Newer
Older
from scipy.spatial import Delaunay
from scipy.spatial.distance import squareform, pdist
from itertools import product
from ntrfc.utils.pyvista_utils.line import polyline_from_points, refine_spline
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def calcConcaveHull(x, y, alpha):
"""
origin: https://stackoverflow.com/questions/50549128/boundary-enclosing-a-given-set-of-points/50714300#50714300
"""
points = []
for i in range(len(x)):
points.append([x[i], y[i]])
points = np.asarray(points)
def alpha_shape(points, alpha, only_outer=True):
"""
Compute the alpha shape (concave hull) of a set of points.
:param points: np.array of shape (n,2) points.
:param alpha: alpha value.
:param only_outer: boolean value to specify if we keep only the outer border
or also inner edges.
:return: set of (i,j) pairs representing edges of the alpha-shape. (i,j) are
the indices in the points array.
"""
assert points.shape[0] > 3, "Need at least four points"
def add_edge(edges, i, j):
"""
Add an edge between the i-th and j-th points,
if not in the list already
"""
if (i, j) in edges or (j, i) in edges:
# already added
assert (j, i) in edges, "Can't go twice over same directed edge right?"
if only_outer:
# if both neighboring triangles are in shape, it's not a boundary edge
edges.remove((j, i))
return
edges.add((i, j))
tri = Delaunay(points)
edges = set()
# Loop over triangles:
# ia, ib, ic = indices of corner points of the triangle
for ia, ib, ic in tri.vertices:
pa = points[ia]
pb = points[ib]
pc = points[ic]
# Computing radius of triangle circumcircle
# www.mathalino.com/reviewer/derivation-of-formulas/derivation-of-formula-for-radius-of-circumcircle
a = np.sqrt((pa[0] - pb[0]) ** 2 + (pa[1] - pb[1]) ** 2)
b = np.sqrt((pb[0] - pc[0]) ** 2 + (pb[1] - pc[1]) ** 2)
c = np.sqrt((pc[0] - pa[0]) ** 2 + (pc[1] - pa[1]) ** 2)
s = (a + b + c) / 2.0
A = (s * (s - a) * (s - b) * (s - c))
if A > 0:
area = np.sqrt(A)
circum_r = a * b * c / (4.0 * area)
if circum_r < alpha:
add_edge(edges, ia, ib)
add_edge(edges, ib, ic)
add_edge(edges, ic, ia)
return edges
def find_edges_with(i, edge_set):
i_first = [j for (x, j) in edge_set if x == i]
i_second = [j for (j, x) in edge_set if x == i]
return i_first, i_second
def stitch_boundaries(edges):
edge_set = edges.copy()
boundary_lst = []
while len(edge_set) > 0:
boundary = []
edge0 = edge_set.pop()
boundary.append(edge0)
last_edge = edge0
while len(edge_set) > 0:
i, j = last_edge
j_first, j_second = find_edges_with(j, edge_set)
if j_first:
edge_set.remove((j, j_first[0]))
edge_with_j = (j, j_first[0])
boundary.append(edge_with_j)
last_edge = edge_with_j
elif j_second:
edge_set.remove((j_second[0], j))
edge_with_j = (j, j_second[0]) # flip edge rep
boundary.append(edge_with_j)
last_edge = edge_with_j
if edge0[0] == last_edge[1]:
break
boundary_lst.append(boundary)
return boundary_lst
edges = alpha_shape(points, alpha)
boundary_lst = stitch_boundaries(edges)
x_new = []
y_new = []
for i in range(len(boundary_lst[0])):
x_new.append(points[boundary_lst[0][i][0]][0])
y_new.append(points[boundary_lst[0][i][0]][1])
return x_new, y_new
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
def midLength(ind_1, ind_2, sortedPoly):
"""
calc length of a midline
:param ind_1: index LE
:param ind_2: index TE
:param sortedPoly: pv.PolyData sorted
:return: length
"""
psPoly, ssPoly = extractSidePolys(ind_1, ind_2, sortedPoly)
midsPoly = midline_from_sides(ind_1, ind_2, sortedPoly.points, psPoly, ssPoly)
arclength = midsPoly.compute_arc_length()["arc_length"]
midslength = sum(arclength)
return midslength
def midline_from_sides(ind_hk, ind_vk, points, psPoly, ssPoly):
x_ps, y_ps = psPoly.points[::, 0], psPoly.points[::, 1]
x_ss, y_ss = ssPoly.points[::, 0], ssPoly.points[::, 1]
midsres = 100
if x_ps[0] < x_ps[-1]:
ax, ay = refine_spline(x_ps[::-1], y_ps[::-1], midsres)
else:
ax, ay = refine_spline(x_ps, y_ps, midsres)
if x_ss[0] < x_ss[-1]:
bx, by = refine_spline(x_ss[::-1], y_ss[::-1], midsres)
else:
bx, by = refine_spline(x_ss, y_ss, midsres)
xmids, ymids = ((ax + bx) / 2, (ay + by) / 2)
xmids = np.array(xmids)[::-1][1:-1]
ymids = np.array(ymids)[::-1][1:-1]
xmids[0] = points[ind_vk][0]
ymids[0] = points[ind_vk][1]
xmids[-1] = points[ind_hk][0]
ymids[-1] = points[ind_hk][1]
midsPoly = polyline_from_points(np.stack((xmids, ymids, np.zeros(len(ymids)))).T)
return midsPoly
def calc_largedistant_idx(x_koords, y_koords):
A = np.dstack((x_koords, y_koords))[0]
D = squareform(pdist(A))
# N = np.max(D)
I = np.argmax(D)
I_row, I_col = np.unravel_index(I, D.shape)
index_1 = I_row
index_2 = I_col
return index_1, index_2
def extract_vk_hk(sortedPoly, verbose=False):
"""
This function is calculating the leading-edge and trailing edge of a long 2d-body
The function is not 100% reliable yet. The computation is iterative and it can take a while
Points in origPoly and sortedPoly have to have defined points on the LE and TE, otherwise a LE or TE is not defined
and it will be random which point will be found near the LE / TE
:param origPoly: all original points, unsorted
:param sortedPoly: sorted via calcConcaveHull
:param verbose: bool (True -> plots, False -> silent)
:return: returns indexes of LE(vk) and TE(hk) from sortedPoints
"""
xs, ys = sortedPoly.points[::, 0], sortedPoly.points[::, 1]
ind_1, ind_2 = calc_largedistant_idx(xs, ys)
allowed_shift = 1
midLength0 = midLength(ind_1, ind_2, sortedPoly)
nopt = sortedPoly.number_of_points
checked_combs = {}
found = True
while (found):
shifts = np.arange(-allowed_shift, allowed_shift + 1)
ind_1_ts = (shifts + ind_1) % nopt
ind_2_ts = (shifts + ind_2) % nopt
combs = list(product(ind_1_ts, ind_2_ts))
for key in combs:
if key not in checked_combs.keys():
checked_combs[key] = False
midLengths = []
for ind_1_t, ind2_t in combs:
if checked_combs[(ind_1_t, ind2_t)] == False:
checked_combs[(ind_1_t, ind2_t)] = True
midLengths.append(midLength(ind_1_t, ind2_t, sortedPoly))
else:
midLengths.append(0)
cids = midLengths.index(max(midLengths))
ind_1_n, ind_2_n = combs[cids]
midLength_new = midLength(ind_1_n, ind_2_n, sortedPoly)
if midLength_new > midLength0:
ind_1, ind_2 = ind_1_n, ind_2_n
midLength0 = midLength_new
allowed_shift += 1
found = True
else:
found = False
if sortedPoly.points[ind_1][0] > sortedPoly.points[ind_2][0]:
ind_vk = ind_2
ind_hk = ind_1
else:
ind_vk = ind_1
ind_hk = ind_2
return ind_hk, ind_vk
def extractSidePolys(ind_hk, ind_vk, sortedPoly):
xs, ys = list(sortedPoly.points[::, 0]), list(sortedPoly.points[::, 1])
if ind_vk < ind_hk:
x_ss = xs[ind_vk:ind_hk + 1]
y_ss = ys[ind_vk:ind_hk + 1]
y_ps = ys[ind_hk:] + ys[:ind_vk + 1]
x_ps = xs[ind_hk:] + xs[:ind_vk + 1]
else:
x_ss = xs[ind_hk:ind_vk + 1]
y_ss = ys[ind_hk:ind_vk + 1]
y_ps = ys[ind_vk:] + ys[:ind_hk + 1]
x_ps = xs[ind_vk:] + xs[:ind_hk + 1]
psl_helper = polyline_from_points(np.stack((x_ps, y_ps, np.zeros(len(x_ps)))).T)
ssl_helper = polyline_from_points(np.stack((x_ss, y_ss, np.zeros(len(x_ss)))).T)
if psl_helper.length > ssl_helper.length:
psPoly = pv.PolyData(ssl_helper.points)
ssPoly = pv.PolyData(psl_helper.points)
else:
psPoly = pv.PolyData(psl_helper.points)
ssPoly = pv.PolyData(ssl_helper.points)
return ssPoly, psPoly