUS80EBg7EoCAIND26ITnl/oiYCVbkZdQdi62i+0UwgADLk+tC37MBiWxTAhYA0iryMwWPz3EgDIMl3twwhbWcsF4OHLBKx+M+QKho49NgBgmOtt2OrmJgAhE7AGmPcGSAehCgCgV5yNmJ36/BwZk0XmE7D6xKgrGBh2pwAABlqvBm3ZDQMCIWClm9d3SIFQBQAQmk73xOy2ZQDDshgeBKyUGXUFfeJfeQAAmcvF4zOSZ4FsJGClg1cHsBMDADCcOA8xOxmTRcAErG4ZdQWdsV8CAECnUj8P0d7joHKaIZlPwOorf7cMD/Y2AADoJ1UL6D8BqwOjrhiu7EMAADBoXDN+6PVtqxqTxRARsHrDXybZQqsCACBAqV9ay74rDDcC1hcMvCJLaVUAAGS6jruv9nIHhDFZBGx4B6xUopW/PTKHd3EAAIYJ19UaJLYewRjeAQsylvdmAAC4gqoVCmOyGADDMmAZeEVG8Y4LAAB9lmLVsoOdKqcZMkSGZcCCgHkrBQCAgeaiWpBxhk3AMuqKIMlVAAAQAgO1+q4P28SALHpv2ASsbvhTYVD4lw4AAGSWVAZq2aWHwZHtASuVgVcwALyxAQBA9nHuYUqMyWIAZHvA6oo/BtJKrgIAgOHJuYcpueLh9zjWRM+igywNWAZeMWD8gwUAAOiecw8h7bI0YHXFCwS95G0GAADoP0nrS5xjSO9lV8Ay8Ir+GdZvIQAAwCCStKBXsitgdcXfPJ3x9gAAAIRjWCctF8miJ4ls+O3v8Tc7Cx4j/TaMXvoBAIAsNXyPa3p1xtUw2SbDTCaPwNKt6NYVr+zD5WUdAADIXj2O0nLgQ7bK5BFYAhbtDN9/RAAAAHxhuBwZGZA1/GRmwOr+NzUTHxG9NFxelAEAAPonO4+e+vMZblnw8IelTD6FkOHEsFgAAIA+yM6zDnt70XcyX0aNwDLwatjIzn8RAAAAhCcLj7+cYJiNsmIElt+2DJeFL5cAAAAZIjuHaJF1MmQElrFX2cWrIQAAQKbI+DEHBmRlhUwOWBmx5mTBix0AAADtZPagBD0rM4V9CqHLsGWmzH4tAwAAoFtXHOU5BmQQhDoCyzmDGcWrFQAAALEMOwsn9aEzIT+KYSDsEVgEKcNejAAAABhEWXtV+CuOhTP0UWSs8EZgddM+Q1vVYSNLXmsAAAZLN8c4Ifwo+9Zh0FYASIugjzH7di2joB5CljICi04E/WoCANCFPieJtFcbslIaM5nfK4a5oC+h1c0fJEMqpIBl7NXQCev1AgAYHmQjSF26Gpm/IAIUdM9KUft1zogVzkAhBaxOeeIHRka+IgAAQ2cgRjAB4RDCCEdAPav7d7uu+PMYGGEELKPyBp5iBQDDisFNwJDo9GVEBaM/Au1ZOsagCyBgdfWse/XqBx8UCADZoc/jnhha3TwXIfwo+9Zh0FaAwaGC0Y1QelbqMcvZhWkSQMAiHQywAoDAGfc0CPqcJNJebchKacxkfq8Gmto1fITSs1IkZvXDkAYsY6/6IfQ/SwDIXo5/0kU2gtSlq5H5C+oo9QFfXv/DNzQ9q5+XyvKblBojsDKGYgUA6WVIVK8MxAgmIBxCWJ9JXSEb+p7lUlnpM0QBq5un0F92O+3/uhQrAOiKFNWRwU3AkOj0ZUQFi0ldQy7Q8w2dV5iaoQhYzhzsWih/PwAQnuG5i9/ncU8AmUsF6/iWNzzfBAdaNz0rbQfjvR2NJWZ1zSmEQ0yxAmC4GbajpYx7Ahg0w6R26Vzp1f54fEAO1bv6NIGuiFlfNugBq9PnaTg9E4oVAMNBdu9AZ9nDARjmUh/wlaGv/zpXHwzsyYZ9uEiWK74PdsAallcvU6wAyGhZPGDKkCgA+i9rUlcqnSvT3/r7LKCLZw3jkhXAKYRZt9EVKwAyTqbvj0pRAIQva1JXe8MzcqXz4ll9/sjC4XeC4SAGrKw+edDHBQIQiOE5YAoAsknHt7yMfhPsPstk9EOLpe3iWX2OWcNDACOwMpNhVgAMoYxOUUZLAUBaZE3nyqbClbaTDXt1xffhcV7hYAWszB9+pVgBMBCydcBUZq0tAGSxLOhcmVu40nCyoZL1hUEJWBlbr5wYCEBaZGuKyqwHAgB0I5XOFexbf6YUrn6dbNirEwyzsWQ5hfBLDLMCoM+ytVIBAHQlIyJXmHmrX4OzUh+WlUUla+ADVvDDrwyzAuAKGX1anwFTAEBQAt8D6SYBDeaap+1K8F2Jlxn4k9Gt4TgCyzArAKJMSFHdyKy1BQDoRrA7NkM1dKsXg7N6dYWsjrMFu+k7MxQBa9A3kGIFMGyF/x5twBQAQPfC3ClKMRn1f+W7Gpz1pbjR25J1xcxhbuIvG+CA1XHDDdZGcWIgQPbpqkZldKUCAKCfut/X6lXSSbuu7r1v+4c9n2nYn5IV9j5r9pxCaJgVQHYIv0Z1JYNWFQBg+Agzb6Vyv92veQ9nGsY/zaKMldkByzArgAwVeKVyWh8AwDDRzd7d0A7d6moFulrhHgZnpf5g2s8Z0r7v4Aasfj9yw6wAMkvIoSqolQEAIDRhtq1ULi3f82Xge3XR9zD2mzNgBJZhVgAh6CZFqVQAAAwrKe5kDn7n6uIe/1xTvtRYervQId23DjFgGWYFMIQysUYFtZIAABDrajd1SMNWuzMNL3/d+7MLh2L/O4iApVgBDLJMrFQAAJAdetzjHczClYjaol5lrGhoStaQBSwnBgIMgmBDVThrAgAAoel0b3lAq1ai3cisMMdkDWrAEq0A+qOrGhVspYoCWxkAAMhc3e9apzFv9X1M1kDu/Q9qwBKtAFIRZpDqZjUCWUMAABi20n69reSYrN6VrAETxDWwAIahMCtVFNKaAAAA/dT/cVuBlKxBPoXQcREw7IQZqgJZDQAAYAj1atxWX04tTJ+BDVjtrwF2+TsaFpDhMutCVIGsBgAAkEG6uYr8UA3IcgohQOcCDFJdrUMI6wYAAGS3Dscdg3ocImABw10GhSoAAIDhaWADVltbJ6dNOosQGBKhhaohXwEAAIBMMeAjsDQsYIBkyrWohnwFAAAAMt2QnUKoYQEpypQgNeQrBgAAkK0GI2B1Oggr0rCAL8uUUAUAAMAgG+KLuMfHq44SIVtlxFl+XoIAAAACN0gBq6tBWDFDsSDTBRWkuhLmWgEAANCjwRuBpWFBdginVbkWFQAAwDAxqKcQ9tiwIkeeMBQ6bVLhhyoAAACGicG+BlanB8btyVgwoMLJUh0FtTIAAACEY2gu4t79UKxIxoLeCHn8lLP8AAAA6L8h+xTCHhtWJGNBB4FkqY7CWRMAAACyz5AFrCiF0wlj7WdwkExWCnkIVUfhrAkAAADDxFAGrFiKGStmTBYZJIOyVKerEci6AQAAwNAHrFgfMtYVt4UhlEG/kyGvGwAAAHQqlIAV61XGSkrO78ictMuIUVTGTwEAAJDdwgpYsb5lrI43cQBPNzr+tmTE70+YawUAAAADKsSAFWt/oN6HmNXprRz8Z59UOlT4ZcoQKgAAAOhGuAGrveSRfN9KVpKklVkyMUW1J0sBAABAWmRGwEq64uC/nz2rqyVIDGnXY4q6QsY9BRm3wgAAAJBBMixgXaHPV8vqXq8WmPXlog/tKbPGSXXPKCoAAAAYcpkdsGIda0Lak1Y3BvO+BkGPfSprdPy1kaUAAAAgTNkQsDoa2qTFYEqlQylTAAAAkNGyM2B11GnCULUCJ0UBAAAA0fAJWJ1StQaNFAUAAAD02bAOWJ3qVVgZDrWrD+1JnAIAAADSKNEmNgAAAAAQsJyhXgEAAAAA6I6ABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAAAABBE7AAAAAACJqABQAAAEDQBCwAAAAAgiZgAQAAABA0AQsAAACAoAlYAAAAAARNwAIAAAAgaAIWAAAAAEETsAAAAAAImoAFAAAAQNAELAAAAACCJmABAAAAEDQBCwAAAICgCVgAAAAABE3AAgAAACBoAhYAAAAAQROwAAAAAAiagAUAAABA0AQsAAAAAIImYAEAAAAQNAELAAAAgKAJWAAAAAAETcACAAAAIGgCFgAA8P+3d28hVtf9Hsf/MyNmpiJuSrMDERWV5tgBvKkuYtMBjbJoyp7siFE8QY8bCaJ0d7goom1Ho7IND0KoiT30pNkRArtJIh0tJJQKMrcd7GznNWtf/GsxjXbQGef/ca3X6+r3+89f+Hr75vf7LwCIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3Aajm1Wu2ggw5q+9Ubb7yxy9c2bdo0fPjw8p0DDzzwo48+GuQ5AQAAAEoCVsvp6Oi44IILGtvnnntu53fq9fo111zz3XfflduFCxeOHTt2kOYDAAAA+C0BqxVddNFFjfUuA9aCBQtWr15drq+++urzzz9/cAYDAAAA2FlbvV6vegYGW61WO/jggz/55JOiKNrb27dt23bggQc2/vree++dcMIJO3bsKIriiCOOWL9+/ciRIyubFQAAAGh5TmC1oo6OjunTp5frnp6eF154ofdfZ82aVdar9vb2RYsWqVcAAABAtQSsFvV7twgXLlz4yiuvlOubbrrptNNOG+zJAAAAAH7LFcIWVavVxo0b9+mnnxZFMWbMmI8//rijo2PLli0TJkz46quviqLo7Oxcs2bN0KFDq54UAAAAaHVOYLWo3r9F+Nlnn73++utFUVx77bVlvdpvv/2efPJJ9QoAAABIIGC1rj63CBctWrRq1apye9ddd02YMKGiuQAAAAB+wxXC1tX7FuHRRx/96aeffv7550VRnHHGGS+//HJbW1vVAwIAAAAUhRNYraz3bxFu2rSprFejR4/+5z//qV4BAAAAOQSsltb7FmFpwYIFhx12WCXDAAAAAOySK4Qt7eeffx43btz27dvLbVdX19KlS6sdCQAAAKAPJ7Ca2an//sep//7HH7wwZMiQiRMnNrbz58/f6zMBAAAA7CYBq9W9/fbb5WLs2LGHHHJItcMAAAAA7GxI1QOwFw39jxF//MKHH35Y/gphURSdnZ17fyIAAACA3eYEVtOaPH9Gn8XOuru7G2sBCwAAAMgkYDWtEUeN7bPY2bp16xprAQsAAADIJGA1pz6nrn7vEJYTWAAAAEA+AaulNU5gDR069Nhjj610FgAAAIBdE7CaU59rg7u8Rfjtt99u3ry5XE+YMGHIEF/0BwAAABK11ev1qmdggE2eP2PEUWN7/wThj9u/+WbzR+v+a3GFUwEAAADsGSewAAAAAIgmYDWbI648dQ/+BAAAABDLZ4+azehJh+3yi1e7fAgAAACQzwksAAAAAKIJWE1l8vwZ/XwBAAAAII2A1WzKq4K9f4KwsXWLEAAAANgXCVjN4y9+o92n3AEAAIB9i4+4N4/vt36xbesXRbGh6kEAAAAABlJbvV6vegb2ljO77yyK4sXOuVUPAgAAALDnXCEEAAAAIJqABQAAAEA0AQsAAACAaAIWAAAAANEELAAAAACiCVgAAAAARBOwAAAAAIgmYAEAAAAQTcACAAAAIJqABQAAAEA0AQsAAACAaAIWAAAAANEELAAAAACiCVgAAAAARBOwAAAAAIgmYAEAAAAQTcACAAAAIJqABQAAAEA0AQsAAACAaAIWAAAAANEELAAAAACiCVgAAAAARBOwAAAAAIgmYAEAAAAQTcACAAAAIJqABQAAAEA0AQsAAACAaAIWAAAAANEELAAAAACiCVgAAAAARBOwAAAAAIgmYAEAAAAQTcACAAAAIJqABQAAAEA0AQsAAACAaAIWAAAAANEELAAAAACiCVgAAAAARBOwAAAAAIgmYAEAAAAQTcACAAAAIJqA1YqWLl3a9mdmzpxZ9Zi7Z8qUKY3hTzvttN97bf369aNGjSpfa29vX758+WAOCQAAAOwBAasVrV+//k/f6ezsHIRJBtC8efMa69dee2316tU7v7N169apU6d+/fXX5faee+658MILB2k+AAAAYE8JWK2ou7v7T9/Z5wLW1KlTTzrppMb2rrvu6vPCjh07zj333C1btpTb6667bs6cOYM3HwAAALCnhlQ9ABUYP378tGnT+jzs7u7+4IMPyvWoUaNOPvnkQZ+rv+bOnTt9+vRyvWrVqnXr1k2ePLnc9vT0zJgx48033yy3Z5999sMPP1zJkAAAAMDuErBa0eOPP97nyebNm3sfX1q4cOGYMWMGd6gBcN55551wwgkbNmwot3ffffeSJUvK9ezZs5999tlyPWnSpKeeeqqjo6OaKQEAAIDd5AohxQ8//NDV1dX4MtT111/f1dVV7Uh7pq2tbe7cuY3tsmXLNm3aVBTFQw899OCDD5YPx48fv3LlypEjR1YzIgAAALD7BCyKOXPmrF27tlxPnjx5/vz51c7THxdeeOFxxx1Xrnt6eu65554VK1bMnj27fDJixIgVK1Yceuih1Q0IAAAA7DYBq9U9/fTTja9BjRgxYunSpcOGDat2pP5ob2+/9dZbG9tFixZdcskltVqtKIqOjo4lS5aceOKJ1U0HAAAA7AkBq6W9//7711xzTWP72GOPHXPMMRXOMyAuvvjio48+ulz/+OOPO3bsKNf333//1KlTq5sLAAAA2EMCVuv66aefLr744i+++KLczpo169JLL610ooHR0dFxyy239Hk4e/bsG264oZJ5AAAAgH4SsFrXzTffvGbNmnI9ceLEBx54oNp5BtAFF1zQ+yLkxIkT77333grnAQAAAPpDwGpRK1eubHys/YADDnjqqaf233//akcaKPV6/aqrrvr+++8bTzZu3Lh58+YKRwIAAAD6Q8BqRVu2bLniiivq9Xq5feSRRxq/3NcEbrrppuXLl/d+UqvV7rzzzqrmAQAAAPpJwGo5tVptxowZ27dvL7dXXnnl5ZdfXu1IA+jRRx9t3BbsfaZs8eLF77zzTkVDAQAAAP0iYLWcefPmvfbaa+X6uOOOW7BgQbXzDKDnn3++8aX2/fbb78UXXzz55JPLba1Wu+OOO6obDQAAANhzAlZreemll+6+++5yvf/++y9btmz48OHVjjRQuru7u7q6arVauX3iiSdOPfXU2267rfHCkiVLNm7cWM1wAAAAQD8IWC1k27ZtM2fO7OnpKbcPP/zwhAkTqh1poGzdunXatGlff/11uZ07d+5ll11WFMW0adNOOeWU8mFPT49DWAAAALAvamt8yZvmc2b3nUVRvNg595ftmWe+9NJL5XrYsGFnnXVWW1vbzv9q8eLFw4YNG7Qh+++bb745/fTT165dW267urqWLFnS+K+tXLly2rRp5bq9vX3Dhg3HH398NYMCAAAAe0TAama9A9aXX345evToP/0nhx566AcffLC3BxtAtVrtvPPOW7lyZbmdMmXKq6++2ifATZkyZc2aNeW6q6tr6dKlgz0lAAAA0A+uELaKDRs2/JXXJk2atLcnGVg33nhjo14dfvjhzzzzzM7Hx3p/CWvZsmVvvfXWoI0HAAAA9J+A1Sr+YsDq7Ozc25MMoPvuu6/xK4ojR45csWLF2LFjd37tnHPOmTJlSrmu1+u333774I0IAAAA9JsrhM2pre3dPk/q9SMrmQQAAACgn5zAajZtbe/uXK/+4Pm+6LaTjvrXf55Y9RQAAADAIBGwmsqfJqqmaVjTjxxXXHtOce05VQ8CAAAA7HUCVvP4i3GqSRrWwWOKg8cURVFmLAeyAAAAoIkNqXoA6IeyYRXF9KL45TTW46sqHAcAAADYGwSsJrFb56ra2t7d57/pPmp4URTFV9/+sv21ZBX//bfi/z4rCiULAAAAmoeAxb6szFi9ffXtLzGrLFkyFgAAAOz7BKxWteDvVU+wd/ROWqOGF/8z65dTWrc/WdVEAAAAQD/5iDsAAAAA0ZzAalV/X1D1BP3wv0f97p8aX8UqClcIAQAAoDkIWOzLeueqBh9xBwAAgOYiYDWJev3Iv/5DhPv8TxAWO6WrMloVuhUAAAA0IQGLfdmv3epf726b/vLaamcBAAAA9hIBq3n8xUNYzXD8quh75Gp6laMAAAAAe5eA1VT+tGE1Sb1y5AoAAABaSVu9Xq96BgbezhmradIVAAAA0GoELAAAAACitVc9AAAAAAD8EQELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEE3AAgAAACCagAUAAABANAELAAAAgGgCFgAAAADRBCwAAAAAoglYAAAAAEQTsAAAAACIJmABAAAAEO3/AUUIPsaSGp22AAAAAElFTkSuQmCC",
Malte Nyhuis's avatar
Malte Nyhuis committed
      "text/plain": "<IPython.core.display.Image object>"
     },
Malte Nyhuis's avatar
Malte Nyhuis committed
     "execution_count": 6,
Malte Nyhuis's avatar
Malte Nyhuis committed
     "metadata": {
      "image/png": {
       "width": 400,
       "height": 400
      }
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from IPython.display import Image\n",
    "\n",
    "Image(figpath, width=400, height=400)\n"
   ],
many's avatar
many committed
   "metadata": {
    "collapsed": false,
    "pycharm": {
     "name": "#%%\n"
    }
   }
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}